lu“”u Grudzien 2020 -
AGH Wypadek na uniwersytecie w Kyoto

AKADEMIA GGRNICZO-HUTNICZA , The backup script includes a find command to delete log files older than 10 days. In
AGH IM. STANISLAWA STASZICA W KRAKOWIE addition to functional improvement of the script, the variable name passed to the
find command for deletion was changed to improve visibility and readability.
However, there was a lack of consideration in the release procedure of this modified
script. We were not aware of the side effects of this behavior and released the

Systemy operacyjne [updated] script, overwriting [a bash script] while it was still running, [...] This
w kl'a d o 5 N resulted in the reloading of the modified shell script in the middle of the execution,
y resulting in undefined variables. As a result, the original log files in /LARGEO

[backup disc storage] were deleted instead of the original process of deleting files
saved in the log directory.”

Wersja 2024 ¢ Wynik: Nieodwracalnie skasowano 77TB danych.
e‘ll- igi_. I:Ifrgk \glil!(_u': - htll:(p:é/homes.'agh.gdu.pll~mwilkus
P l'lzlgakg‘zmymeru etali i Informatyki Przemystowej e Co mog’ro sie staé?
1 2

Na podstawie programu opracowanego przez dr inz. Krzysztofa Wilka
% |

il i

AGH AGH

#Komentarz 1
#Komentarz 2

#Komentarz 1
#Komentarz 2

sciezka=/LARGEOQ
rsync ... #Utworz kopie wszystkiego do $sciezka
sciezka=/LARGEO/LOG

sciezka=/LARGEO
rsync ... #Utworz kopie wszystkiego do $sciezka
sciezka=/LARGEO/LOG

oA, WNE

v

find $sciezka -type f -ctime +10 -exec rm -f {} \; 7 find $sciezka -type f -ctime +10 -exec rm -f {} \;
8
cing * Zatdézmy, ze jesteSmy w trakcie tworzenia kopii
? Z D)
¢ Co mogto pojsc nie tak? zapasow’ej (rsync) - linia 5. Ktore linia wykona sie
N o ,)) B POTEM?
* Zatézmy, ze jesteSmy w trakcie tworzenia kopii * Oczywiécie linia 6 - przypisanie nowej $ciezki i
zapasowej (rsync). Ktore linia wykona sie usuwanie starych logéw z kopii.
POTEM? * W trakcie kopii zapasowej jednak usunieto
komentarz...
3 4
| |
lllmm mmm Co z tego powinni$my wiedzie¢?
AGH AGH
1 #Komentarz 1 ¢ Nie modyfikowac skryptow w trakcie ich dziatania!
2 seiezka=/LARGE * Sprawdza¢, na jakie Sciezki -
4 rsync ... #Utworz kopie wszystkiego do $sciezka wskazujg zmienne! Nﬁlﬁggﬂ‘
}5 sciezka=/LARGEO/LOG e Rozpatrywac przypadki awarii: MASZYN
6 find $sciezka -type f -ctime +10 -exec rm -f {} \; o .. W CZASIE
7 - A co jezeli filesystem nie jest ICH BIEGU !
8 zamontowany?
- A co jezeli Sciezka nie istnieje?
* W trakcie kopii zapasowej jednak usunieto komentarz... - A co jezeli nie mozna przejs$¢ do katalogu?
* Pomimo tego, ze nadal dziata rsync, dla Basha dziata linia e Postepowaé z rm -f jak z natadowanym
nr 5 - czyli przypisanie. Ale ono nie wystapi - dziata rewolwerem! Nigdy nie wskazywaé nim miejsc,
rsync.

. - 2T .
* Wykona sie linia 6 - natychmiastowe usuniecie ktorych nie chcielibysmy usunac!
wszystkich plikow starszych niz 10 dni z catej kopsii.

il | iata?
acy Sygnaly - jak to dziata? (Ferr—

Blok kontrolny procesu posiada tablice sygnatéw S ey

dostepnych do zadania oraz liste sygnatéw do wykonania.
Wysytajac sygnat system: Rejestry

- Odnajduje proces po ID na podstawie bloku
kontrolnego,

- Przeglada tablice dostepnych sygnatéw. Gdy znajdzie
konkretny sygnat, odczytuje z tej tablicy adres procedury
obstugi sygnatu - adres w kodzie procesu.

- Jezeli jest réwny statej SIG_IGN, ignorujemy sygnat - nie jest on
obstugiwany przez program.

- Jezeli sygnat to SIG_DFL, system uruchamia procedure obstugi sygnatu
domyslnego nie z procesu, ale z wtasnych funkgji. Dzieki temu system moze
wykonac pewne czynnosci obstugi sygnatu za proces.

Adres znalezionego sygnatu obstugiwanego przez program jest zapisywany
do listy sygnatéw do wykonania.

Licznik rozkazow

Teraz proces musi znalez¢ sie w kolejce proceséw gotowych, o ile juz tam
nie jest bo np. czekat na cos. 7

| J—

AGH Proces melduje sie na sygnat

Kod procesu do uruchomienia kodu odpowiedniego sygnatu
wykorzystuje funkcje signal lub sigaction.

Funkcja ta wigze numer sygnatu z podana przez uzytkownika
funkcja.

Liste sygnatéw w danym systemie uzyskamy wydajac
polecenie kill -1 (I jak list).

Mozna unikng¢ zakleszczen oraz wykonywania odpowiedzi na sygnat w
trakcie wykonywania innego sygnatu nadajac sygnatom blokowanie
funkcjg sigprocmask.

>
E——

Systemy rozproszone

11

|/ J——

AGH Zmodyfikowany proces w kolejce proceséw gotowych

Przetgczenie kontekstu na proces powoduje, ze system przywraca go,
ale zamiast wykonywac od przerwanego miejsca, wykonuje od funkcji
obstugujacej sygnat.

Po zakonczeniu procedury obstugujacej sygnat, wymuszane lub
oczekiwane jest przetaczenie kontekstu, a w ramach wznowienia system
doprowadza blok kontrolny do porzadku i wykonanie rozpoczyna sie juz
od prawidtowego miejsca w programie.

Skad system wie, ze funkcja sygnatu sie zakonczyta i moze "sprzatnac
batagan"? Zaleznie od systemu:

- Adres zwrotny funkcji obstugi sygnatéw jest intencjonalnie nieprawidtowy, co
powoduje przerwanie.

— Ostatnie polecenie funkcji obstugi sygnatu uruchamia funkcje systemowa.

- Pamiec funkcji systemowej jest tymczasowo mapowana dla procesu, wiec i
system i proces majg do niej dostep a jej adres jest fadowany na stos
wywotan. Opuszczenie funkcji sygnatéw powosuje powrét do funkcji
systemowej. Dzieki temu funkcja sygnatow moze nawet zwréci¢ wartos¢ dla
jadra (Linux). s

bphics Sygnaly - Istotne sygnaty

SIGKILL - Wykonuje minimalny kod zakonhczenia procesu, bez

zapisywania pracy czy oprézniania buforéw. Nie mozna go

przechwycic.

SIGTERM - Wykonuje prawidtowe zakonczenie programu.

SIGSTOP - Interpretowane przez system - zatrzymanie

programu. Proces aktywujemy wysytajac SIGCONT

SIGHUP - Inforr_nuie proces, ze wlasnie stracit permanentnie

dostep do terminala, na ktérym dziatat.

(S:{(?IQT - Przerwanie dziatania procesu. Uzytkownik wcisnat
rl-C.

SIGILL - Proces wykonat nieprawidtowg operacje.

SIGSEGV - Proces dokonat dostepu do pamieci pod adres sobie

niedostepny (i.e. innego procesu).

SIGUSR1, SIGUSR2 - dla procedur uzytkownika.

W POSIX tylko podstawowe sygnaty majg state numery! 10

s Systemy rozproszone

Wg Wikipedii:

e System rozproszony to zbiér niezaleznych

urzadzen (komputeréw) potgczonych w jedng, spéjng
logicznie catos¢. Potaczenie najczesciej realizowane
jest przez sie¢ komputerowq. Urzadzenia sq
wyposazone W oprogramowanie umozliwiajace
wspotdzielenie zasobdw systemowych.

e Jedng z podstawowych cech systemu rozproszonego

jest jego transparentnosc, inaczej przezroczystosé,
ktora stwarza na uzytkownikach systemu
rozproszonego wrazenie pojedynczego i

zintegrowanego systemu. i

e Systemy rozproszone - cechy oghtr Praktyka

e Wspotdzielenie zasobow - wielu uzytkownikdw systemu moze

korzysta¢ z danego zasobu (np. drukarek, plikéw, ustug, itp.) * Wiele systemow realizuje pewne cechy

systemu rozproszonego.
e Otwartos¢ - podatnos¢ na rozszerzenia, mozliwos$¢ rozbudowy systemu e Nie istnieje praktycznie stosowany system
zaréwno pod wzgledem sprzetowym, jak i oprogramowania . . .
operacyjny catkowicie rozproszony.

e Wspétbieznos¢ - zdolnoé¢ do przetwarzania wielu zadar jednoczeénie e Wiele cech systeméw rozproszonych mozna
< B ‘ _ o zaimplementowaé w ramach ustug systeméw
" Shelowalnott sachowanie podobnel wydajroil systeny 2y operacyjnych lub programéw narzedziowych.
- Niektodre z tych cech sg problematyczne, gdyby
e Odpornoéé¢ na btedy - zdolnoé¢ dziatania systemu mimo pojawiania sie byty implementowane w systemach - stad lepiej,
btedéw (np. poprzez utrzymywanie nadmiarowego sprzetu) gdy sa zaimplementowane w zewnetrznych
programach.

e Transparentnos$¢, przezroczystos$¢ - postrzeganie systemu przez
uzytkownika jako catosci, a nie poszczegdlnych sktadowych.

13 14
| |
lllmm Otwartosc¢ lumm Przezroczystos¢
AGH AGH
e Ustugi muszg by¢ zgodne ze standardowymi e Dostepu

regutami opisujacymi ich sktadnie i semantyke (np.
protokoty sieciowe).
e Specyfikacja interfejsu musi by¢ kompletna i

e Potozenia
e Wedrowki (migracji)
* Przemieszczenia

neutralna.

e Zwielokrotnienia
Programy od réznych dostawcéw muszq e Wspotbieznosci
wspoétpracowac ze sobg, o ile spetniajg warunek o Awarii

zgodnosci interfejsow. . Trwatosci
Przenos$nos¢ - aplikacja stworzona dla jednego

systemu moze by¢ uruchomiona w innym bez vnanie 65 W ich reorepentac

potrzeby dokonania jakichkolwiek zmian. s ukrywanie roznic w icn reprezentacjl. y

Dostepu: Przez ujednolicenie metod dostepu do danych i

by ——
ER——

e Przezroczystos¢ (c.d.)

. Skalowalnos¢
* Potozenia: uzytkownicy nie mogg okresli¢ potozenia zasobu, np. na) . L.
podstawie jego nazwy lub jednolitego identyfikatora. e Pod wzgledem rozmiaru (mozliwos¢
dodawania nowych zasobdw i
* Wedrdowki: mozna przenosi¢ zasoby miedzy serwerami bez zmiany uiytkownik(')w)
odwotywania sie do nich. *
* Przemieszczenia: mozliwo$¢ przenoszenia zasobéw nawet podczas ich ° Geog raficzna (rozrzucenie zasobdw i

uzywania. . sz . .

uzytkownikéw po catym sSwiecie).

* Zwielokrotniania: uzytkownik nie zauwaza faktu zwielokrotniania zasobow

* Wspétbieznosci: mozliwoé¢ wspétbieznego przetwarzania nie e Administracyjna (skuteczna, mimo ze
powodujacego utraty spojnosci. administracja systemem jest rozrzucona).

* Awarii: niezauwazalne zastgpowanie uszkodzonych weztow.

* Trwatlosci: maskowanie sposobu przechowywania zasobu (pamie¢ lub
dysk). 17 18

MmJJJ Skalowalnos¢ - realizacja
AGH

1. Ukrywanie op6znien komunikacji
- Komunikacja asynchroniczna

- Cze$c¢ obliczen po stronie klienta.
2. Rozproszenie (np. DNS).

3. Zwielokrotnianie

- Réwnowazenie obcigzenia,

- Zwiekszanie dostepnosci

- Zwiekszenie niezawodnosci

- Caching

Problem spdéjnosci danych!
19

lllm Multiprocesory (systemy wieloprocesorowe)

AGH najbardziej ogélny schemat
RAM RAM Pamieé RAM
1 2 wspoldzielona | k
I))
SIEC PRZELACZAJACA
] | |
CPU CPU CPU
1 2 n

21

L

e Systemy homogeniczne

e Sieci systemowe - grupa komputerow
homogenicznych potaczonych siecig
- architektura potaczen - szyna lub przetgcznik.
- topologia potaczen - siatki i hiperkostki.

e Realizacje:
- Procesory o masywnej rownolegtosci (specjalna siec).
(MPP - Massive parallel processing).
- Klastry, grupy stacji roboczych (sie¢ standardowa).

23

ophs Realizacja sprzetowa
e Systemy

- wieloprocesory (pamie¢ dzielona)
(w tym systemy wielordzeniowe)

- multikomputery (pamie¢ odrebna)
e Architektura

- szyna
- przetacznik

20

!\lmjm Multikomputery (systemy wielokomputerowe)

| Rav]
EE

magistrala lokalna

RAM - pamig¢ operacyjna

CPU - procesor

Cl - interfejs komunikacyjny

| sieé polaczeniowa | IO - urz. wej$cia wyjscia

22

bl Oprogramowanie

1. Systemy operacyjne dla komputerow
rozproszonych:

a) scisle powigzane (zarzadzanie wszystkimi globalnymi
zasobami przez system) - w wieloprocesorach,
komputerach homogeniczych.

e Ukrywaja rozproszenie i zarzadzajq zasobami sprzetowymi.

b) luzno powigzane (zbiér wspdtpracujacych komputeréw
z lokalnymi OS) - sieciowe systemy operacyjne.
o Oferujg lokalne ustugi klientom zdalnym.

2. Oprogramowanie warstwy posredniej...

e ...zapewnia przezroczystos¢ rozproszenia.
24

!”(w Wielokomputerowy system operacyjny

Aplikacje rozproszone

Ustugi rozproszonego systemu operacyjnego

25

@M Sieciowy system operacyjny

Aplikacje rozproszone

Ustugi Ustugi Ustugi
sieciowego sieciowego sieciowego
systemu systemu systemu
pperacyjnegd Dperacyjnegd bperacyjnegg

MMJJJ Oprogramowanie warstwy posredniej
AGH (middleware)

|
Aplikacje rozproszone
|
Warstwa posrednia

Ustugi Ustugi Ustugi
sieciowego sieciowego sieciowego
systemu systemu systemu
Dperacyjnega bperacyjnega Dperacyjnegd

@!ﬂ Rozproszona pamiec¢ dzielona

e Stronicowana rozproszona pamiec dzielona jako forma
komunikacji.

e Problemy z efektywnoscig;:

- zwielokrotniania stron tylko do ich odczytu,

- zwielokrotnianie wszystkich stron bez ich uzytkowania,

- rezygnacja ze Scistej spdjnosci,

- fatszywe dzielenie (false sharing - gdy 2 procesy na
dwéch procesorach odwotujq sie do réznych zmiennych,
ale na tej samej stronie, strona ta ciggle ,wedruje” od
procesora do procesora). Naprawiane przez dostosowanie
rozmiaru strony.

26
|

@M Ustugi sieciowego systemu operacyjnego

Praca zdalna (np. rlogin, Remote Desktop)

Kopiowanie plikéw (np. rcp, SFTP)

Zdalne uruchamianie oprogramowania i lokalna
obstuga jego interfejsu (np. X forwarding),

e Sieciowy system plikdw
- Serwer
- Klient

28

lu]“m Warstwa posrednia
AGH

e Sieciowy system operacyjny nie oferuje
przezroczystosci rozproszonego systemu
operacyjnego.

e Uzyskanie systemu rozproszonego wymaga
wprowadzenia dodatkowej warstwy oprogramowania
- warstwy posredniej, nadbudowujacej nad ustugami
sieciowymi ustugi dla systemu rozproszonego.

30

@m Warstwa posrednia (c.d.)

Sieciowe systemy operacyjne w zakresie
komunikacji oferuja interfejs gniazd (ang. sockets),
umozliwiajacy komunikacje pomiedzy
rozproszonymi procesami, ale wymagajacy
wskazania lokalizacji poszczegdlnych proceséw (np.
poprzez adresy IP).

W systemie rozproszonym warstwa posrednia moze
dostarcza¢ mechanizméw transparentnej
komunikacji, w ktérej procesy identyfikowane sg w
sposoOb abstrakcyjny, niezalezny od lokalizacji
procesow.

31

lllmm Ustugi warstwy posredniej
AGH Co zapewnia warstwa posrednia?

Komunikacja - RPC, zdalne obiekty, przezroczysty
dostep do rozproszonych plikdw, baz danych,
dokumenty WWW.

e Nazewnictwo - lokalizacja zasobdw - skalowalnosc.

e Trwatos¢ - pliki, bazy danych, rozproszona pamiec
dzielona.

e Transakcje rozproszone - atomowos$¢, dane na wielu
maszynach, maskowanie awarii.

e Bezpieczenstwo. 33

P
==

Przyklady warstw posrednich

Lu]lw Zalozenia do warstwy posredniej

* Wszystko jest plikiem (z Unixa) - komunikacja jako
zapis/odczyt pliku.

* Zdalne wywotania procedur (RPC) - procedury zdalne
jak lokalne (ukrywanie komunikacji).

® Obiekty rozproszone - obiekt na jednej maszynie,
interfejs do niego na wielu.

* Model dokumentéw rozproszonych (WWW).
— Wiele cech przydatnych w WWW byto juz testowanych i
nie rozszerzyto standardu (NLS - 1960s, Memex - 1950s).
Np. wspdtpraca, dwustronne tacza, podejscie client-
agnostic.
32

!\lmjm Otwartos$¢ warstwy posredniej

e Nadbudowa nad systemem - uniezaleznienie od systemu.

Middleware jest czesto osobnym programem/pakietem.

e Zaleznos¢ aplikacji od warstwy posredniej, nie

specyficznych funkcji systemu.

e Gdy wystepuje niekompletnos¢ interfejséw warstwy

posredniej - istnieje konieczno$¢ odwotywania sie
bezposrednio do systemu.

e Zgodnos¢ warstwy posredniej ze standardem, ale

nieprzenosnos$¢ aplikacji.
- np. serwer baz danych na réznych platformach udostepnia

to samo API, ale nie ma petnej binarnej zgodnosci. 34

| J—

G A
Rozproszony OS ieci
e Gniazda (ang. sockets) _O%P Y Sieciowy | Warstwa
Wieloproc. | Wielokomp. oS posrednia
e RPC (Remote Procedure Call) Przezroczystos¢ b. duza duza mata duza
Jeden OS? tak tak nie nie
e DCE (Distributed Computing Environment)
Bez kopiowania? tak nie nie nie
¢ CORBA (Common Object Request Broker Komunikacja pamigé | komunikaty pliki zalezna
Architecture) dzielona od modelu
L X Zarzgdzanie globalne, globalne, lokalne lokalne
e DCOM (Distributed Component Object Model) zasobami centralne | rozproszone
o RMI (Remote Method Invocation) Skalowalnos¢ nie umiarkowana tak zmienna
35 Otwartos¢ zamkniety | zamkniety otwarty otwarty 3g

MmJJJ Model Klient-serwer
AGH

Klient

zadanie odpowiedz

Serwer

wykonanie
ustugi

37

lllm Co ma robi¢ warstwa klienta?

AGH
Serwer
|B. danych| |B. danych| |B. danyclﬁ |B. danych| |B. danych|

|Ap|ikacja| |Ap|ikacja| |Ap|ikacja|

Interfejs

|Aplikacia| |Ap|ikacja| |Aplikacia|

| Interfejs | ’ Interfejs | | Interfejs ‘ | Interfejs | | Interfejs |
- Klient -
cienki "grubszy”
39

!”lml Plan 9 - architektura

e Kazde urzadzenie jest
reprezentowane jako plik.

e Kazdy plik ma swoje miejsce
w systemie.

e Kazdy proces ,widzi” system
plikéw w specyficzny dla
siebie sposob.

e Poniewaz jako ,urzadzenie”
mozemy rozumie¢ zaréwno
np. dysk sieciowy jak i procesor
drugiego komputera, program T Plan S ropologs.
moze dziata¢ korzystajac z CPU
jednego komputera, catosciowo uzywaé pamieci innego
(niezbedne elementy sprowadzane sg do komputera z CPU), a
wyniki zapisywac¢ na dysk jeszcze innego.

41

lumm Model trojwarstwowy
AGH

Klient

Serwer
aplikacji

Serwer
b. danych

38

bphics W praktyce: Plan 9

e Zauwazmy, ze jezeli bardzo przytozymy sie do
realizacji zasady ,wszystko jest plikiem”, to
kwestia rozproszonego systemu operacyjnego
zawiera sie w odpowiednim systemie plikdw. 5

* Na tej zasadzie dziata system operacyjny Plan 9, [[HGuG—G—G"
gdzie system plikow jest oparty o wiadomosci. Te
wiadomosci mozna przesytac przez rézne kanaty komunikacji.

e Dodatkowo kazdy proces posiada informacje o systemie
plikdw dla siebie —» czyli kazdy proces moze nieco inaczej
widzie¢ system plikow (a wiec i np. urzadzen!).

e Mozliwe jest scalenie wielu katalogéow w jeden (union
directory) na potrzeby perspektywy systemu lub jednego
procesu — jeszcze wieksza przezroczystosé.

40

!\u]llw Plan 9 - interfejs

e Dziata na tym powiloka uniksowa.

e Mozliwe jest uzytkowanie systemu okienkowego RIO.

* Proces jest katalogiem.

e Katalog-proces zawiera pliki. Przez wysyfanie do nich
odpowiedniej zawartosci sterujemy procesami.

e Tak samo sterujemy
urzadzeniami - kazdym...

e ...niezaleznie od tego czy jest

czescig komputera, czy jest

zdalne.

il

AGH

Systemy czasu rzeczywistego

43

A”ﬁ“ﬂ Systemy czasu rzeczywistego (RTOS)

* Tryb przetwarzania w czasie rzeczywistym jest takim trybem, w
ktorym programy przetwarzajace dane naptywajace z zewnatrz
sq zawsze gotowe, a wynik ich dziatania jest dostepny nie
pdzniej niz po zadanym czasie. Moment nadejscia kolejnych
danych moze by¢ losowy (asynchroniczny) lub scisle okreslony
(synchroniczny).

* System czasu rzeczywistego jest systemem interaktywnym,
ktory utrzymuje ciggty zwigzek z asynchronicznym
$rodowiskiem, np. srodowiskiem, ktére zmienia sie bez wzgledu
na system, w sposob niezalezny.

* Oprogramowanie czasu rzeczywistego odnosi sie do systemu lub
trybu dziatania, w ktérym przetwarzanie jest przeprowadzane na
biezaco, w czasie wystapienia zewnetrznego zdarzenia, w celu
uzycia rezultatéw przetwarzania do kontrolowania lub

monitorowania zewnetrznego procesu.
45

@](]]JJJ Rys historyczny - wielozadaniowos¢

e RTOS musi uzywac wywifaszczania w celu umozliwienia
dziatania procesu RT.

e Proces RT moze uruchamia¢ sie z b. wysokim
priorytetem (w systemach typu Flex 9) lub informowac
system o swoim stanie, dziatajgqc na poziomie jadra
(adaptacje Uniksow).

e Systemy ,Event-driven” - mozliwe do
zaimplementowania na mikrokontrolerach. Zdarzenie
wyzwala przerwanie, wyzwalajace proces RT.

- Problem: ,zapchanie” przerwaniami, patrz zawieszenie
komputera podczas ladowania na Ksiezycu w misji
Apollo 11 .

LMIM Systemy czasu rzeczywistego

¢ Definicja IEEE:

System czasu rzeczywistego (real time) to system,

ktérego poprawnos$¢ dziatania zalezy nie tylko od
poprawnosci logicznych rezultatéw, lecz rowniez od
czasu, w jakim te rezultaty sg osiggane (czasu
reakcji).

44

bogh=r Rys historyczny

e W pierwszych komputerach oprogramowanie miato petng
kontrole bezposrednio nad sprzetem - kazdy program
odpowiednio napisany byt RTOS.

e POzniejsze systemy oferowaly mozliwosci wywilaszczenia
systemu przez oprogramowanie. Nie jest to
najbezpieczniejsza mozliwos¢, lecz umozliwia np. Zmiane
systemu operacyjnego bez przeinicjowania komputera
(MonkeyLinux). Programy, ktére musiaty dziata¢ jako RT
wykorzystywaty ta mozliwosc.

e Wprowadzenie petnej wielozadaniowosci stworzyto potrzebe
systemoéw RT oraz systemdw, w ktérych tylko niektére
zadania sa RT. 46

|

bl Rys historyczny

e Systemy ,Time Sharing” - z podziatem
czasu - umozliwiajg ptynne mieszanie
zadan RT i pozostatych.

- Problem: Wymagane jest czeste zwolnienie
mniej istotnych zadan przez zadanie RT.

48

Ll\lam Systemy czasu rzeczywistego

e System czasu rzeczywistego odpowiada w sposdb
przewidywalny (w okreslonym czasie) na bodzce zewnetrzne
naptywajace w sposéb nieprzewidywalny.

e System komputerowy dziata w czasie rzeczywistym, jezeli
wypracowane przez ten system decyzje sa realizowane w
tempie obstugiwanego procesu. Inaczej méwiac, system
dziata w czasie rzeczywistym, jezeli czas reakcji systemu jest
niezauwazalny przez proces (decyzja jest wypracowana we
wiasciwym czasie) **

Wg:

Lal K., Rak T., Orkisz K : “"RTLinux - system czasu
rzeczywistego”, HELION, 2003.

** - Plaza R., Wrobel E.: ,Systemy czasu rzeczywistego”,
Wydawnictwo Naukowo - Techniczne, Warszawa 1988. 49

Ll”cny Czy RTOS musza by¢ szybkie?

* Real time oznacza nie "szybki", lecz
"przewidywalny".

* Gwarantowany pesymistyczny czas reakcji nie
oznacza szybkiego czasu reakcji, a jedynie czas
reakcji z gory okreslony.

® System czasu rzeczywistego moze wydawac sie
wolniejszy od "zwyktego" systemu operacyjnego.
Wynika to z faktu, ze techniki stosowane do
przyspieszania pracy systemu operacyjnego (pamiec
podreczna, wielopotokowe procesory, etc.)
wprowadzaja element indeterminizmu.
Indeterminizm jest niedopuszczalny w przypadku
systemu czasu rzeczywistego, gdyz uniemozliwia
zapewnienie przewidywalnosci systemu. 5

|/ —

AG

o Soft (fagodne)

- Krytyczne zadanie do obstugi w czasie rzeczywistym otrzymuje
pierwszenstwo przed innymi zadaniami i zachowuje je az do swojego
zakonczenia.

Opdznienia muszg by¢ ograniczone - zadanie czasu rzeczywistego nie

moze w nieskonczonoé¢ czekad na ustugi jadra.

- kagodne wymagania dot. czasu rzeczywistego umozliwia godzenie ich
z systemami innych rodzajéw.

- Zastosowanie w technikach multimedialnych, kreowaniu sztucznej

rzeczywistosci itd.

Znajdujg one swoje miejsce wszedzie tam, gdzie istnieje potrzeba

systemoéw o bardziej rozbudowanych mozliwosciach.

e Firm (mocne)
- Wymagania posrednie pomiedzy hard a soft,

- Nie wykonanie zadania w terminie skutkuje nieprzydatnoscig wynikéw,
ale nie zagraza katastrofa. 53

oghtr RTOS - przykiady

e Sekwencja awaryjnego wytaczania silnika
rakietowego.

¢ System zbierania danych (np. pomiaréw w
procesie produkcyjnym).

e System kontrolny ABS w samochodzie.

e System dostarczania paliwa do silnikdéw
samolotu.

¢ Odtwarzanie plikéw MPEG w stacjonarnych
odtwarzaczach.

e Kontroler serwomechanizmu.

e Systemy podtrzymywania zycia w urzadzeniach
medycznych 50
|

lumm Podziat RTOS
AGH

e Hard (rygorystyczne)

- Gwarantujg terminowe wypetnianie krytycznych
zadan. Wymaga to ograniczenia wszystkich opdznien
w systemie.

- Pamie¢ pomocnicza jest na ogo6t bardzo mata albo
nie wystepuje wcale. Wszystkie dane sq
przechowywane w pamieci o krotkim czasie dostepu
lub w pamieci, z ktérej mozna je tylko pobierac¢
(ROM).

- Prawie nie spotyka sie w systemach czasu
rzeczywistego pamieci wirtualnej.

- Dlatego rygorystyczne systemy czasu rzeczywistego
pozostajg w konflikcie z dziataniem systemow z
podziatem czasu i nie wolno ich ze sobg mieszaé. s2

|

mmm Uzyteczno$¢ odpowiedzi
AGH

Uzytecznosé Ograniczenie
4 czasowe (deadline)
1 : hard
soft
00— i - Czas
+——Tmax—

54

Ll\”(w Proces RT w systemie standardowym

Analiza czasu reakcji na zdarzenie
zdarzenie - odpowiedz

czas odpowiedzi

proces
gotowy
opozmienie planowania
reakcjana proces czasu
przerwanie rzeczywistego
si¢ wykonuje
konflikty | planowanie

czas 55

gz Post Scriptum (2024)

e Linux w trybie PREEMPT_RT - 4-400us, ale przy
réwnolegle dziatajgcych zadaniach nie-RT!

- Duzo zalezy od istniejgcych proceséw RT i nie-RT,
konfiguracji sprzetowej, zajetosci CPU i
intepgywnoéci wykorzystania urzadzen wejscia-
wyjscia.

- Znaczny wptyw zadania RT na inne zadania.

- System wydaje sie w ogdlnym odczuciu wolniejszy
od nie-RT, ale nie dla zadania RT.

57

lllmm Planowanie procesow
AGH

* Przyjmujemy periodyczny (okresowy) model procesow.

* Kazdy proces moze by¢ opisany przez nastepujace
parametry:

- Okres p (period) tzn. czas pomiedzy kolejnymi zdarzeniami
wymagajacymi obstugi przez proces.

- Termin d (deadline) w ktérym zdarzenie musi by¢ obstuzone
(od momentu zajscia zdarzenia).

- Czas t (time) potrzebny procesowi na obstuge zdarzenia.

® Zachodzi relacja 0st=d<p

* Stopien wykorzystania procesora jest rowny u=t/p.

* Warunek konieczny wykonywalno$ci szeregowania: suma
stopni wykorzystania procesora Zu<1.

* Proces oznajmia swoje parametry t,d,p planiscie. Planista
albo podejmuje sie wykonania procesu gwarantujac
dotrzymania terminu albo odrzuca proces.

59

lumﬂj Opoéznienia (w sytuacji, gdy tatwo mozna
AGH je zmierzyc)

Przykladowe czasy opéZnien dla réznych systemow
operacyjnych (Pentium 100MHz)

System Tryb pracy OpéZnienie

Windows 98/ 2000/ XP in real time 100us — 100ms

Linux soft real-time Ims

Linux IEEE 1003.1d hard real-time 10us — 100us

Linux RT hard real-time Lps — 10us

Jadro RTOS hard real-time lps —10us 56
e |

lumm Szeregowanie zadan
AGH

Priorytet

e Priorytetowe: Zadgnia o
Wysoki Wywtaszczenie! < nz:.;l::i:ue

=
g

Czas

e Z podziatem czasu:

Priorytet

Zadania Dokonczenie

Zadania

Wysoki Wywtaszczenie! - =
_’

Szczelina
Crasowa

lumm Rate-monotonic scheduling
AGH

e Procesy sg planowane na podstawie statycznego priorytetu
réwnego czestotliwosci zdarzen 1/p.
e Proces o wyzszym priorytecie wywtaszcza proces o nizszym
priorytecie.
e Przyktad: dwa procesy:
- P1: p=50, d=50, t=20 (P1 ma krotszy okres => wiekszg
czestotliwos$¢ i priorytet).
- P2: p=100, d=100, t=35
- Catkowite obcigzenie procesora
(20/50) + (35/100)=0.75
Terminy Py PP, P, PP,

} } | }

LR [Py [R Py, [BT Py TR PP,

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
————

il

AGH

® Sposrdd klasy algorytmoéw z priorytetami statycznymi
jest to algorytm optymalny, w takim sensie, ze jezeli
nie dotrzymuje termindéw, to zaden inny algorytm z tej
klasy réwniez nie dotrzyma terminéw.

* Przyktad: zaktadamy, ze proces P2 ma wiekszy

priorytet:
Deadlines P, Py Py
Przekroczenie l
4 terminu
| | P2| 1 | | P4 I | I] !] J

|
0 10 20 30 40 50 60 70 80 90 100 110 120
61

lllmm Algorytm "Najpierw najwczesniejszy
AGH termin" (EDF — Earliest deadline first)
e Przyktad:
- P1: p=50, d=50, t=25 (wyzszy priorytet)
- P2: p=80, d=80, t=35.
e Priorytet przypisywany dynamicznie:

Deadlines P; Niewchodz, P, P, P, P,

bo P2 ma
l wezesniejszy l l l l
termin

[|P1\|| 20 | |P1|||P2| |P1|||P2||l]
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

63

lllmJJJ Dokladne oszacowanie parametréw
AGH czasowych

* Opodznienie przerwan (czyli czas od
wygenerowania przerwania do rozpoczecia
wykonywania zadania) - musi by¢ zgodne z
wymaganiami aplikacji, i musi by¢
przewidywalne. Warto$¢ ta zalezy od liczby
jednoczesnie oczekujacych przerwan.

* Dla kazdego przerwania systemowego -
maksymalny czas, jaki zajmujemy. Czas powinien
by¢ przewidywalny i niezalezny od liczby
obiektow w systemie.

®* Maksymalny czas na jaki OS i sterowniki maskujg
przerwania. 65

i

AGH
e Przykfad, w ktérym dotrzymanie termindw nie jest mozliwe:
- P1: p=50, d=50, t=25 (wyzszy priorytet)
- P2: p=80, d=80, t=35.
e Catkowite wykorzystanie procesora
(25/50)+(35/80)=0.94.
e Wydaje sie ze procesy mozna zaplanowac, ale:

Deadlines Py Py Py Py P
l IA“_FPrzekroczenie l l

terminu
‘ P | | Py | Pi ‘ Po [| I]] I I I J

0 10 20 30 40 50 60 70 80 €0 100 110 120 130 140 150 160
* W pesymistycznym przypadku algorytm nie gwarantuje
dotrzymania terminéw, gdy catkowite wykorzystanie procesora:
u=2(2"M-1)
62

* Dla Iiczb¥ ﬁroceséw N=2 otrz*mu'em* u~0.83

g RTOS - Wymagania

e RTOS musi by¢ wielowatkowy i wywilaszczalny.

e W momencie gdy OS nie jest oparty na deadlinach,
musi istnie¢ pojecie priorytetu watku.

e OS musi wspiera¢ mechanizm przewidywalnej
synchronizacji watkdéw.

e Musi istnieé dziedziczenie priorytetéw.

e Zachowanie OS powinno by¢ znane i przewidywalne.

64

‘n\”]!w Tworzenie RTOS z istniejacego systemu

W niektorych przypadkach, aby uzyskac¢ RTOS,
podejmuje sie préby modyfikacji lub wykorzystania
istniejgcych systemdéw operacyjnych. Obserwuje
sie dwa gtéwne podejscia do tej kwestii:

1) Préby balansowania pesymistycznego i sredniego

czasu reakcji, "robienie ogdlno-zadaniowego

systemu operacyjnego a' la real-time".

Préby optymalizowania dwdch, zasadniczo

przeciwstawnych, parametréw rzadko prowadza do

ol$niewajacych rezultatéow, a w przypadku

systemow operacyjnych prowadzg raczej do soft

RTOSOw. 66
|

lllmJJJ Tworzenie RTOS - drugie podejscie lumm RTLINUX
AGH AGH

2) Rozbicie systemu na dwa systemy operacyjne -
real-time i "zwyczajny" (nie real-time).

Podejscie to wydaje sie by¢ czesto skuteczne,
czego przyktadem jest cho¢by RTLinux. Niemniej
jednak uwazane jest za konserwatywne i
potencjalnie ograniczajgce mozliwosci koncowego
uzytkownika.

* Windows moga, przy uzyciu specjalnego
oprogramowania, by¢ konwertowane do systemow
real-time.

Niestety, jedyne co udaje sie osiggnac to soft real-
time.

67 68

Llllcny RTLinux — procesy czasu rzeczywistego @“ﬁlm RTLinux - Procesy czasu rzeczywistego

® Procesy czasu rzeczywistego to programy zdefiniowane

przez uzytkownika, ktére wykonujg sie zgodnie z * Procesy wykonujq si¢ w jednej przestrzeni

podanym harmonogramem (mogg by('; okresowe, adresowej, zatem przy zmianie kontekstu nie trzeba
zasypiac sie na okreslony czas) i majg $ciste wymagania uniewazniac rejestrow asocjacyjnych (TLB -
Czasowe. translation look-aside buffers). Gdyby procesy
wykonywalty sie we wiasnej przestrzeni adresowej,
® Procesy czasu rzeczywistego implementuje sie jako przy kazdej zmianie kontekstu trzeba by

fadowalne moduty jadra. Z punktu widzenia RTLinuksa

procesy RT to watki jadra RT. uniewazniac rejestry TLB, co przy czestym

przetaczaniu kontekstu daje duze obnizenie
* Scheduler RTLinuksa uwaza, ze jest tylko jeden wydajnosci i utrudnia przewidywalnosc.
prawgzivyy proces, ktory ma wiele wqtkéw. Jeden z tych
watkow jest wybierany do wykonania. e Przy wywotaniach systemowych nie trzeba zmienia¢
poziomu uprzywilejowania.
® Linux jest tylko jednym z watkdw, ma najnizszy priorytet.

69 70
| |
El\”l]m RTLinux — Procesy czasu rzeczywistego @]llw RTLinux — Procesy czasu rzeczywistego

* Przefgczanie kontekstu jest fatwiejsze - przetacza Btad w programie uzytkownika, jakim jest proces RT,

sie tylko kontekst sprzetowy: zachowuje sie moze spowodowac zatamanie sig systemu. Pisanie
zawarto$¢ rejestréw na stosie i zmienia wskaznik programow RT wymagana takiego samego natgzenia
stosu tak, zeby wskazywat nowy stos nowego uwagi, co programowanie jadra systemu

procesu. operacyjnego.

Przetaczanie kontekstu jest programowe, a nie Czytaj: Procesy RT dzialaja jak watki jadra.

sprzetowe, bo sprzetowe przetaczenie kontekstu

na procesorach x86 jest powolne. * Dodatkowym ograniczeniem natozonym na procesy RT

jest fakt, ze ich zasoby sg definiowane statycznie. W
szczegdblnosci nie ma (w standardowym RTLinuksie)

* Program i jego dane nie podlegajg stronicowaniu. wsparcia dla dynamicznej alokacji pamieci.
Nie mogq zatem zostac wystane na dysk. Nie
wystepujg btedy braku strony, wigc nie ma * W nowszych wersjach RTLinuksa dostepny jest modut
opoznien z tym zwigzanych. mbuff, ktéry umozliwia korzystanie z dynamicznie
71 alokowanej pamieci kosztem przewidywalnosci. -

M onx

AGH Klasyczny UNIX + RT

® Zostat opracowany na poczatku lat 80 przez zatozycieli
kanadyijskiej firmy Quantum Software System, Limited

* Jego poczatkowa nazwa QUNIX (Quick UNIX), ze wzgledu na
zbyt duze podobienstwo do nazwy UNIX, nie mogta przetrwaé
zbyt dtugo i w kilka miesiecy poézniej, za sprawa firmy AT&T,
musiata zosta¢ zmieniona i przybrata znane do dzisiaj brzmienie:
QNX.

* Pierwsza wersja, byla przeznaczona na komputery klasy IBM PC
oraz wymagata 64kB pamieci RAM i 180kB naped dyskietek.
Pomimo swojej prostoty, umozliwiata juz uruchomienie kilku
proceséw jednoczesnie.

* '"gdyby firma IBM wybrata system QNX dla mikrokomputera IBM
PC, wprowadzenie na rynek modelu AT mogfoby zostac
opdznione, gdyz aplikacje uruchamiane pod systemem QNX w
komputerach PC zachowujg sie tak, jakby zostaty uruchomione
pod systemem DOS w komputerze 386"

73

gz Budowa mikrojadra w QNX

e IPC - (ang. Interprocess communication) -

obstuguje komunikacje miedzy procesami.

¢ Network Interface - przezroczysta komunikacja

pomiedzy procesami w obrebie sieci lokalnej.

Hardware Interrupt Redirector — przechwytuje
pojawiajace sie przerwania oraz przekazuje je do
odpowiednich proceséw obstugujacych je. Czes¢ ta
sama nie obstuguje przerwan!

Realtime Scheduler - decyduje, ktéry proces ma
uzyskac¢ dostep do procesora w danej chwili (POSIX
1003.4 - dotyczy zagadnien czasu rzeczywistego). 7s

3

EUJ Mikrojadro QNX

Procesy zarzadzajace sg traktowane w identyczny sposdb jak procesy
uzytkowe. Mozna je tadowac, uruchamiaé, zawieszac oraz usuwac
niezaleznie od siebie. Poza tym czynnosci te moga by¢ wykonywane
dynamicznie w czasie normalnej pracy system.

W zaleznosci od wymagan zewnetrznych dany proces zarzadzajacy
moze zostac zainstalowany badz usuniety. Wyjatkiem jest tutaj tzw.
Process Manager, ktéry musi by¢ zawsze obecny w systemie.
Procesy zarzadzajace od proceséw uzytkowych odrdzniajg priorytety.
P.z. maja najwyzsze. Dodatkowo zyskujq poziomy uprzywilejowania,
ktére zezwalaja im na realizacje niektérych instrukcji mikroprocesora.

W systemie QNX zaimplementowano trzy poziomy uprzywilejowania:
- poziom 0 - mikrojadro

- poziom 1 - procesy zarzadzajace (np. Proc, Fsys itp.)

- poziom 2 - nie jest aktualnie wykorzystywany

- poziom 3 - procesy uzytkowe
77

gl QNX - mikrojadro

Rozmiar ok. 8kB (jadro UNIX > 700kB), stad nazwa
mikrojadra - Neutrino.

To, co odrdéznia ten system ten od rodziny UNIX, to przede
wszystkim struktura modutowa oraz architektura oparta o
przesytanie komunikatéw (klient - serwer).

QNX daje mozliwos¢ zdeterminowania czasu reakcji na
zdarzenia wystepujace w systemie.

Dzigki rozbudowanym mozliwosciom definiowania
priorytetow, QNX jest stosowany jako system stuzacy do
sterowania automatyka przemystowq, gdzie pewne
zdarzenia sg krytyczne (np. otwarcie zaworu
bezpieczenstwa w zbiorniku kiedy gwattownie wzrasta

cisnienie) i musza by¢ zawsze obstuzone na czas. 24

bogh=r Budowa mikrojadra QNX

', interfejs

| sieciowy

| Przekier.
przerwania

76

lu llJ Szeregowanie zadan w QNX
AGH

* Algorytmy szeregujace wybierajg zadanie gotowe do wykonania i
najwazniejsze, czyli to o najwyzszym priorytecie w danej chwili (priorytet
+31)

® Sa trzy algorytmy szeregowania zadan (o tym samym priorytecie).

1

-

Kolejka FIFO. Zadanie wybrane do wykonywania, kontynuuje swoje dziatania
az samo odda sterowanie (np. watek zostanie zablokowany lub proces wywota
funkcje systemowaq) badz zostanie wywifaszczone przez zadanie o wyzszym
priorytecie.

2

-

Przydziat czasu procesora (ang. time slice), ktéry wynosi 50ms. Wéwczas
zadanie zostaje wywtaszczone, poza warunkami opisanymi we wczesniejszym
algorytmie, rowniez wtedy, kiedy wykorzysta przydzielony mu czas.

3

<

Adaptacyjny (ang. adaptive scheduling). Jesli dane zadanie wykorzysta
przydzielony czas procesora i nie zostanie zablokowane, to jego priorytet jest
dekrementowany. Wtedy zazwyczaj nastepuje przetaczenie kontekstu do
innego zadania. Oryginalna wartosc priorytetu jest natychmiast przywracana,
kiedy zadanie przechodzi do stanu blokowania. Algorytm ten znajduje
zastosowanie w sytuacjach, kiedy zadania wykonujace ogromne ilosci obliczen
dzielg czas procesora z zadaniami interaktywnymi. 78

Ll\”(w Obstuga przerwan w QNX

Priorytet

Czas

79

lllmm VxWorks 5.x

AGH

e Opcjonalne podsystemy: grafiki, systemy plikow,
Java, sieci TCP/IP, biblioteka Posix, pamie¢
wirtualna. Pozwala to na minimalizacje zajetosci
(ang. footprint) pamieci.

¢ Mikrojadro (ang. microkernel) Wind
- wywilaszczalne
- gwarantowany czas reakcji na przerwania

e Zastosowanie: samochody, urzadzenia
konsumenckie, przetaczniki sieciowe oraz
Marsjanskie taziki Spirit i Opportunity.

81
|

r—

llmJJJ Procesy RT w FreeRTOS
AGH

e Allocate only - obiekt jest tadowany do pamieci i
tam pozostaje. Nie ma strat czasu wyniktych z jego
przemieszczania lub przywracania.

e Allocate and free - konwencjonalna, lecz
uproszczona mozliwos¢ tadowania i zwalniania
pamieci np. przez zmienne.

¢ Blokowe ,Allocate and free” - bardziej ztozony
algorytm likwidujacy fragmentacje kosztem czasu.

¢ Jak wyzej, lecz z mozliwosciag dzielenia stosu
programoéw na rézne bloki pamieci

¢ Konwencjonalna alokacja i zwalnianie pamieci.

83
- |

lumm VxWorks 5.x

AGH

wbudowana aplikacja czasu rzeczywistego

POSIX library Java library

graphics

virtual memory
library

VxVMI

mikrojadro Wind

hardware level
(Pentium, Power PC, MIPS, customized, etc.) 80

lumm FreeRTOS

AGH

o Wielowgtkowy, przeznaczony na systemy
wbudowane i mikrokontrolery RTOS.

e Wspiera tryby oszczedzania energii,
rowniez dziatanie ,uspienia” gdy system
aktywowany jest przerwaniem.

e Kazdy proces czasu rzeczywistego moze
miec priorytet.

e Mozliwe jest decydowanie o postepowaniu
z procesami RT.

lumm Zadanie w FreeRTOS
AGH

e Proces RT skfada sie z zestawu zadan.
e Kazde zadanie uruchamia sie we
wiasnym kontekscie, unikajac
zaleznosci od stanu innych zadan
lub systemu.
- ...a wiec kazde zadanie ma wiasny
stos - wiecej zajetej pamieci.
e W urzadzeniach o mniejszej ilosci
RAM role zadan petnia co-routines. ™ ad™ .l

Suspended

vTaskSuspend()
vTaskSuspend() called
called

VTaskResume()
called

Blocking API

Sa one ograniczone pod wzgledem function called

wiasnego stosu (dzielg wspdlny) wiec socked
i wywotan innych funkgji, takze
systemowego API.

e Kazde zadanie moze znajdowac sie w konkretnych stanach.

84

lllmJJJ Zadanie (Task) vs co-routine
AGH

Co-routine moze by¢ gotowe, dziataé

lub by¢ zablokowana. Nie ma Ry P
wstrzymywania jak w przypadku zadan.

Co-routine nie ma wtasnego stosu.

Stad ograniczone jest wotanie API et Biociing AP
systemu i innych funkcji.

Tak jak i zadania, co-routines mogg

miec priorytety, lecz sg one zawsze

ponizej priorytetéw zadan!
- - Co-routine wykona sie gdy nie istnieje zadne zadanie o
priorytecie wyzszym niz zadanie ,bezczynnosci”.
Wspotdzielony stos nie gwarantuje stabilnosci zmiennych.
Najprawdopodobniej zmienne alokowane w jednym
uruchomieniu co-routine nie beda zachowane w nastepnym. .
5

AGH

Dziekuje za uwage

86

