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Program wykªadu

1. Przypomnienie podstawowych poj¦¢. Struktury grafowe i ich
implementacje.
2. Metody oceny efektywno±ci czasowej oraz pami¦ciowej.
3. Metody oceny poprawno±ci obliczeniowej.
4. Algorytmy przeszukiwania grafu w gª¡b oraz wszerz.
5. Znajdowanie minimalnego drzewa spinaj¡cego w gra�e.
6. Znajdowanie ±cie»ek o minimalnych dªugo±ciach w grafach
skierowanych.
7. Znajdowanie najkrótszych ±cie»ek pomi¦dzy wszystkim parami
wierzchoªków.
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Program wykªadu (cd.)

8. Maksymalne przepªywy w sieciach - metoda Forda- Fulkersona.
9. Inne zagadnienia przepªywowe: sieci z dolnym ograniczeniem
przepªywu, przepªywy o minimalnym koszcie, przepªywy uogólnione.
10. Znajdowanie maksymalnego skojarzenia w grafach oraz grafach
dwudzielnych.
11. Grafy planarne � testowanie planarno±ci oraz znajdowanie
planarnej reprezentacji.
12. Zagadnienia transportowe: droga Eulera, problem chi«skiego
listonosza.
13. Zagadnienia transportowe cd.: problem komiwoja»era -
algorytmy aproksymacyjne.
14. Kolorowanie wierzchoªkowe grafów.
15. Kolorowanie kraw¦dziowe grafów.
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Zªo»ono±¢ czasowa pesymistyczna algorytmu

T (n) = max{t(d) : d ∈ Dn}

przy oznaczeniach:
n - rozmiar danych wej±ciowych
Dn - zbiór danych wej±ciowych rozmiaru n
t(d) - czas wykonania oblicze« dla zestawu danych wej±ciowych d ,
wyra»ony liczb¡ operacji elementarnych lub dominuj¡cych

Zªo»ono±¢ czasowa ±rednia algorytmu

A(n) =
∑
d∈Dn

p(d) t(d)

gdzie:
p(d) - prawdopodobie«stwo z jakim zestaw danych d mo»e pojawi¢
si¦ na wej±ciu
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Zªo»ono±¢ pami¦ciowa algorytmu

S(n) = max{s(d) : d ∈ Dn}

gdzie:
s(d) - liczba komórek pami¦ci wykorzystywanych podczas oblicze«
dla zestawu danych wej±ciowych d
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Mówimy, »e algorytm A jest semantycznie poprawny wzgl¦dem
warunku pocz¡tkowego α i warunku ko«cowego β, gdy dla ka»dego
zestawu danych wej±ciowych speªniaj¡cych warunek α dziaªanie
algorytmu dochodzi do ko«ca i wynik speªnia warunek β.

Algorytm A jest cz¦±ciowo poprawny wzgl¦dem warunku
pocz¡tkowego α i warunku ko«cowego β, gdy dla ka»dego zestawu
danych wej±ciowych speªniaj¡cych warunek α, je»eli dziaªanie
algorytmu dochodzi do ko«ca, to wynik speªnia warunek β.
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Mówimy, »e algorytm A speªnia warunek okre±lono±ci oblicze«, gdy
A zadziaªa (tzn. nie zostanie przerwany) dla ka»dego zestawu
danych wej±ciowych speªniaj¡cych warunek α.

Algorytm A ma wªasno±¢ stopu, gdy dla ka»dego zestawu danych
wej±ciowych speªniaj¡cych α, algorytm dociera do ko«ca (tzn.
obliczenia nie s¡ wykonywane w niesko«¢zono±¢).

Twierdzenie

Algorytm A jest semantycznie poprawny wtedy i tylko wtedy, gdy
jest cz¦±ciowo poprawny, speªnia waruneks okre±lono±ci oblicze«
oraz posiada wªasno±¢ stopu.
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Metoda niezmienników

Mówimy, »e warunek g jest niezmiennikiem w okre±lonym punkcie p
algorytmu A, gdy dla ka»dego zestawu danych wej±ciowych
speªniaj¡cych warunek α, je»eli dziaªanie algorytmu dochodzi do
punktu p, to obliczenia speªniaj¡ warunek g .
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Implementacje struktur grafowych:

macierz s¡siedztwa
macierz incydencji
tablica list s¡siedztwa
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Przeszukiwanie grafu

Wej±cie: Graf G = (V ,E ).
Wyj±cie: Etykietowanie wierzchoªków d .

Las spinaj¡cy F grafu G .
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Przeszukiwanie w gª¡b

for ka»dy wierzchoªek v ∈ V do

d[v ] := 0
c := 0
F := ∅
for ka»dy wierzchoªek v ∈ V do

if d[v ] == 0 then

DFS(v)

DFS(v)

d[v ] := ++c
for ka»dy wierzchoªek u ∈ NG (v) do

if d[u] == 0 do

F := F ∪ {v , u}
DFS(u)

T = Θ(n + e)
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Przeszukiwanie wszerz

for ka»dy wierzchoªek v ∈ V do

d[v ] := 0
c := 0
F := ∅
Q := ∅
for ka»dy wierzchoªek v ∈ V do

if d[v ] == 0 then

BFS(v)
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BFS(v)

d[v ] := ++c
wstaw(Q, v)
while kolejka Q jest niepusta do

v := pobierz(Q)
for ka»dy wierzchoªek u ∈ NG (v) do

if d[u] == 0 do

F := F ∪ {v , u}
d[u] := ++c
wstaw(Q, u)

T = Θ(n + e)
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Znajdowanie minimalnego drzewa spinaj¡cego

Wej±cie: Graf spójny G = (V ,E ) oraz funkcja kosztu w : E 7→ R+.
Wyj±cie: Drzewo spinaj¡ce T o minimalnej wadze

wmin = min{w(T ) : T jest drzewem spinaj¡cym grafu G}.
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Algorytm Kruskala

T := ∅
W := ∅
for ka»dy wierzchoªek v ∈ V do

W := W ∪ {{v}}
Q := posortuj_kraw¦dzie()
while |W | > 1 do

{u, v} := pobierz(Q)
if u i v nale»¡ do ró»nych zbiorów A i B w W then

T := T ∪ {u, v}
W := W \ {A} \ {B}
W := W ∪ {A ∪ B}

T = Θ(e log e)
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Algorytm Prima

T := ∅
wybierz korze« r
Q := ∅
for ka»dy wierzchoªek v ∈ V \ {r} do

if v ∈ NG (r) then

p[v ] := w(r , v)
q[v ] := r

else

p[v ] := ∞
q[v ] := ∅

wstaw v do Q
while |Q| ­ 1 do

v := pobierz(Q)
T := T ∪ {v ,q[v ]}
for ka»dy wierzchoªek u ∈ NG (v) ∩ Q do

if p[u] > w(v , u) then

p[u] := w(v , u)

q[u] := v
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T = Θ(e log n) gdy kolejka priorytetowa Q jest kopcem binarnym.
T = Θ(n2) gdy Q jest zaimplementowana w tablicy.
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Znajdowanie ±cie»ek o minimalnej dªugo±ci

Wej±cie: Digraf spójny G = (V ,A) wraz z funkcj¡ kosztu
w : A 7→ R, oraz wyró»niony wierzchoªek v0.

Wyj±cie: �cie»ki o minimalnych dªugo±ciach z wierzchoªka
pocz¡tkowego v0.

d[v ] - górne ograniczenie wagi najkrótszej ±cie»ki z v0 do v

relaksacja(u, v)

if d[v ] > d[u] + w(u, v) do

d[v ] := d[u] + w(u, v)
Π[v ] := u
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W algorytmie Dijkstry zakªadamy, »e ∀(u, v) ∈ A : w(u, v) > 0.

Algorytm Dijkstry

Q := ∅
for ka»dy wierzchoªek v ∈ V do

d[v ] := ∞
Π[v ] := ∅
wstaw v do Q

d[v0] := 0
while |Q| > 1 do

u := pobierz(Q)
for ka»dy wierzchoªek v ∈ NG (u) ∩ Q do

relaksacja(u, v)

T = Θ(e log n) gdy kolejka priorytetowa Q jest kopcem binarnym.
T = Θ(n2) gdy Q jest zaimplementowana w tablicy.
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Algorytm Bellmana-Forda

for ka»dy wierzchoªek v ∈ V do

d[v ] := ∞
Π[v ] := ∅

d[v0] := 0
for i := 1 to n − 1 do

for ka»dy ªuk (u, v) ∈ A do

relaksacja(u, v)
for ka»dy ªuk (u, v) ∈ A do

if d[v ] > d[u] + w(u, v) then

return cykl o ujemnej wadze

T = Θ(ne)
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Znajdowanie wszystkich ±cie»ek o minimalnej dªugo±ci

Wej±cie: Digraf spójny G = (V ,A) wraz z funkcj¡ kosztu
w : A 7→ R.

Wyj±cie: Wszystkie ±cie»ki o minimalnych dªugo±ciach.

V = {v1, v2, . . . , vn}
dk
ij - dªugo±¢ najkrótszej ±cie»ki z wierzchoªka vi do wierzchoªka vj

o wierzchoªkach wewn¦trznych w zbiorze {v1, v2, . . . , vk}

d0
ij =

{
w(vi , vj) je±li (vi , vj) ∈ A

∞ wpp
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Algorytm Floyda-Warshalla

for ka»da para (vi , vj) ∈ V × V do

if (vi , vj) ∈ A then

d0
ij := w(vi , vj)

else

d0
ij := ∞

sij := ∅
for k := 1 to n do

for i := 1 to n do

for j := 1 to n do

dk
ij := min{dk−1

ij , dk−1
ik + dk−1

kj } if
dk−1
ij <= dk−1

ik + dk−1
kj then

dk
ij := dk−1

ij

else

dk
ij := dk−1

ik + dk−1
kj

sij := k
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Sieci¡ G = (V ,A, s, t, c) nazywamy graf skierowany (V ,A), w
którym dwa wierzchoªki s, t (nazywane odpowiednio ¹ródªem i
uj±ciem) s¡ wyró»nione, a c jest funkcj¡ przepustowo±ci

c : A 7→ R+.

Przepªywem w sieci G nazywamy funkcj¦

f : A 7→ R+

speªniaj¡c¡ warunki:
(1) ∀(u, v) ∈ A : 0 ¬ f (u, v) ¬ c(u, v)
(2) ∀v ∈ V \ {s, t} :∑

u∈V : (u,v)∈A
f (u, v) =

∑
u∈V : (v ,u)∈A

f (v , u).

24 / 104



Warto±ci¡ przepªywu f jest liczba
|f | =

∑
(s,u)∈A f (s, u) =

∑
(u,t)∈A f (u, t).

Problem maksymalnego przepªywu

Wej±cie: Sie¢ G = (V ,A, s, t, c)
Wyj±cie: Przepªyw fmax :

|fmax | = max{|f | : f jest przepªywem w G}.
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Sieci¡ residualn¡ dla sieci G = (V ,A, s, t, c) oraz przepªywu f
nazywamy sie¢ Gf = (V ,A′, s, t, cf ), w której
A′ = A ∪ {(u, v) : f (v , u) > 0} oraz:

cf (u, v) =

{
c(u, v)− f (u, v) je±li (u, v) ∈ A

f (v , u) wpp

�cie»k¡ powi¦kszaj¡c¡ dla przepªywu f jest ±cie»ka od s do t w
sieci residualnej Gf .

Niech p b¦dzi¦ ±cie»k¡ powi¦kszaj¡c¡ dla przepªywu f .
Przepustowo±¢ residualna ±cie»ki p wynosi
cf (p) = min{cf (u, v) : (u, v) ∈ p}.
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Metoda Forda-Fulkersona

for ka»dy ªuk (u, v) ∈ A do

f (u, v) := 0
Gf := G
while istnieje ±cie»ka powi¦kszaj¡ca p w Gf do

cf (p) := min{cf (u, v) : (u, v) ∈ p}
for ka»dy ªuk (u, v) ∈ p do

f (u, v) := f (u, v) + cf (p)
cf (u, v) := c(u, v)− f (u, v)
cf (v , u) := f (u, v)

Je±li c jest funkcj¡ caªkowitoliczbow¡ to T = O(e|c |).

27 / 104



Algorytm Edmondsa-Karpa

Do znajdowania ±cie»ek powi¦kszaj¡cych w metodzie
Forda-Fulkersona wykorzystawane jest przeszukiwanie
wszerz (BFS).

T = O(n e2)
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Przekrojem w sieci G = (V ,A, s, t, c) nazywamy taki podziaª
(S ,T ) zbioru V , w którym s ∈ S oraz t ∈ T .

Przepustowo±¢ przekroju
c(S ,T ) =

∑
(u,v)∈A:u∈S,v∈T c(u, v)

Przepªyw przez przekrój
f (S ,T ) =

∑
(u,v)∈A:u∈S,v∈T f (u, v)
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Twierdzenie o maksymalnym przepªywie i minimalnym przekroju

Niech f b¦dzie przepªywem w sieci G = (V ,A, s, t, c).
Nast¦puj¡ce warunki s¡ równowa»ne.
(1) Przepªyw f w G jest maksymalny
(2) Sie¢ residualna Gf nie zawiera ±cie»ki powi¦kszaj¡cej
(3) Istnieje przekrój (S ,T ), dla którego zachodzi |f | = c(S ,T ).
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Przedprzepªywem w sieci G nazywamy funkcj¦

g : A 7→ R+

speªniaj¡c¡ warunki:
(1) ∀(u, v) ∈ A : 0 ¬ g(u, v) ¬ c(u, v)
(2) ∀v ∈ V \ {s, t} :∑

u∈V : (u,v)∈A
g(u, v)−

∑
u∈V : (v ,u)∈A

g(v , u) ­ 0.

Nadmiarem w wierzchoªku v nazywamy liczb¦

e(v) =
∑

u∈V : (u,v)∈A
g(u, v)−

∑
u∈V : (v ,u)∈A

g(v , u).

Wierzchoªek v ∈ V \ {s, t} jest nadmiarowy je±li e(v) > 0.

31 / 104



Funkcj¦ h : V 7→ N nazywamy funkcj¡ wysoko±ci je±li
(1) h(s) = |V |
(2) h(t) = 0
(3) ∀(u, v) ∈ Ag : h(u) ¬ h(v) + 1.
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Operacja prze±lij(u, v) mo»e zosta¢ wykonana, gdy speªnione s¡
warunki:
(1) e(u) > 0
(2) cg (u, v) > 0
(3) h(u) = h(v) + 1

prze±lij(u, v)

dg (u, v) := min{e(u), cg (u, v)}
if (u, v) ∈ A then

g(u, v) := g(u, v) + dg (u, v)
else

g(u, v) := g(u, v)− dg (u, v)
e(u) := e(u)− dg (u, v)
e(v) := e(v) + dg (u, v)
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Operacja podnie±(u) mo»e zosta¢ wykonana, gdy speªnione s¡
warunki:
(1) e(u) > 0
(2) ∀(u, v) ∈ Ag : h(u) ¬ h(v).

podnie±(u)

h(u) := 1 + min{h(v) : (u, v) ∈ Ag}
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inicjuj_przedprzepªyw(G )

for ka»dy wierzchoªek v ∈ V
h(v) := 0
e(v) := 0

for ka»dy ªuk (u, v) ∈ A
g(u, v) := 0

h(s) := |V |
for ka»dy ªuk (s, v) ∈ A

g(s, v) := c(s, v)
e(v) := c(s, v)
e(s) := e(s)− c(s, v)

35 / 104



Algorytm przedprzepªywowy

inicjuj_przedprzepªyw(G )
while mo»na zastosowa¢ prze±lij lub podnie±

wybierz jedn¡ z dopuszczalnych i wykonaj

T = O(n2e)
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Warianty zagadnienia przepªywowego

1. Sieci z wieloma ¹ródªami i uj±ciami.
2. Sieci z doln¡ przepustowo±ci¡.
3. Przepªyw rozszerzony.
4. Przepªyw o minimalnym koszcie.
5. Sieci uogólnione.
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Sie¢ z wieloma ¹ródªami i uj±ciami

to sie¢ postaci GST = (V ,A,S ,T , c), gdzie (V ,A) jest grafem
skierowanym, w którym S jest zbiorem ¹ródeª, T jest zbiorem uj±¢,
a c jest funkcj¡ przepustowo±ci

c : A 7→ R+.

Przepªywem w sieci GST nazywamy funkcj¦

f : A 7→ R+

speªniaj¡c¡ warunki:
(1) ∀(u, v) ∈ A : 0 ¬ f (u, v) ¬ c(u, v)
(2) ∀v ∈ V \ (S ∪ T ) :∑

u∈V : (u,v)∈A
f (u, v) =

∑
u∈V : (v ,u)∈A

f (v , u).
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Warto±ci¡ przepªywu f jest
|f | =

∑
(u,v)∈A, u∈S f (u, v) =

∑
(u,v)∈A, v∈T f (u, v).

Problem maksymalnego przepªywu w GST

Wej±cie: Sie¢ GST = (V ,A, S ,T , c).
Wyj±cie: Przepªyw fmax :
|fmax | = max{|f | : f jest przepªywem w GST}.

Sieci¡ pomocnicz¡ dla GST = (V ,A, S ,T , c) jest sie¢
G ′ = (V ′,A′, s ′, t ′, c ′), w której:
V ′ = V ∪ {s ′, t ′}
A′ = A ∪ {(s ′, s) : dla ka»dego s ∈ S} ∪ {(t, t ′) : dla ka»dego
t ∈ T}

c ′(u, v) =

{
c(u, v) je±li (u, v) ∈ A

∞ wpp
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Sie¢ z doln¡ przepustowo±ci¡

to sie¢ postaci Gb = (V ,A, s, t, b, c), gdzie (V ,A) jest grafem
skierowanym, s jest ¹ródªem, t uj±ciem, a b i c s¡ odpowiednio
funkcjami dolnej i górnej przepustowo±ci

b, c : A 7→ R+.

Przepªywem (dopuszczalnym) w sieci Gb nazywamy funkcj¦

f : A 7→ R+

speªniaj¡c¡ warunki:
(1) ∀(u, v) ∈ A : b(u, v) ¬ f (u, v) ¬ c(u, v)
(2) ∀v ∈ V \ {s, t} :∑

u∈V : (u,v)∈A
f (u, v) =

∑
u∈V : (v ,u)∈A

f (v , u).
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Problem maksymalnego przepªywu w Gb

Wej±cie: Sie¢ Gb = (V ,A, s, t, b, c).
Wyj±cie: Przepªyw fmax :
|fmax | = max{|f | : f jest przepªywem w Gb}, lub NULL je±li f nie
istnieje.

Warunki konieczne na istnienie przepªywu dopuszczalnego

∀v ∈ V \ {s, t} :
∑
u∈V

b(u, v) ¬
∑
u∈V

c(v , u)

∀v ∈ V \ {s, t} :
∑
u∈V

b(v , u) ¬
∑
u∈V

c(u, v)
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Sieci¡ pomocnicz¡ dla sieci Gb jest sie¢ G ′ = (V ′,A′, s ′, t ′, c ′), w
której:
V ′ = V ∪ {s ′, t ′}
A′ = A ∪ {(s ′, v) : dla ka»dego v ∈ V \ s}

∪{(v , t ′) : dla ka»dego v ∈ V \ t} ∪ (t, s)

c ′(u, v) =



∑
w∈V b(w , v) je±li u = s ′∑
w∈V b(u,w) je±li v = t ′

c(u, v)− b(u, v) je±li (u, v) ∈ A

∞ dla (t, s)

Twierdzenie

Sie¢ Gb posiada przepªyw dopuszczalny wtedy i tylko wtedy, gdy
maksymalny przepªyw w sieci pomocniczej G ′ jest równy
|f ′| =

∑
v∈V c ′(s ′, v) =

∑
v∈V c ′(v , t ′).
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Maksymalny przepªyw w Gb

if znajd¹_przepªyw_dopuszczalny()==0 then

return NULL
for ka»dy ªuk (u, v) ∈ A do

f (u, v) := f ′(u, v) + b(u, v)
cf (u, v) := c(u, v)− f (u, v)
cf (v , u) := f (u, v)− b(u, v)

while istnieje ±cie»ka powi¦kszaj¡ca p w Gf do

cf (p) := min{cf (u, v) : (u, v) ∈ p}
for ka»dy ªuk (u, v) ∈ p do

f (u, v) := f (u, v) + cf (p)
cf (u, v) := c(u, v)− f (u, v)
cf (v , u) := f (u, v)− b(u, v)
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Przepªywem (rozszerzonym) w sieci Gb nazywamy funkcj¦

f : A 7→ R+

speªniaj¡c¡ warunki:
(1) ∀(u, v) ∈ A : b(u, v) ¬ f (u, v) ¬ c(u, v) lub f (u, v) = 0
(2) ∀v ∈ V \ {s, t} :∑

u∈V : (u,v)∈A
f (u, v) =

∑
u∈V : (v ,u)∈A

f (v , u).

Problem maksymalnego przepªywu rozszerzonego w Gb

Wej±cie: Sie¢ Gb = (V ,A, s, t, b, c).
Wyj±cie: Przepªyw fmax :
|fmax | = max{|f | : f jest przepªywem rozszerzonym w Gb}, lub
NULL je±li f nie istnieje.
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Kosztem w sieci G = (V ,A, s, t, c) nazywamy funkcj¦ k : A 7→ R+.

Niech f b¦dzie przepªywem w sieci G . Kosztem przepªywu f jest
warto±¢

kf =
∑

(u,v)∈A
f (u, v)k(u, v).

Problem przepªywu o minimalnym koszcie w G

Wej±cie: Sie¢ G = (V ,A, s, t, c) wraz z funkcj¡ kosztu k , oraz
d ∈ R+.
Wyj±cie: Przepªyw fmink : kfmink

= min{kf : f jest przepªywem w G
i |f | = d}.
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Twierdzenie

Przepªyw f w G jest przepªywem o minimalnym koszcie wtedy i
tylko wtedy, gdy w sieci residualnej Gf nie istnieje cykl o ujemnym
koszcie.

Przepªyw o minimalnym koszcie w G

f := znajd¹_przepªyw(d)
Gf := sie¢ residualna dla f w G
while istnieje w Gf cykl C o koszcie ujemnym do

mody�kuj f wzdªu» cyklu C
mody�kuj Gf
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Sie¢ uogólniona

to sie¢ postaci Gg = (V ,A, s, t, c , γ), gdzie (V ,A) jest grafem
skierowanym, s jest ¹ródªem, t uj±ciem, c funkcj¡ przepustowo±ci,
natomiast γ jest funkcj¡ zysku (straty)
γ : A 7→ R+.

Przepªywem uogólnionym w sieci Gg nazywamy funkcj¦
f : A 7→ R+ speªniaj¡c¡ warunki:
(1) ∀(u, v) ∈ A : 0 ¬ f (u, v) ¬ c(u, v)
(2) ∀v ∈ V \ {s, t} :∑

u∈V : (v ,u)∈A
f (v , u) =

∑
u∈V : (u,v)∈A

f (u, v)γ(u, v).

Warto±ci¡ przepªywu f jest liczba
|f | =

∑
(u,t)∈A f (u, t)γ(u, t).
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Problem przepªywu maksymalnego w sieci Gg

Wej±cie: Sie¢ Gg = (V ,A, s, t, c , γ).
Wyj±cie: Przepªyw fmax :
|fmax | = max{|f | : f jest przepªywem w Gg}.

Cykl C nazywamy cyklem generuj¡cym przepªyw je±li
γ(C ) =

∏
(u,v)∈C γ(u, v) > 1. Je±li γ(C ) < 1 to wówczas mówimy

o cyklu absorbuj¡cym przepªyw. Gdy γ(C ) = 1 to cykl jest
jednostkowy.

Uogólnion¡ ±cie»k¡ powi¦kszaj¡c¡ (GAP) nazywamy cykl C
generuj¡cy przepªyw, wraz z doª¡czon¡ (dopuszczalnie pust¡)
±cie»k¡ P od jednego z wierzchoªków cyklu C do uj±cia t w sieci
residualnej Gf .
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Twierdzenie

Przepªyw f jest przepªywem maksymalnym w Gg wtedy i tylko
wtedy, gdy w sieci residualnej Gf nie istnieje uogólniona ±cie»ka
powi¦kszaj¡ca.

Przepªyw maksymalny w Gg

f := 0
Gf := Gg

while istnieje w Gf uogólniona ±cie»ka powi¦kszaj¡ca CP do

mody�kuj f wzdªu» CP
mody�kuj Gf
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Problem minimalnego przekroju w gra�e

Wej±cie: Graf G = (V ,E ) oraz funkcja wagowa w : E 7→ R+

Wyj±cie: Przekrój (X ,Y ):
w(X ,Y ) = min{w(X ′,Y ′) : (X ′,Y ′) jest przekrojem w G}.

w(X ,Y ) =
∑
{x ,y}∈E : x∈X , y∈Y w({x , y})

Niech A ⊂ V . Je±li v 6∈ A to w(A, v) =
∑
{a,v}∈E : a∈A w({a, v}).

Wierzchoªek z 6∈ A nazywamy najsilniej poª¡czonym z A je±li
w(A, z) = max{w(A, v) : v 6∈ A}.
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redukuj(G ,v0)

A := {v0}
while A 6= V do

doª¡cz do A wierzchoªek najsilniej poª¡czony
(X ,Y ) := (t,V \ {t})
zª¡cz w G dwa ostatnio doª¡czone do A wierzchoªki s i t
return (X ,Y )

Algorytm Stoera-Wagnera

wmin := w(v0,V \ {v0})
while |V | > 1 do

(X ,Y )=redukuj(G ,v0)
if w(X ,Y ) < wmin then

(X ,Y )min := (X ,Y )
wmin := w(X ,Y )

return (X ,Y )min, wmin
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T = Θ(ne + n2 log n).

Lemat

Niech s i t b¦d¡ dwoma wierzchoªakmi w gra�e G = (V ,E ). Niech
G/{s, t} oznacza graf otrzymany z G poprzez zª¡czenie
wierzchoªków s i t. Wówczas minimalnym przekrojem w G jest albo
przekrój (S ,T ) albo minimalny przekrój w gra�e G/{s, t}.

Lemat

Przekrój zwracany przez funkcj¦ redukuj() jest minimalnym
(S ,T )-przekrojem zadanego na wej±ciu grafu G , gdzie s i t s¡
ostatnimi doª¡czonymi wierzchoªkami.
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Skojarzeniem w gra�e G = (V ,E ) nazywamy podzbiór M ⊂ E
wierzchoªkowo rozª¡cznych kraw¦dzi.

Liczno±ci¡ skojarzenia M jest liczba |M|.

Mówimy, »e M jest najliczniejszym skojarzeniem w G je±li
|M| = max{|M ′| : M ′ jest skojarzeniem w G}. Wówczas liczb¦
µ(G ) = |M| nazywamy liczb¡ skojarzeniow¡ grafu G .

Problem najliczniejszego skojarzenia w gra�e

Wej±cie: Graf G = (V ,E ).
Wyj±cie: Najliczniejsze skojarzenie M w G .
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Skojarzenie M w gra�e G = (V ,E ) nazywamy peªnym je±li
|M| = |V |/2.

Twierdzenie Tutte'a

Graf G posiada peªne skojarzenie wtedy i tylko wtedy, gdy |S | ­ c
dla ka»dego podzbioru S ⊂ V , gdzie c oznacza liczb¦ spójnych
skªadowych o nieparzystym rz¦dzie w gra�e G [V \ S ].

Twierdzenie Halla'a

Graf dwudzielny G (X ,Y ;E ) zawiera skojarzenie rozmiaru |X |
wtedy i tylko wtedy, gdy dla ka»dego podzbioru S ⊂ X zachodzi
|S | ¬ |N(S)|.
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Sieci¡ pomocnicz¡ dla grafu dwudzielnego G = (X ,Y ;E ) jest sie¢
G = (V ,A, s, t, c), w której:
V = X ∪ Y ∪ {s, t}
A = {(x , y) : dla ka»dego {x , y} ∈ E} ∪ {(s, x) : dla ka»dego
x ∈ X} ∪ {(y , t) : dla ka»dego Y ∈ Y }
c(u, v) = 1 dla ka»dego ªuku (u, v) ∈ A.

Twierdzenie

Graf dwudzielny G = (X ,Y ;E ) zawiera skojarzenie o liczno±ci |M|
je»eli istnieje przepªyw f o warto±ci |f | = |M| w sieci pomocniczej
G = (V ,A, s, t, c).
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�cie»ka P =< v0, v1, . . . , vk > o nieparzystej dªugo±ci k jest
±cie»k¡ powi¦kszaj¡c¡ wzgl¦dem skojarzenia M w gra�e G je±li
∀l : 1 ¬ l ¬ k−1

2 : {v2l−1, v2l} ∈ M, a wierzchoªki v0 oraz vk s¡
wolne (czyli nie s¡ incydentne z »adn¡ kraw¦dzi¡ skojarzenia M).

Twierdzenie Berge'a

M jest najliczniejszym skojarzeniem w gra�e G wtedy i tylko wtedy,
gdy G nie zawiera ±cie»ki powi¦kszaj¡cej wzgl¦dem M.
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Kielich to cykl o nieparzystej dªugo±ci 2k + 1, w którym k kraw¦dzi
nale»y do skojarzenia M.
Podstaw¡ kielicha jest albo wierzchoªek wolny, albo skojarzony z
kraw¦dzi¡ z M nie nale»¡c¡ do kielicha.

Zwini¦ciem kielicha B do podstawy y nazywamy tak¡ transformacj¦
grafu G = (V ,E ) do grafu G ′ = (V ′,E ′), »e
V ′ = V \ (V (B) \ {y}), oraz
E ′ = E \ {{u, v} : u ∈ V (B) lub v ∈ V (B)}∪
{{y , v} : {u, v} ∈ E , u ∈ V (B), v 6∈ V (B)}.
Operacj¦ odwrotn¡ nazywamy rozwini¦ciem kielicha B .
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Niech S oznacza zbiór wierzchoªków wolnych wzgl¦dem skojarzenia
M. Lasem naprzemiennym nazywamy las F , w którym:
- ka»dy wierzchoªek ze zbioru S jest korzeniem w F
- ka»da kraw¦d¹ o nieparzystej odlegªo±ci od korzenia nale»y do M.
Ka»dy wierzchoªek w F maj¡cy nieparzyst¡ odlegªo±¢ od korzenia
ma stopie« 2 i nazywany jest wierzchoªkiem wewn¦trznym.
Pozostaªe wierzchoªki s¡ zewn¦trzne.
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Algorytm Edmondsa

M = ∅
F = V (G)
while (1) do

if istnieje zewn¦trzny wierzchoªek x ∈ F s¡siedni z y 6∈ F then

znajd¹ wierzchoªek z : {y , z} ∈ M
F ∪ {x , y} ∪ {y , z}

else

if istniej¡ zewn¦trzne wierzchoªki x1, x2 ∈ F : {x1, x2} ∈ E then

if x1 oraz x2 nale»¡ do ró»nych skªadowych w F then

p1 := ±cie»ka od root(x1) do x1 w F
p2 := ±cie»ka od root(x2) do x2 w F
mody�kuj M wzdªu» ±cie»ki powi¦kszaj¡cej p1 ∪ {x1, x2} ∪ p2
F := zbiór wierzchoªków wolnych wzgl¦dem M

else

B := kielich zamkni¦ty przez {x1, x2} o podstawie y
zwi« B do y
mody�kuj M wzgl¦dem B

else

break

for ka»dy zwini¦ty kielich B do

rozwi« B
mody�kuj M wzgl¦dem B
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T = O(n2e)
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Warianty zagadnienia

1. Peªne skojarzenie o minimalnej wadze.
2. Peªne skojarzenie o maksymalnej wadze.
3. Skojarzenie o maksymalnej wadze.

Problem peªnego skojarzenia o minimalnej wadze

Wej±cie: Graf dwudzielny peªny zrównowa»ony G (X ,Y ;E ) oraz
funkcja kosztu w : E 7→ R+.

Wyj±cie: Peªne skojarzenie M o minimalnej wadze
wmin = min{w(M) : M jest skojarzeniem peªnym w G}.
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Etykietowanie l : X ∪ Y 7→ Z nazywamy dopuszczalnym je±li
l(x) + l(y) ¬ w(x , y) dla ka»dych x ∈ X , y ∈ Y .

Dla dopuszczalnego etykietowania l , pograf Gl = (X ,Y ;El) grafu
G , w którym El = {xy : l(x) + l(y) = w(x , y)} nazywamy grafem
nasycenia.

Twierdzenie

Niech l b¦dzie dopuszczalnym etykietowaniem grafu G .
Je±li M jest peªnym skojarzeniem w Gl , wówczas M jest peªnym
skojarzeniem o minimalnej wadze w G .

Mówimy, »e wierzchoªek z jest osi¡galny z x je±li istnieje
naprzemienna ±cie»ka x − z w Gl .
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skoryguj_etykietowanie

x := wierzchoªek wolny wzgl¦dem M w X
S := wierzchoªki w X osi¡galne z x
T := wierzchoªki w Y osi¡galne z x
α := minx∈S ,y∈Y \T{w(x , y)− l(x)− l(y)}
for ka»dy wierzchoªek x ∈ S

l(x) := l(x) + α
for ka»dy wierzchoªek y ∈ T

l(y) := l(y)− α
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Algorytm Kuhna-Munkresa

M := ∅
for ka»dy wierzchoªek x ∈ X

l(x) := miny∈Y {w(x , y)}
for ka»dy wierzchoªek y ∈ Y

l(y) := 0
wyznacz Gl

while M nie jest skojarzeniem peªnym w G
if istnieje ±cie»ka powi¦kszaj¡ca P wzgl¦dem M w Gl then

mody�kuj M wzdªu» ±cie»ki P
else

skoryguj_etykietowanie
mody�kuj Gl

T = O(n3)
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Problem skojarzenia o maksymalnej wadze

Wej±cie: Graf dwudzielny G (X ,Y ;E ) oraz funkcja kosztu
w : E 7→ R+.

Wyj±cie: Skojarzenie M o maksymalnej wadze
wmax = max{w(M) : M jest skojarzeniem w G}.

Niech G ′(X ′,Y ′;E ′) b¦dzie takim nadgrafem G (X ,Y ;E ), który
jest grafem dwudzielnym peªnym zrównowa»onym. Niech
w ′ : E ′ 7→ R+ b¦dzie funkcj¡ kosztu o wªasno±ciach:
w ′(e) = w(e) je±li e ∈ E oraz
w ′(e) = 0 je±li e 6∈ E
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Przez pªask¡ reprezentacj¦ grafu G = (V ,E ) rozumiemy takie
rozmieszczenie wierzchoªków zbioru V na pªaszczy¹nie, »e jedyny
punkt przeci¦cia dowolnych dwóch kraw¦dzi to ewentualnie ich
wspólny koniec.

Graf G = (V ,E ) nazywamy planarnym je±li posiada pªask¡
reprezentacj¦.

Testowanie planarno±ci grafu

Wej±cie: Graf G = (V ,E ).
Wyj±cie: Graf jest/nie jest planarny.

Znajdowanie pªaskiej reprezentacji

Wej±cie: Graf G = (V ,E ).
Wyj±cie: Pªaska reprezentacja grafu G - je±li istnieje.
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Rozdzieleniem kraw¦dzi {u, v} w gra�e G = (V ,E ) nazywamy
dodanie nowego wierzchoªka w oraz zast¡pienie tej kraw¦dzi przez
dwie kraw¦dzie {u,w} i {w , v}.
Rozdzieleniem grafu G nazywamy graf G ′ powstaªy z G poprzez
wykonanie kolejnych rozdziele« kraw¦dzi.

Twierdzenie Kuratowskiego

Graf G jest planarny wtedy i tylko wtedy, gdy nie zawiera podgrafu
b¦d¡cego rozdzieleniem grafu K5 lub K3,3.
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Zwini¦ciem kraw¦dzi {u, v} w gra�e G = (V ,E ) nazywamy
operacj¦ zª¡czenienia wierzchoªków u oraz v wraz z usuni¦ciem
powstaªej p¦tli oraz zast¡pienia potencjalnych równolegªych
kraw¦dzi przez pojedyncz¡ kraw¦d¹.
Minorem grafu G nazywamy graf G ′ powstaªy z G poprzez
wykonanie kolejnych operacji usuwania wierzchoªków, usuwania
kraw¦dzi oraz/lub zwijania kraw¦dzi.

Twierdzenie Wagnera

Graf G jest planarny wtedy i tylko wtedy, gdy nie posiada minorów
b¦d¡cych K5 lub K3,3.
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Dla danego grafu G = (V ,E ) oraz jego podgrafu G ′ = (V ′,E ′),
poprzez fragment rozumiemy ka»dy podgraf grafu G , który jest
albo:
(1) tak¡ pojedyncz¡ kraw¦dzi¡ {u, v}, »e {u, v} 6∈ E ′ ale u, v ∈ V ′,
albo
(2) podgrafem indukowanym przez spójn¡ skªadow¡ C w G \ G ′,
wraz ze wszystkimi kraw¦dziami {u, v} postaci u ∈ V (C ), v ∈ V ′.
Wierzchoªkami zewn¦trznymi fragmentu nazywamy wierzchoªki
nale»¡ce do V ′.

α-±cie»ka to dowolna ±cie»ka zawarta we fragmencie, której
wierzchoªki ko«cowe s¡ wierzchoªkami zewn¦trznymi.
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Algorytm Demoucron, Malgrange, Pertuiset

G ′ := dowolny cykl w G
while (1) do

wyznacz wszystkie ±ciany w G ′

wyznacz zbiór P wszystkich fragmentów w G ze wzgl¦du na G ′

if P == ∅ then
G jest planarny
G ′ jest pªask¡ reprezentacj¡ grafu G
return

for ka»dy fragment p ∈ P do

wyznacz F (p)
if istnieje fragment p: f (p) == 0 then

G nie jest planarny
return

if istnieje fragment p: f (p) == 1 then

r := p
else

r := dowolny inny fragment
wyznacz dowoln¡ α-±cie»k¦ w r
umie±¢ α w ±cianie f ∈ F (r)

G ′ := G ′ ∪ α
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T = O(n2)
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Niech G b¦dzie grafem 2-spójnym, w którym e ¬ 3n − 6.

Algorytm Hopcrofta-Tarjana

for ka»dy wierzchoªek v w G do

d[v ] := 0
π[v ] := ∅

for ka»dy kraw¦d¹ {v , u} w G do

wykorzystana[{v , u}] := 0
lv := 0
DFS_etykietowanie(v0)
konwertuj(G ,G ∗)
sortuj_listy_s¡siadów()
DFS_testowanie(v0)

T = O(n)
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Oznaczenia

d [v ] - etykieta wierzchoªka v w porz¡dku DFS
P(v) oznacza zbiór potomków wierzchoªka v w drzewie DFS, wraz
z v
S(v) = {d [u] : {w , u} ∈ E oraz d [w ] > d [u] dla pewnego
w ∈ P(v)}
L1(v) = min{{d [v ]} ∪ S(v)}
L2(v) = min{{d [v ]} ∪ (S(v) \ {L1(v)})}
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DFS_etykietowanie(v)

lv++
d[v ] := lv
L1[v ] := lv
L2[v ] := lv
for ka»dy s¡siad u wierzchoªka v w G do

if wykorzystana[{v , u}] == 0 then

if d[u] == 0 then

π[u] := v
DFS_etykietowanie(u)

else

if d[u] < L1[v ] then
L2[v ] := L1[v ]
L1[v ] := d[u]

else

if d[u] > L1[v ] then
L2[v ] := min{d [u], L2[v ]}

wykorzystana[{v , u}] := 1
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DFS_etykietowanie(v) (cd.)

if d[v ] > 1 then

if L1[v ] < L1[π[v ]] then
L2[π[v ]] := min{L2[v ], L1[π[v ]]}
L1[π[v ]] := L1[v ]

else

if L1[v ] == L1[π[v ]] then
L2[π[v ]] := min{L2[v ], L2[π[v ]]}

else

L2[π[v ]] := min{L1[v ], L2[π[v ]]}
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Graf (V ,E ) zast¡piony zostanie grafem zorientowanym
G ∗ = (V ,A):
Niech {v , u} ∈ E : d [v ] < d [u].
(v , u) ∈ A je±li {v , u} jest kraw¦dzi¡ drzewa DFS,
w przeciwnym przypadku (u, v) ∈ A.

Etykietowanie ªuków

w(v , u) =
2d [u] je±li (v , u) jest ªukiem zwrotnym

2L1(u) je±li (v , u) jest ªukiem drzewa oraz L2(u) ­ d [v ]

2L1(u) + 1 je±li (v , u) jest ªukiem drzewa oraz L2(u) < d [v ]
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DFS_testowanie(v)

for ka»dy ªuk (v , u) ∈ A do

if d[v ] < d[u] then
w := L1[u]
if ±cie»ka v → w nie koliduje z Li then

umie±¢ v → w w Li

else

if ±cie»ka v → w nie koliduje z Lo then

umie±¢ v → w w Lo

else

m=zamie«_strony(v → w)
if m==0 then

return "nie jest planarny"
if m==1 then

umie±¢ v → w w Li

else

umie±¢ v → w w Lo

DFS_testowanie(u)

else
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DFS_testowanie(v) (cd.)

if ±cie»ka v → u nie koliduje z Li then

umie±¢ v → u w Li

else

if ±cie»ka v → u nie koliduje z Lo then

umie±¢ v → u w Lo

else

m=zamie«_strony(v → u)
if m==0 then

return "nie jest planarny"
if m==1 then

umie±¢ v → u w Li

else

umie±¢ v → u w Lo
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zamie«_strony(u → v)

while (1) do

B := pobierz_blok_ze_stosu()
B ′ := pobierz_blok_ze_stosu()
if czoªowa ci¦ciwa z Lo znajduje si¦ w Bo then

if czoªowa ci¦ciwa z Li znajduje si¦ w Bi then

return 0

if czoªowa ci¦ciwa z Li znajduje si¦ w B ′i then

zamie« ci¦ciwy pomi¦dzy Bi i Bo

poªó»_na_stos(zª¡cz B z B ′)
znajd¹ nowe czoªowe ci¦ciwy w Li oraz Lo

if u → v nie koliduje z Lo then

return -1

else

poªó»_na_stos(zª¡cz B z B ′)

else
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zamie«_strony(u → v) (cd.)

if czoªowa ci¦ciwa z Lo znajduje si¦ w B ′o then

zamie« ci¦ciwy pomi¦dzy Bi i Bo

poªó»_na_stos(zª¡cz B z B ′)
znajd¹ nowe czoªowe ci¦ciwy w Li oraz Lo

if u → v nie koliduje z Li then

return 1

else

poªó»_na_stos(zª¡cz B z B ′)
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De�nicja

Drog¡ Eulera (zamkni¦t¡) w spójnym multigra�e G = (V ,E )
nazywamy drog¦ zamkni¦t¡ zawieraj¡c¡ ka»d¡ kraw¦d¹ ze zbioru E .

Twierdzenie

Multigraf spójny G = (V ,E ) posiada zamkni¦t¡ drog¦ Eulera wtedy
i tylko wtedy, gdy stopie« ka»dego wierzchoªka w G jest parzysty.
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droga_Eulera(G )

D := ∅
v = v0
for ka»da kraw¦d¹ {v , u} w G do

odwiedzona[{v , u}] := 0
do

if istnieje nieodwiedzona kraw¦d¹ {v , u} incydentna do v then

poªó»_na_stos({v , u})
odwiedzona[{v , u}] := 1

else

{v , u} := zdejmij_ze_stosu()
D := D ∪ {v , u}

v := u
while stos_niepusty()
return D

T = Θ(e)
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De�nicja

Otwart¡ drog¡ Eulera w spójnym multigra�e G = (V ,E )
nazywamy drog¦ otwart¡ zawieraj¡c¡ ka»d¡ kraw¦d¹ ze zbioru E .

Twierdzenie

Multigraf spójny G = (V ,E ) posiada otwart¡ drog¦ Eulera wtedy
i tylko wtedy, gdy dokªadnie dwa wierzchoªki w G maj¡ stopnie
nieparzyste.
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Problem chi«skiego listonosza

Wej±cie: Graf spójny G = (V ,E ) oraz funkcja kosztu w : E 7→ R+.
Wyj±cie: Zamkni¦ty spacer D o minimalnej wadze w(D)
zawieraj¡cy ka»d¡ kraw¦d¹ z E .
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spacer_chi«skiego_listonosza(G )

W := zbiór wierzchoªków nieparzystego stopnia w G
utwórz graf peªny Kw = (W ,F ) indukowany przez W
for ka»da kraw¦d¹ {v , u} w Kw do

w({v , u}) := dªugo±¢ najkrótszej ±cie»ki p z v do u w G
P({v , u}) := zbiór kraw¦dzi nale»¡cych do ±cie»ki p

M := skojarzenie peªne o minimalnym koszcie w Kw

G ′ := G
for ka»da kraw¦d¹ {v , u} ∈ M do

E (G ′) := E (G ′) ∪ P({v , u})
D := droga_Eulera(G ′)
return D
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De�nicja

Cykl zawieraj¡cy ka»dy wierzchoªek grafu G = (V ,E ) nazywamy
cyklem Hamiltona.
Graf G posiadaj¡cy cykl Hamiltona jest grafem hamiltonowskim.

De�nicja

�cie»k¦ zawieraj¡c¡ ka»dy wierzchoªek grafu G = (V ,E ) nazywamy
±cie»k¡ Hamiltona.
Graf G posiadaj¡cy ±cie»k¦ Hamiltona jest trasowalny.

Problem cyklu Hamiltona

Wej±cie: Graf G = (V ,E ).
Wyj±cie: Czy G jest hamiltonowski?

Problem komiwoja»era (TSP)

Wej±cie: Graf peªny Kn = (V ,E ) oraz funkcja kosztu w : E 7→ R+.
Wyj±cie: Cykl Hamiltona o minimalnej wadze.
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Dany jest problem optymalizacyjny (minimalizacyjny) Π.
DΠ - zbiór instancji problemu Π
SΠ(I ) - zbiór rozwi¡za« dopuszczalnych dla I ∈ DΠ

mΠ(I , σ) - koszt rozwi¡zania σ ∈ SΠ(I )
σ∗ ∈ SΠ(I ) - rozwi¡zanie optymalne dla problemu Π:

mΠ(I , σ∗) ¬ mΠ(I , σ) dla ka»dego σ ∈ SΠ(I )
A - strategia aproksymacyjna dla Π
A(I ) := mΠ(I , σ)

- koszt rozwi¡zania σ znalezionego przez algorytm A dla I ∈ DΠ

OPT (I ) := mΠ(I , σ∗) - koszt rozwi¡zania optymalnego dla I ∈ DΠ

RA(I ) := A(I )
OPT (I ) - wspóªczynnik efektywno±ci dla I ∈ DΠ

Bezwzgl¦dny wspóªczynnik efektywno±ci strategii A

RA = sup{RA(I ) : I ∈ DΠ}
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Metryczny problem komiwoja»era (∆-TSP)

Wej±cie: Graf peªny Kn = (V ,E ) oraz funkcja kosztu w : E 7→ R+

speªniaj¡ca nierówno±¢ trójk¡ta.
Wyj±cie: Cykl Hamiltona o minimalnej wadze.
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algorytm_drzewowy(Kn)

C := ∅
T := minimalne drzewo spinaj¡ce w Kn

G := podwojone drzewo T
D := droga_Eulera(G )
for ka»dy wierzchoªek v ∈ D do

if v nie wyst¦puje na wcze±niejszej pozycji w D then

C := C ∪ {v}
return C

RA = 2
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algorytm_Christo�desa(Kn)

C := ∅
T := minimalne drzewo spinaj¡ce w Kn

W := zbiór wierzchoªków nieparzystego stopnia w T
utwórz graf peªny Kw indukowany przez W w Kn

M := skojarzenie peªne o minimalnym koszcie w Kw

G := T
doª¡cz kraw¦dzie z M do G
D := droga_Eulera(G )
for ka»dy wierzchoªek v ∈ D do

if v nie wyst¦puje na wcze±niejszej pozycji w D then

C := C ∪ {v}
return C

RA = 3
2
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De�nicja

Zbiorem niezale»nym w gra�e G = (V ,E ) nazywamy taki podzbiór
I ⊂ V , »e »adne dwa wierzchoªki w I nie s¡ s¡siednie.

Mówimy, »e zbiór niezale»ny I w gra�e G jest najliczniejszy, je±li
nie istnieje inny zbiór niezale»ny w G o rz¦dzie wi¦kszym ni» |I |.
Wówczas α(G ) = |I | nazywamy liczb¡ niezale»no±ci grafu G .

De�nicja

Klik¡ w gra�e G = (V ,E ) nazywamy taki podzbiór Q ⊂ V , »e
ka»de dwa wierzchoªki w Q s¡ s¡siednie.

Mówimy, »e klika Q w gra�e G jest najliczniejsza, je±li nie istnieje
klika w G rz¦du wi¦kszego ni» |Q|.
Wówczas ω(G ) = |Q| nazywamy liczb¡ klikow¡ grafu G .
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De�nicja

Kolorowaniem (wierzchoªkowym) grafu G = (V ,E ) nazywamy
odwzorowanie c : V 7→ C , gdzie C oznacza zbiór kolorów.
Je±li dla ka»dych dwóch s¡siednich wierzchoªków v , u zachodzi
c(v) 6= c(u), to kolorowanie nazywamy wªa±ciwym.

Je±li |C | = k to mówimy o k-kolorowaniu.
Minimaln¡ liczb¦ k , dla której istnieje k-kolorowanie wªa±ciwe
wierzchoªków grafu G nazywamy liczb¡ chromatyczn¡ grafu G i
oznaczamy χ(G ).

Zbiór wierzchoªków pokolorowanych tym samym kolorem nazywamy
klas¡ kolorow¡.
Ka»da klasa kolorowa jest zbiorem niezale»nym.
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Kolorowanie wierzchoªkowe grafu

Wej±cie: Graf G = (V ,E ) oraz staªa k ∈ N.
Wyj±cie: G jest/nie jest wierzchoªkowo k-kolorowalny.

Wyznaczenie liczby chromatycznej

Wej±cie: Graf G = (V ,E )
Wyj±cie: χ(G )
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Lemat

Dla ka»dego grafu G zachodzi 1 ¬ χ(G ) ¬ n.

Lemat

Niech G b¦dzie grafem, w którym ∆(G ) ­ 1. Wówczas χ(G ) = 2
wtedy i tylko wtedym gdy G jest grafem dwudzielnym.

Lemat

W ka»dym gra�e G zachodz¡ zale»no±ci:

χ(G ) ­ ω(G )

χ(G ) ­ d n

α(G )
e

χ(G ) ¬ ∆(G ) + 1
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Niech Gxy oznacza graf otrzymany z G poprzez zwini¦cie
wierzchoªków x i y .

Twierdzenie

Dla ka»dego grafu G = (V ,E ) oraz {x , y} 6∈ E zachodzi:
χ(G ) = min{χ(G ∪ {x , y}), χ(Gxy )}.
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Twierdzenie Brooks'a

Dla ka»dego grafu G zachodzi

χ(G )

{
= ∆(G ) + 1 gdy G = Kn lub G = C2p+1

¬ ∆(G ) wpp

Twierdzenie

Je±li G jest grafem planarnym, to χ(G ) ¬ 4.

Twierdzenie

Je±li G jest grafem planarnym nie zawieraj¡cym trójk¡tów, to
χ(G ) ¬ 3.
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Kolorowanie wierzchoªkowe jest problemem wielomianowym dla
wielu klas grafów, m.in.:
- podkubicznych
- planarnych bez trójk¡tów
- doskonaªych (w tym przek¡tniowych oraz przedziaªowych)
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De�nicja

Graf G = (V ,E ) jest r -cyrkularnie kolorowalny je±li istnieje
takie odwzorowanie c ′ : V 7→ [0, r), »e
∀{x , y} ∈ E : 1 ¬ |c ′(x)− c ′(y)| ¬ r − 1.
Cyrkularna liczb¡ chromatyczna grafu G , oznaczona χc(G ), wynosi:
χc(G ) = inf{r : G jest r -cyrkularnie kolorowalny}.

Twierdzenie

Dla ka»dego grafu G zachodzi χ(G )− 1 < χc(G ) ¬ χ(G ).
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De�nicja

Kraw¦dziowym k-kolorowaniem (wªa±ciwym) grafu G = (V ,E )
nazywamy takie odwzorowanie c : E 7→ C , gdzie C oznacza zbiór
kolorów oraz |C | = k , »e dla ka»dych dwóch incydentnych kraw¦dzi
e1, e2 zachodzi c(e1) 6= c(e2).

Minimaln¡ liczb¦ k , dla której istnieje k-kolorowanie kraw¦dzi grafu
G nazywamy indeksem chromatycznym grafu G i oznaczamy χ′(G ).

Zbiór kraw¦dzi pokolorowanych tym samym kolorem nazywamy
klas¡ kolorow¡.
Ka»da klasa kolorowa jest skojarzeniem.
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Kraw¦dziowe kolorowanie grafu

Wej±cie: Graf G = (V ,E ) oraz staªa k ∈ N.
Wyj±cie: G jest/nie jest k-kolorowalny kraw¦dziowo.

Wyznaczenie indeksu chromatycznego

Wej±cie: Graf G = (V ,E )
Wyj±cie: χ′(G )
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Lemat

Dla ka»dego grafu G speªniona jest zale»no±¢ χ′(G ) ¬ 2∆(G )− 1.

Twierdzenie

Je±li G jest grafem dwudzielnym, to χ′(G ) = ∆(G ).

Twierdzenie

W dowolnym gra�e G zachodzi χ′(G ) ¬ b32∆(G )c.

Twierdzenie

Dla ka»dego grafu G zachodzi ∆(G ) ¬ χ′(G ) ¬ ∆(G ) + 1.
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Wachlarzem o ±rodku w wierzchoªku v nazywamy ci¡g
wierzchoªków < u1, u2, . . . , uk >v speªniaj¡cy wªasno±ci:
(1) {u1, u2, . . . , uk} jest niepustym zbiorem parami ró»nych
s¡siadów wierzchoªka v ,
(2) kraw¦d¹ {v , u1} jest niepokolorowana, natomiast ka»da z
kraw¦dzi {v , ui} jest pokolorowana, 2 ¬ i ¬ k ,
(3) kolor kraw¦dzi {v , ui} jest brakuj¡cym kolorem w palecie
wierzchoªka ui−1, dla ka»dego 2 ¬ i ¬ k .

Wachlarz, który nie mo»e zosta¢ powi¦kszony poprzez dodanie
kolejnej kraw¦dzi incydentnej do v nazywamy maksymalnym.
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znajd¹_wachlarz_maksymalny(v , u1)

a := brakuj¡cy kolor w palecie wierzchoªka u1
i := 2
while istnieje kraw¦d¹ {v , u} pokolorowana kolorem a oraz

u nie nale»y do wachlarza do

umie±¢ ui := u w wachlarzu
a := brakuj¡cy kolor w palecie wierzchoªka ui
i++

odwró¢_wachlarz(< u1, u2, . . . , uk >v )

for i := 1 to k − 1 do

kolor[{v , ui}] := kolor[{v , ui+1}]
usu« kolor kraw¦dzi {v , uk}
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Algorytm Misra-Gries

while istnieje niepokolorowana kraw¦d¹ {v , u} w G do

if istnieje kolor a brakuj¡cy w paletach v i u then

kolor[{v , u}] := a
else

znajd¹_wachlarz_maksymalny(v , u)
wyznacz wierzchoªek brzegowy w wachlarza
zamie« kolory a↔ b wzdªu» ±cie»ki od v do w
odwró¢_wachlarz(< u1, u2, . . . ,w >)
kolor[{v ,w}] := b

T = O(ne)
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