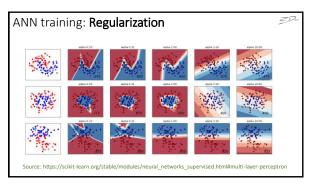
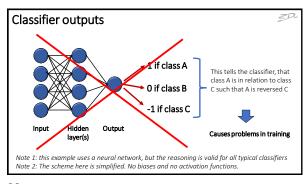
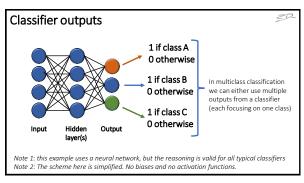
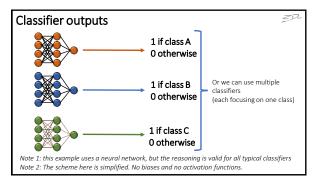
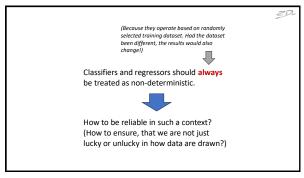

ANN training: Adam optimizer Adam metaparameters: $\beta_1 \quad \text{Decay rate for averaged gradients (default: 0.9)}$ $\beta_2 \quad \text{Decay rate for averaged gradient squares (default: 0.999)}$ $\alpha \quad \text{Learning rate (default: 0.001)}$ $\varepsilon \quad \text{Small utility constant (default: 10^{-8}, don't change)}$ * If you want to know more (including math), this is a good (basic) article on Adam optimizer here: https://www.geeksforgeeks.org/intuition-of-adam-optimizer/ * If you want to actually learn the method at the source, this article introduces Adam optimizer (it may be challenging for beginners though): https://arxiv.org/pdf/1412.6980.pdf

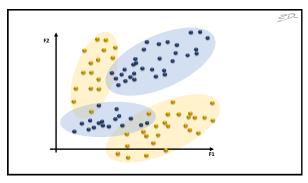


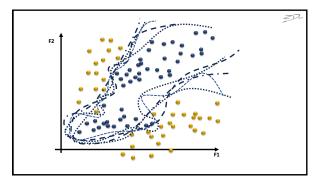

ANN training: Limited memory BFGS (LM-BFGS) (Broyden-Fletcher-Goldfarb-Shanno)	ZD.		
Instead of focusing on gradient, we can also use a Hessian (matrix of second derivatives) So called: "Quasi-Newton" or "Newton-based" methods			
This allows often to outperform first-order-based methods (like Adam) provided that the input space is small (not many data points, not many dimensions)			
LM-BFGS is one of the many algorithms from this family – available in popular libraries for ML in Python			
A paper with a nice overview on second-order optimization algorithms: https://cs.nyu.edu/~overton/mstheses/skajaa/msthesis.pdf			

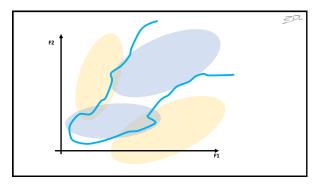


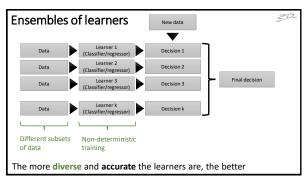


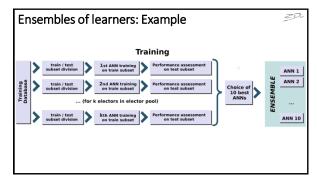


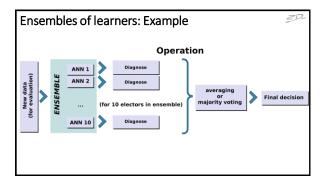


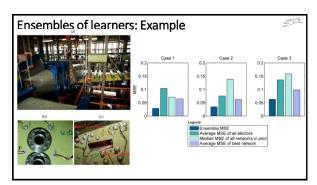




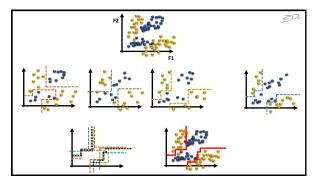








Random forest

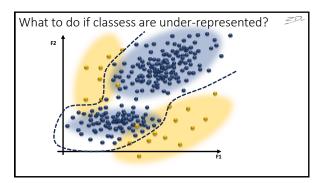


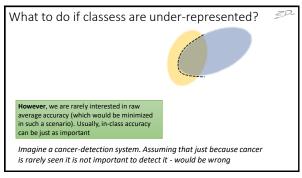
ZD.

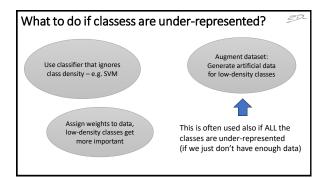
- Do Bagging (Bootstrap Aggregating) by selecting repeatedly subsets of data using drawing with replacement
- If dataset consists of many features, sample them also (let different subsets use also subsets of features!)
- Train simple decision trees based on these subsets (each tree uses different subset)
- 4. Average responses from many trees

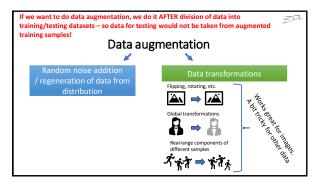
The more **diverse** and accurate the learners are, the better

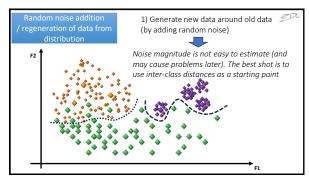
40

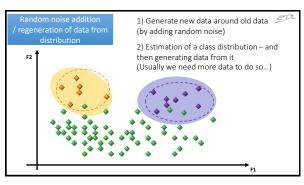



41

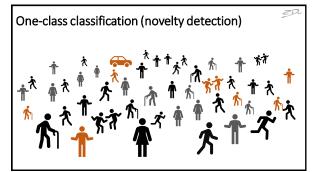

Ensembles of learners


In general: Ensembles provide increased reliability at the cost of


- lack of direct control over classification proces,
- almost no structural optimization possibilities, and a lot of required memory and time



Random noise addition / regeneration of data from distribution


- 1) Generate new data around old data (by adding random noise)
- 2) Estimation of a class distribution and then generating data from it (Usually we need more data to do so...)

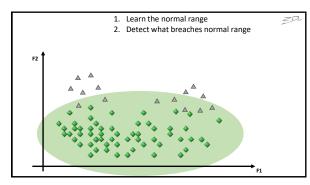
If you have enough data to correctly derive its distribution – you usually have also enough data to do classification...

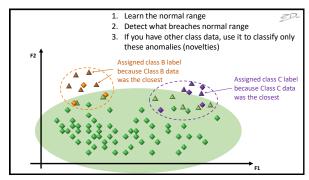
So it works mostly if you know additional context (what distribution can be assumed a priori)

49

50

One-class classification (novelty detection)




Sometimes we have a dataset with lots of examples belonging to just one class and none or almost none to the other classes:

- "Healthy people"
- "Normal behavior in subway"
- "Normal operation state of an assembly line
- "Typical weather conditions in September"

Then, our goal might be to learn this **normal** range of data, to detect any **anomalies (outliers, novelties)**

In Novelty Detection we usually don't know what to expect (there is possibly Infinite set of "norm breaches")

53

One-class classification (novelty detection)

How to learn "normal range"?

- ${\bf 1.} \ \ \, {\bf Estimate\ typical\ distances\ between\ samples\ within\ training\ set,\ detect\ anything\ that\ breaches\ it}$
- 2. Estimate underlying probability density for data e.g. by fitting multidimensional gaussians into training data $\,$

ZD.

3. Train a regression system to derive some of the features from others – in normal range (for known data) it should work very good, for novel samples it should produce large errors

1. Graphical interpretation of classification and regression 2. Logistic regression (Idea, graphical interpretation, equation, features) 3. SVM: Principle of operation, Soft margin explanation, Kernel idea explanation 4. Graphical interpretation of MLP training (for one neuron) 5. MLP scheme 6. Basic ideas behind standard ("vanilla") gradient descent, ADAM and LM-BFGS 7. Explanation of two regularization methods 8. Configuration of ANNs for multiclass classification 9. Idea behind an ensemble approach for classification and its pros and cons 10. Steps and graphical interpretation of a random forest algorithm 11. Risk of having under-represented classes and three solutions to this problem 12. When can we do data augmentation (in relation to division of data into subsets)? 13. How can we augment data? Explain two methods to this end	Things to remember*:	20.	
4. Graphical interpretation of MLP training (for one neuron) 5. MLP scheme 6. Basic ideas behind standard ("vanilla") gradient descent, ADAM and LM-BFGS 7. Explanation of two regularization methods 8. Configuration of ANNs for multiclass classification 9. Idea behind an ensemble approach for classification and its pros and cons 10. Steps and graphical interpretation of a random forest algorithm 11. Risk of having under-represented classes and three solutions to this problem 12. When can we do data augmentation (in relation to division of data into subsets)? 13. How can we augment data? Explain two methods to this end	Logistic regression (Idea, graphical interpretation, equation, features)		
Explanation of two regularization methods Configuration of ANNs for multiclass classification Idea behind an ensemble approach for classification and its pros and cons Steps and graphical interpretation of a random forest algorithm Research of Analy quider-represented classes and three solutions to this problem When can we do data augmentation (in relation to division of data into subsets)? Hence any the can we augment data? Explain two methods to this end	Graphical interpretation of MLP training (for one neuron) MLP scheme		
10. Steps and graphical interpretation of a random forest algorithm 11. Risk of having under-represented classes and three solutions to this problem 12. When can we do data augmentation (in relation to division of data into subsets)? 13. How can we augment data? Explain two methods to this end	Explanation of two regularization methods Configuration of ANNs for multiclass classification		
13. How can we augment data? Explain two methods to this end	 Steps and graphical interpretation of a random forest algorithm Risk of having under-represented classes and three solutions to this problem 		
14. What is a novelty detection problem? Explain three approaches to solve it	 How can we augment data? Explain two methods to this end What is a novelty detection problem? Explain three approaches to solve it 		
*You don't need to memorize equations if they are not explicitly mentioned in this list!	*You don't need to memorize equations if they are not explicitly mentioned in this list!		