
9/28/2025

1

Classification (revisited)

Ziemowit Dworakowski

AGH University of Krakow

Mechatronic Engineering program:
Python for machine learning and data science

What you should probably know already?

Outliers
(their sources, ways to

deal with them)

Basic algorithms
(kNN, manually configured

decision tree)

Basic optimization methods
(Gradient, gradient with

momentum, 1+1, grid search)

Metaparameter
configuration procedure
(2nd order optimization)

Overlapping classes
(And how to deal with them)

Overfitting
(And how to deal with it)

Classification / regression analogy

Class label

x

Classification threshold

x1

x2

1-
d

im
e

n
si

o
n

al
2-

d
im

e
n

si
o

n
al

Value

x

Fitted function

Classification Regression

Class label Value

x1

x2x2

1

2

3

9/28/2025

2

Classification / regression analogy

Class label

x

Classification threshold Class label

x

Class label

x

You can interpret classification as regression
where your aim is to find a function that codes
class labels.

To this end we can (similarily as in classification)
strive to minimize error between class label and
this function’s output

Logistic regression Class
label

x

𝑓 𝑥 =
1

1 + 𝑒−(𝛽1𝑥+𝛽0)

This is again a sigmoid curve – here called a „logistic function”.
𝛽1 and 𝛽0 are parameters that need to be fit during training in such a
way as to maximize log likelihood of correct label assignment.

We can use standard gradient-based optimization approach for that

Logistic regression Class
label

x

𝑓 𝑥 =
1

1 + 𝑒−(𝛽1𝑥+𝛽0)

This is again a sigmoid curve – here called a „logistic function”.
𝛽1 and 𝛽0 are parameters that need to be fit during training in such a
way as to maximize log likelihood of correct label assignment.

We can use standard gradient-based optimization approach for that

Once we have it, we can use it to classify
new data by selection of acceptable
probability threshold

Probability threshold

Classification
threshold

4

5

6

9/28/2025

3

Logistic regression
• LR is a classification equivalent of the linear regression
• It can work for multidimensional problems (we just have more parameters

to learn)
• It can fit a „line classifier” in the „best way possible” (meaning that the

classification has actually probabilistic interpretation
• It cannot solve nonlinearly separable classification problems

x1

x2

x1

x2

F1

F2

SVM revisited: principle

Margin width

Support vectors

It does not really matter that these points
are so clumped together, only the support
vector counts here

In regression SVM aimed to make marigin as
small as possible and fit all the data inside
the margin.

In classification it does the opposite: it tries
to make margin as wide as possible and keep
all data outside of it

F1

F2

SVM revisited: How does it do that?
𝝎 - be a vector perpendicular to the margin
𝒙𝑖 - be the i-th sample
𝒖 - be an unknown sample
𝑦𝑖 - be a class label (equal to either 1 or -1)
𝛼𝑖 - be a Lagrangian multiplier denoting whether a point
should be treated as a support vector

𝒖

𝒙𝑖 In a nutshell, If we want to classify a new sample, we are
using the following equation:

෍

𝑖

𝛼𝑖𝑦𝑖 Ԧ𝑥𝑖 ∘ 𝑢 + 𝑏 ≥ 0 ⇒ 𝑇𝐻𝐸𝑁 ⊕

Let:

Note, that to classify a new point we calculate its dot
product with all the support vectors – that will come in
handy in a second…

7

8

9

9/28/2025

4

+ THENbu 0





Decision rule:

() 01
1

1
−+





−+

+

−

+
bxy

bx

bx
ii




















For the training samples:

For samples „on the margin” (support vectors):

() 01=−+ bxy ii







Margin width:

()


 2
=− −+





xx

We minimize
2

2

1


With respect to constraint

1

1

()  −+−=
i

iii bxyL 1
2

1 2 





 ==−=




i

iii

i

iii xyxy
L 




0

 =−=




i

ii y
b

L
0

After combination of the above equations, we have:

 −=
i i

jiji

j

jii xxyyL






2

1

New decision rule:

+ THENbuxy
i

iii 0







If you want to know what is the source for this equation, here is a brief explanation. You don’t
need to learn that for the test though!

SVM revisited: Nonlinearly separable data

Nonlinearly separable data

„Soft margin” idea

1

2
෍

𝑖=1

𝑛

max 0,1 − 𝑦𝑖 𝜔 ⋅ Ԧ𝑥𝑖 − 𝑏 + 𝜆 𝜔 2

Previous constraint now is just a
weighted part of the objective function

λ allows to balance importance of the
margin width and influence of outliers

We minimize:
We can allow the algorithm to ignore a

few points

(Sometimes ignoring just a few outliers
makes the problem linearly separable)

We classify data accepting
small error rate

SVM revisited: Nonlinearly separable data

Nonlinearly separable data

We can map the data nonlinearly into space
with higher number of dimensions by using

Kernel functions instead of dot products

(There is a chance that data that were not
separable in euclidean space will be

separable in our new kernel-based space)

We classify data using
linear SVM

„kernel trick”

- Polynomial functions:

- Radial-basis functions (RBF)
(equivalent to weighted kNN model):

- Sigmoids:
(equivalent to single-layer MLP):

𝐾(𝑥1, 𝑥2) = exp −𝛾 𝑥1 − 𝑥2
2

𝐾(𝑥1, 𝑥2) = 1 + 𝑥1
𝑇𝑥2

𝑝

𝐾(𝑥1, 𝑥2) = tanh 𝛽0𝑥1
𝑇𝑥2 + 𝛽1

Kernel 𝐾 𝑥1, 𝑥2 Defines „similarity
measure” between two vectors of
features. Examples of kernels include:

10

11

12

9/28/2025

5

F1

F2

SVM revisited: How does it do that?
𝝎 - be a vector perpendicular to the margin
𝒙𝑖 - be the i-th sample
𝒖 - be an unknown sample
𝑦𝑖 - be a class label (equal to either 1 or -1)
𝛼𝑖 - be a Lagrangian multiplier denoting whether a point
should be treated as a support vector
𝑏 – is a marigin width parameter

𝒖

𝒙𝑖 In a nutshell, If we want to classify a new sample, we are
using the following equation:

෍

𝑖

𝛼𝑖𝑦𝑖 Ԧ𝑥𝑖 ∘ 𝑢 + 𝑏 ≥ 0 ⇒ 𝑇𝐻𝐸𝑁 ⊕

Let:

If we want to use nonlinear SVM, instead of dot product,
we are using kernel function:

෍

𝑖

𝛼𝑖𝑦𝑖 𝐾(Ԧ𝑥𝑖 , 𝑢) + 𝑏 ≥ 0 ⇒ 𝑇𝐻𝐸𝑁 ⊕
A good visualization on how kernels affect data classification:
https://www.youtube.com/watch?v=Q7vT0--5VII

SVM revisited: How does it do that?

A good visualization on how kernels affect data classification:
https://www.youtube.com/watch?v=Q7vT0--5VII

Very good lecture introduction to SVMs can be found here:
https://www.youtube.com/watch?v=_PwhiWxHK8o

Paper on SVM implementation in scikit is here (beware of challenge!):
https://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf

ANN revisited: MLP for classification

∑

∑

∑

∑

Input Hidden layer(s) Output

∑

b b

All of this works exactly as in regression
(same structure, training methods, configuration,
etc.)

The only difference is here: we
are using target data with labels
(categorical binary variables)
instead of numerical values

13

14

15

9/28/2025

6

Training interpretation from classification perspective

We know that we should rotate
the classification line like that.
But how the training algorithm
knows that?

1

0

f1

f2

Training interpretation from classification perspective

𝜎 𝒘1 ∙ 𝒙 + 𝑤𝑏,1 ≥ 0

Target value = 0

f1

f2
Classifier returns = 0.95
Classifier returns = 1

𝑓(𝒘1 ∙ 𝒙 + 𝑤𝑏,1)

Training interpretation from classification perspective

The more „lines”
(neurons) we have, the
more flexible we are

f1

f2

16

17

18

9/28/2025

7

ANN training: (Vanilla) gradient descent
(standard, without additions)

(Start from a random set of weights)

Calculate gradient of error with respect
to all the weights

Modifiy the weights in the direction of
the steepest gradient descent

f1

f2

∑

∑
∑

b b

Consider a simple Multilayer Perceptron (MLP) network:

𝒙
𝒘3:6

𝒙′ 𝑦

We also have a target 𝑡 associated
with each input vector 𝒙. Using
that, we can calculate error 𝑑:

𝑦 = 𝜎 𝑤8 ∙ 𝑥′
1 + 𝑤9 ∙ 𝑥′

2 + 𝑤7

𝒘1:2 𝑤7

𝒘8:9

𝑥′
1 = 𝜎 𝑤3 ∙ 𝑥1 + 𝑤5 ∙ 𝑥2 + 𝑤1

𝑥′
2 = 𝜎 𝑤2 ∙ 𝑥1 + 𝑤6 ∙ 𝑥2 + 𝑤2

𝑑 =
1

2
(𝑦 − 𝑡)2

You can combine this to get a 𝑓 𝒘, 𝒙
function equivalent for a network

∇𝑑 =
𝜕𝑑

𝜕𝑤1
,

𝜕𝑑

𝜕𝑤2
,

𝜕𝑑

𝜕𝑤3
, … ,

𝜕𝑑

𝜕𝑤9

Now we can calculate gradient of
𝑑 with respect to weights 𝒘:

The gradient now tells us how to
adjust weights

ANN training: Adam optimizer

What can we do to improve on it further?

We now have a method that will be gradually dragging
us towards a better classification accuracy.

1) We can accelerate optimization using averaged
gradients (momentum): consecutive steps in the
same direction cause the algorithm to speed up)

2) We can make the optimization more robust by
including an average of square gradients of the past
(oscillations tend to be stopped rapidly)

3) We can just use a sign of the derivative for each
weight instead of its actual value (speedup for
saddle points)

Adaptive moment
estimation

(ADAM)

f1

f2

19

20

21

9/28/2025

8

ANN training: Adam optimizer

* If you want to know more (including math),
this is a good (basic) article on Adam optimizer here:
https://www.geeksforgeeks.org/intuition-of-adam-optimizer/

Adam metaparameters:

𝛽1 - Decay rate for averaged gradients (default: 0.9)

𝛽2 - Decay rate for averaged gradient squares (default: 0.999)

𝛼 - Learning rate (default: 0.001)

𝜀 - Small utility constant (default: 10−8, don’t change)

* If you want to actually learn the method at the source, this article introduces Adam optimizer
(it may be challenging for beginners though):
https://arxiv.org/pdf/1412.6980.pdf

ANN training: Limited memory BFGS (LM-BFGS)
(Broyden–Fletcher–Goldfarb–Shanno)

Error function (the one we are optimizing)

w

d

Starting point

Next point

Instead of focusing on gradient, we can also
use a Hessian (matrix of second derivatives)

So called: „Quasi-Newton” or
„Newton-based” methods

ANN training: Limited memory BFGS (LM-BFGS)
(Broyden–Fletcher–Goldfarb–Shanno)

A paper with a nice overview on second-order optimization algorithms :
https://cs.nyu.edu/~overton/mstheses/skajaa/msthesis.pdf

This allows often to outperform first-order-based
methods (like Adam) provided that the input space is
small (not many data points, not many dimensions)

LM-BFGS is one of the many algorithms from this
family – available in popular libraries for ML in Python

Instead of focusing on gradient, we can also
use a Hessian (matrix of second derivatives)

So called: „Quasi-Newton” or
„Newton-based” methods

22

23

24

9/28/2025

9

ANN training: Regularization
„How to prevent overfitting in such a way so
we don’t have to stop training early?”

f2

f1

We can stop this proces in two ways:

1. By iteratively adding random noise
to weights – not allowing the
algorithm to actually memorize
data samples

f2

f1

We can stop this proces in two ways:

1. By iteratively adding random noise
to weights – not allowing the
algorithm to actually memorize
data samples

2. By penalizing high weights
(indirectly: not allowing high
model complexity)

25

26

27

9/28/2025

10

ANN training: Regularization

Source: https://scikit-learn.org/stable/modules/neural_networks_supervised.html#multi-layer-perceptron

Classifier outputs

Input Hidden
layer(s)

Output

0 if class B

-1 if class C

1 if class A
This tells the classifier, that
class A is in relation to class
C such that A is reversed C

Causes problems in training

Note 1: this example uses a neural network, but the reasoning is valid for all typical classifiers
Note 2: The scheme here is simplified. No biases and no activation functions.

Classifier outputs

Input Hidden
layer(s)

1 if class B
0 otherwise

1 if class C
0 otherwise

1 if class A
0 otherwise

Output

In multiclass classification
we can either use multiple
outputs from a classifier
(each focusing on one class)

Note 1: this example uses a neural network, but the reasoning is valid for all typical classifiers
Note 2: The scheme here is simplified. No biases and no activation functions.

28

29

30

9/28/2025

11

Classifier outputs

1 if class B
0 otherwise

1 if class C
0 otherwise

1 if class A
0 otherwise

Or we can use multiple
classifiers
(each focusing on one class)

Note 1: this example uses a neural network, but the reasoning is valid for all typical classifiers
Note 2: The scheme here is simplified. No biases and no activation functions.

Classifiers and regressors should always
be treated as non-deterministic.

(Because they operate based on randomly
selected training dataset. Had the dataset
been different, the results would also
change!)

How to be reliable in such a context?
(How to ensure, that we are not just
lucky or unlucky in how data are drawn?)

F1

F2

31

32

33

9/28/2025

12

F1

F2

F1

F2

Ensembles of learners

Data
Learner 1

(Classifier/regressor)
Decision 1

New data

Learner 3
(Classifier/regressor)

Learner 2
(Classifier/regressor)

Learner k
(Classifier/regressor)

Decision 2

Decision 3

Decision k

Final decision

Data

Data

Data

The more diverse and accurate the learners are, the better

Different subsets
of data

Non-deterministic
training

34

35

36

9/28/2025

13

Ensembles of learners: Example

Ensembles of learners: Example

Ensembles of learners: Example

37

38

39

9/28/2025

14

Random forest

1. Do Bagging (Bootstrap Aggregating) by
selecting repeatedly subsets of data using
drawing with replacement

2. If dataset consists of many features, sample
them also (let different subsets use also
subsets of features!)

3. Train simple decision trees based on these
subsets (each tree uses different subset)

4. Average responses from many trees

The more diverse and accurate the learners are, the better

F1

F2

Ensembles of learners

In general: Ensembles provide increased reliability at
the cost of

- lack of direct control over classification proces,
- almost no structural optimization possibilities, and

- a lot of required memory and time

40

41

42

9/28/2025

15

F1

F2

What to do if classess are under-represented?

What to do if classess are under-represented?

However, we are rarely interested in raw
average accuracy (which would be minimized
in such a scenario). Usually, in-class accuracy
can be just as important

Imagine a cancer-detection system. Assuming that just because cancer
is rarely seen it is not important to detect it - would be wrong

What to do if classess are under-represented?

Use classifier that ignores
class density – e.g. SVM

Assign weights to data,
low-density classes get

more important

Augment dataset:
Generate artificial data
for low-density classes

This is often used also if ALL the
classes are under-represented
(if we just don’t have enough data)

43

44

45

9/28/2025

16

Data augmentation

Random noise addition
/ regeneration of data from

distribution

Data transformations

Flipping, rotating, etc.

Global transformations

Rearrange components of
different samples

If we want to do data augmentation, we do it AFTER division of data into
training/testing datasets – so data for testing would not be taken from augmented
training samples!

Random noise addition
/ regeneration of data from

distribution

F1

F2

1) Generate new data around old data
(by adding random noise)

Noise magnitude is not easy to estimate (and
may cause problems later). The best shot is to
use inter-class distances as a starting point

Random noise addition
/ regeneration of data from

distribution

F1

F2

1) Generate new data around old data
(by adding random noise)

2) Estimation of a class distribution – and
then generating data from it
(Usually we need more data to do so…)

46

47

48

9/28/2025

17

Random noise addition
/ regeneration of data from

distribution

1) Generate new data around old data
(by adding random noise)

2) Estimation of a class distribution – and
then generating data from it
(Usually we need more data to do so…)

If you have enough data to correctly derive
its distribution – you usually have also
enough data to do classification…

So it works mostly if you know additional
context (what distribution can be assumed
a priori)

One-class classification (novelty detection)

One-class classification (novelty detection)

Sometimes we have a dataset with lots of examples belonging to
just one class and none or almost none to the other classes:

- „Healthy people”
- „Normal behavior in subway”
- „Normal operation state of an assembly line
- „Typical weather conditions in September”

Then, our goal might be to learn this normal range of
data, to detect any anomalies (outliers, novelties)

In Novelty Detection we usually don’t know what to expect
(there is possibly Infinite set of „norm breaches”)

49

50

51

9/28/2025

18

F1

F2

1. Learn the normal range
2. Detect what breaches normal range

F1

F2

1. Learn the normal range
2. Detect what breaches normal range
3. If you have other class data, use it to classify only

these anomalies (novelties)

Assigned class C label
because Class C data
was the closest

Assigned class B label
because Class B data
was the closest

One-class classification (novelty detection)

How to learn „normal range”?

1. Estimate typical distances between samples within
training set, detect anything that breaches it

2. Estimate underlying probability density for data – e.g. by
fitting multidimensional gaussians into training data

3. Train a regression system to derive some of the features
from others – in normal range (for known data) it should work
very good, for novel samples it should produce large errors

52

53

54

9/28/2025

19

1. Graphical interpretation of classification and regression
2. Logistic regression (Idea, graphical interpretation, equation, features)
3. SVM: Principle of opeartion, Soft margin explanation, Kernel idea explanation
4. Graphical interpretation of MLP training (for one neuron)
5. MLP scheme
6. Basic ideas behind standard („vanilla”) gradient descent, ADAM and LM-BFGS
7. Explanation of two regularization methods
8. Configuration of ANNs for multiclass classification
9. Idea behind an ensemble approach for classification and its pros and cons
10. Steps and graphical interpretation of a random forest algorithm
11. Risk of having under-represented classes and three solutions to this problem
12. When can we do data augmentation (in relation to division of data into subsets)?
13. How can we augment data? Explain two methods to this end
14. What is a novelty detection problem? Explain three approaches to solve it

Things to remember*:

*You don’t need to memorize equations if they are not explicitly mentioned in this list!

55

	Slide 1: Classification (revisited)
	Slide 2: What you should probably know already?
	Slide 3: Classification / regression analogy
	Slide 4: Classification / regression analogy
	Slide 5: Logistic regression
	Slide 6: Logistic regression
	Slide 7: Logistic regression
	Slide 8: SVM revisited: principle
	Slide 9: SVM revisited: How does it do that?
	Slide 10
	Slide 11: SVM revisited: Nonlinearly separable data
	Slide 12: SVM revisited: Nonlinearly separable data
	Slide 13: SVM revisited: How does it do that?
	Slide 14: SVM revisited: How does it do that?
	Slide 15: ANN revisited: MLP for classification
	Slide 16: Training interpretation from classification perspective
	Slide 17: Training interpretation from classification perspective
	Slide 18: Training interpretation from classification perspective
	Slide 19: ANN training: (Vanilla) gradient descent
	Slide 20
	Slide 21
	Slide 22
	Slide 23: ANN training: Limited memory BFGS (LM-BFGS)
	Slide 24: ANN training: Limited memory BFGS (LM-BFGS)
	Slide 25: ANN training: Regularization
	Slide 26
	Slide 27
	Slide 28: ANN training: Regularization
	Slide 29: Classifier outputs
	Slide 30: Classifier outputs
	Slide 31: Classifier outputs
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Ensembles of learners
	Slide 37: Ensembles of learners: Example
	Slide 38: Ensembles of learners: Example
	Slide 39: Ensembles of learners: Example
	Slide 40: Random forest
	Slide 41
	Slide 42: Ensembles of learners
	Slide 43: What to do if classess are under-represented?
	Slide 44: What to do if classess are under-represented?
	Slide 45: What to do if classess are under-represented?
	Slide 46: Data augmentation
	Slide 47
	Slide 48
	Slide 49
	Slide 50: One-class classification (novelty detection)
	Slide 51: One-class classification (novelty detection)
	Slide 52
	Slide 53
	Slide 54: One-class classification (novelty detection)
	Slide 55: Things to remember*:

