TEORIA ALGORYTMOW

dr hab. Mariusz Meszka

Akademia Goérniczo-Hutnicza w Krakowie

http://home.agh.edu.pl/~meszka

1/104

Program wyktadu

1. Przypomnienie podstawowych poje¢. Struktury grafowe i ich
implementacje.

2. Metody oceny efektywnosci czasowej oraz pamieciowe;.

3. Metody oceny poprawnosci obliczeniowej.

4. Algorytmy przeszukiwania grafu w gtab oraz wszerz.

5. Znajdowanie minimalnego drzewa spinajacego w grafie.

6. Znajdowanie $ciezek o minimalnych dtugosciach w grafach
skierowanych.

7. Znajdowanie najkrétszych sciezek pomiedzy wszystkim parami
wierzchotkéw.

2/104

Program wykfadu (cd.)

8. Maksymalne przeptywy w sieciach - metoda Forda- Fulkersona.
9. Inne zagadnienia przeptywowe: sieci z dolnym ograniczeniem

przeptywu, przeptywy o minimalnym koszcie, przeptywy uogdlnione.

10. Znajdowanie maksymalnego skojarzenia w grafach oraz grafach
dwudzielnych.

11. Grafy planarne — testowanie planarnosci oraz znajdowanie
planarnej reprezentacji.

12. Zagadnienia transportowe: droga Eulera, problem chinskiego
listonosza.

13. Zagadnienia transportowe cd.: problem komiwojazera -
algorytmy aproksymacyjne.

14. Kolorowanie wierzchotkowe graféw.

15. Kolorowanie krawedziowe graféw.

3/104

[1] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein,
Woprowadzenie do algorytméw, WNT 2007.

[2] S. Even, Graph Algorithms 2nd Edition, Cambridge University
Press 2011.

[3] W.L. Kocay, D.L. Kreher, Graphs, Algorithms and Optimization
2nd Edition, CRC Press 2017.

4/104

Ztozono$¢ czasowa pesymistyczna algorytmu

T(n) = max{t(d): d € D,}

przy oznaczeniach:

n - rozmiar danych wejsciowych

D), - zbiér danych wejsciowych rozmiaru n

t(d) - czas wykonania obliczen dla zestawu danych wejsciowych d,
wyrazony liczba operacji elementarnych lub dominujacych

A

Ztozonos¢ czasowa Srednia algorytmu

A(n) =Y p(d)t(d)

deD,

gdzie:
p(d) - prawdopodobienstwo z jakim zestaw danych d moze pojawic¢
sie na wejsciu

v

5/104

ZtozonoS¢ pamieciowa algorytmu

S(n) = max{s(d): d € D,}

gdzie:
s(d) - liczba komérek pamieci wykorzystywanych podczas obliczen
dla zestawu danych wejsciowych d

6 /104

Moéwimy, ze algorytm A jest semantycznie poprawny wzgledem
warunku poczatkowego « i warunku koncowego (3, gdy dla kazdego
zestawu danych wejsciowych spetniajacych warunek « dziatanie
algorytmu dochodzi do konca i wynik spetnia warunek (3.

Algorytm A jest czesciowo poprawny wzgledem warunku
poczatkowego o i warunku koncowego 3, gdy dla kazdego zestawu
danych wejsciowych spetniajacych warunek «, jezeli dziatanie
algorytmu dochodzi do konca, to wynik spetnia warunek S.

7/104

Mowimy, ze algorytm A spetnia warunek okreslonosci obliczen, gdy
A zadziata (tzn. nie zostanie przerwany) dla kazdego zestawu
danych wejsciowych spetniajacych warunek a.

Algorytm A ma wtasnos¢ stopu, gdy dla kazdego zestawu danych
wejsciowych spetniajacych «, algorytm dociera do konca (tzn.
obliczenia nie s3 wykonywane w nieskon¢zonos¢).

Twierdzenie

Algorytm A jest semantycznie poprawny wtedy i tylko wtedy, gdy
jest czeSciowo poprawny, spetnia waruneks okreslonosci obliczen
oraz posiada wtasnos¢ stopu.

8/104

Metoda niezmiennikéw

Méwimy, ze warunek g jest niezmiennikiem w okreslonym punkcie p
algorytmu A, gdy dla kazdego zestawu danych wejSciowych
spetniajacych warunek «, jezeli dziatanie algorytmu dochodzi do
punktu p, to obliczenia spetniaja warunek g.

9/104

Implementacje struktur grafowych:

macierz sasiedztwa
macierz incydencji
tablica list sgsiedztwa

10/104

Przeszukiwanie grafu

Wejscie: Graf G = (V, E).
Wyjscie: Etykietowanie wierzchotkéw d.
Las spinajacy F grafu G.

11/104

Przeszukiwanie w gtab
for kazdy wierzchotek v € V do

dlv]:=0
c:=0
F:=0

for kazdy wierzchotek v € V do
if d[v] == 0 then
DFS(v)

d[v] :== ++c¢
for kazdy wierzchotek u € Ng(v) do
if d[u] == 0 do
F:=FU{v,u}
DFS(u)

y

T=0(n+e)

J

12/104

Przeszukiwanie wszerz

for kazdy wierzchotek v € V do

dlv]:=0
c:=0
F:=0
Q:=10
for kazdy wierzchotek v € V do

if d[v] == 0 then

BFS(v))

13/104

d[v] := ++c¢
wstaw(Q, v)
while kolejka @ jest niepusta do
v := pobierz(Q)
for kazdy wierzchotek u € Ng(v) do
if d[u] == 0 do
F:=FU{v,u}
dlu] :== ++c¢
wstaw(Q, u)

T=0(n+e) J

14 /104

Znajdowanie minimalnego drzewa spinajacego

Wejscie: Graf spéjny G = (V, E) oraz funkcja kosztu w : E — R,
Wyjscie: Drzewo spinajace T o minimalnej wadze
Wmin = min{w(T) : T jest drzewem spinajacym grafu G}.

15 /104

Algorytm Kruskala
T:=0
W:=10
for kazdy wierzchotek v € V do
W :=Wu{{v}}
Q := posortuj krawedzie()
while |W| > 1 do
{u, v} := pobierz(Q)
if ui v naleza do réznych zbioréw Ai B w W then
T :=TuU{uv}
W= W\ {A}\ {B}
W:= WU{AUB}

T =0O(eloge)

16 /104

Algorytm Prima

T =0
wybierz korzen r
Q=10

for kazdy wierzchotek v € V' \ {r} do
if v € Ng(r) then

p[v] := w(r,)
alv] := r

else
p[v] := oo
qlv] =0

wstaw v do @
while |Q| > 1 do
v := pobierz(Q)
T := TU{va[v]}
for kazdy wierzchotek u € Ng(v) N Q do
if p[u] > w(v, u) then
plu] := w(v,u)
qu] == v

y

17 /104

T = ©(elog n) gdy kolejka priorytetowa Q jest kopcem binarnym.
T = O(n?) gdy Q jest zaimplementowana w tablicy. J

18/104

Znajdowanie Sciezek o minimalnej dtugosci

Wejscie: Digraf spéjny G = (V, A) wraz z funkcja kosztu
w: A~ R, oraz wyrézniony wierzchotek vg.

Wyjscie: Sciezki o minimalnych dtugosciach z wierzchotka
poczatkowego vp.

d[v] - gérne ograniczenie wagi najkrétszej Sciezki z vy do v J

relaksacja(u, v)

if d[v] > d[u] + w(u, v) do
d[v] := d[u] + w(u, v)
MNlv] :=u

19/104

W algorytmie Dijkstry zaktadamy, ze V(u,v) € A: w(u,v) > 0.

J

Algorytm Dijkstry
Q:=10
for kazdy wierzchotek v € V do
d[v] :== o0
MNlv] :=0
wstaw v do Q
d[Vo] =0
while |Q| > 1 do
u := pobierz(Q)
for kazdy wierzchotek v € Ng(u) N Q do
relaksacja(u, v)

T = ©(elog n) gdy kolejka priorytetowa Q jest kopcem binarnym.
T = O(n?) gdy Q jest zaimplementowana w tablicy.

V.

20 /104

Algorytm Bellmana-Forda
for kazdy wierzchotek v € V do

d[v] := o0
Mlv] :=0
d[Vo] =0

fori:=1ton—1do
for kazdy tuk (u,v) € Ado
relaksacja(u, v)
for kazdy tuk (u,v) € A do
if d[v] > d[u] + w(u, v) then
return cykl o ujemnej wadze

T = O(ne)

21/104

Znajdowanie wszystkich Sciezek o minimalnej dtugosci

Wejscie: Digraf spdjny G = (V, A) wraz z funkcja kosztu
w: A—R.
Wyjscie: Wszystkie Sciezki o minimalnych dtugosciach.

V= {V17V27"'7Vn}
d,-f - dtugos¢ najkrotszej Sciezki z wierzchotka v; do wierzchotka v;
o wierzchotkach wewnetrznych w zbiorze {vi, va, ..., v}

40 — w(v,vj) jesli(vi,vj) € A
Y 00 wpp

22/104

Algorytm Floyda-Warshalla
for kazda para (vj,vj) € V x V do
if (vi,v;) € A then
dg- = w(vj, V)

for Kk :=1to ndo
fori:=1to ndo
for j:=1to ndo

df == min{d ™, di + di T} if

k—1 k—1 k—1

k . qk—1
du = d,-j
else
k . qk—1 k—1
d,-j =dy T+ dkj
SU = k

24/104

Siecig G = (V, A, s, t, c) nazywamy graf skierowany (V, A), w
ktérym dwa wierzchotki s, t (nazywane odpowiednio zZrédfem i
ujsciem) sa wyréznione, a c jest funkcja przepustowosci

C: AHR+

Przeptywem w sieci G nazywamy funkcje
f: A—]R+

spetniajaca warunki:
(1) V(u,v) € A: 0< f(u,v) < c(u,v)
(2) Vv e V\ {s,t}:

Z f(u,v) = Z f(v,u).

ueV: (u,v)EA ueV: (v,u)eA

24 /104

Wartoscig przeptywu f jest liczba
‘f| = Z(s,u)eA f(s’ Ll) = Z(u,t)eA f(uv t)'

Problem maksymalnego przeptywu
Wejscie: Sie¢ G = (V, A,s, t,c)
Wyjscie: Przeptyw fiax :

|fmax| = max{|f]| : f jest przeptywem w G}.

25 /104

Siecig residualng dla sieci G = (V, A, s, t, c) oraz przeptywu f
nazywamy sie¢ Gr = (V,A')s, t, cr), w ktorej
A =AU{(u,v): f(v,u) > 0} oraz:
e (u,v) = c(u,v) —f(u,v) jesli(u,v) e A
f(v,u) wpp

Sciezka powiekszajaca dla przeptywu f jest ciezka od s do t w
sieci residualnej Gf.

Niech p bedzie sciezka powickszajaca dla przeptywu f.
Przepustowos¢ residualna sciezki p wynosi
cr(p) = min{cr(u,v) : (u,v) € p}.

26 /104

Metoda Forda-Fulkersona
for kazdy tuk (u,v) € Ado
f(u,v) =0
Gr =G
while istnieje sciezka powiekszajaca p w Gr do
¢r(p) = min{cr(u,v) : (u,v) € p}
for kazdy tuk (u,v) € p do
f(u,v) = f(u,v)+ cr(p)
cr(u,v) = c(u,v) — f(u,v)
cr(v,u) = f(u,v)

Jesli ¢ jest funkeja catkowitoliczbowa to T = O(elc]).)

27 /104

Algorytm Edmondsa-Karpa

Do znajdowania Sciezek powiekszajacych w metodzie

Forda-Fulkersona wykorzystawane jest przeszukiwanie
wszerz (BFS).

T = 0(né?)

28 /104

Przekrojem w sieci G = (V, A, s, t, c) nazywamy taki podziat
(S, T) zbioru V, w ktérym s € Soraz t € T.

Przepustowos¢ przekroju
c(5,T)= Z(U,V)EASUES,VET c(u, v)
Przeptyw przez przekrdj
f(S,T)= Z(u,v)eA:ueS,veT f(u,v)

29 /104

Twierdzenie o maksymalnym przeptywie i minimalnym przekroju

Niech f bedzie przeptywem w sieci G = (V, A, s, t, ¢).
Nastepujace warunki s réwnowazne.

(1) Przeptyw f w G jest maksymalny

(2) Sie¢ residualna Gf nie zawiera Sciezki powiekszajacej

(3) Istnieje przekrdj (S, T), dla ktérego zachodzi || = ¢(S, T).

30/104

Przedprzeptywem w sieci G nazywamy funkcje
g: A—R,

spetniajaca warunki:

(1) Y(u,v) €A 0< g(u,v) < c(u,v)

(2) Vv e V\ {s, t}:

> ogwv) - Y gvu) =0

ueV: (u,v)EA ueV: (v,u)eA

Nadmiarem w wierzchotku v nazywamy liczbe

ev)= >, sglwv)— > glvu)

ueV: (u,v)EA ueV: (v,u)eA

Wierzchotek v € V' \ {s, t} jest nadmiarowy jesli e(v) > 0.

31/104

Funkcje h: V — N nazywamy funkcja wysokosci jesli
(1) h(s) = | V|

(2) h(t) =0

(3) Y(u,v) € Ag : h(u) < h(v) + 1.

32/104

Operacja przeslij(u, v) moze zosta¢ wykonana, gdy spetnione s3
warunki:

(1) e(u) >0

(2) cg(u,v) >0

(3) h(u) = h(v) +1

dg(u, v) := min{e(u), cg(u, v)}
if (u,v) € A then

g(u,v) = g(u,v)+ dg(u,v)

else

g(u,v):=g(u,v) dg(u7 v)
e(u) :== e(u) — dg(u,v)
e(v) = e(v) + dg(u.v)

33/104

Operacja podnie$(u) moze zosta¢ wykonana, gdy spetnione s3
warunki:

(1) e(u) >0

(2) Y(u,v) € Ag = h(u) < h(v).

podnies(u)

h(u) := 14+ min{h(v) : (u,v) € Az}

34/104

inicjuj przedprzeptyw(G)

for kazdy wierzchotek v € V
h(v) :=0
e(v) =0

for kazdy tuk (u,v) € A
g(u,v):=0

h(s) :=|V|

for kazdy tuk (s,v) € A
g(s,v) :=c(s,v)
e(v) :=c(s,v)
e(s) :==e(s) — c(s,v)

35/104

Algorytm przedprzeptywowy

inicjuj przedprzeptyw(G)
while mozna zastosowa¢ przeslij lub podnies
wybierz jedng z dopuszczalnych i wykonaj

T = O(n%e) J

36 /104

Warianty zagadnienia przeptywowego

1. Sieci z wieloma zrédtami i ujsciami.
2. Sieci z dolng przepustowoscia.

3. Przeptyw rozszerzony.

4. Przeptyw o minimalnym koszcie.

5. Sieci uogdlnione.

37 /104

Sie¢ z wieloma zrédtami i ujSciami

to sie¢ postaci Gst = (V,A,S, T, c), gdzie (V, A) jest grafem
skierowanym, w ktérym S jest zbiorem zrédet, T jest zbiorem ujsé,
a c jest funkcja przepustowosci

C: AHR+

Przeptywem w sieci Gst nazywamy funkcje
f: ARy

spetniajaca warunki:
(1) V(u,v) € A: 0< f(u,v) < c(u,v)
(2)VveV\(SUT):

Z f(u,v) = Z f(v,u).

ueV: (u,v)EA ueV: (v,u)eA

v

38/104

Wartoscig przeptywu f jest
Ifl = Z(u,v)GA, ues f(u,v) = Z(u,v)GA, veT f(u, v).

Problem maksymalnego przeptywu w Gsr

Wejscie: Sie¢ Gst = (V,A,S, T, ¢).
Wyjscie: Przeptyw frax :
|fmax| = max{|f| : f jest przeptywem w Gs1}.

Sieciag pomocnicza dla Gst = (V, A, S, T, c) jest siec

G' = (V' A, s t'), wktérej:

Vi=Vui{d, t}

A= AU{(s,s) : dla kazdego s € S} U {(t,t) : dla kazdego
teT}

C/(u7 V) :{ ;(EU, V) 'f;:l;)(u’ V) c A

39/104

Sie¢ z dolna przepustowoscia

to sie¢ postaci G, = (V, A, s, t, b, c), gdzie (V, A) jest grafem
skierowanym, s jest zrédtem, t ujsciem, a b i ¢ s3 odpowiednio
funkcjami dolnej i gérnej przepustowosci

b,c: A—R,.

Przeptywem (dopuszczalnym) w sieci Gp, nazywamy funkcje
f: A— R+

spetniajaca warunki:
(1) Y(u,v) € A: b(u,v) < f(u,v) < c(u,v)
(2) Vv e V\ {s,t}:

Z f(u,v) = Z f(v,u).

ueV: (u,v)EA ueV: (v,u)eA

v

40 /104

Problem maksymalnego przeptywu w G,
Wejscie: Sie¢ Gp = (V, A, s, t, b, c).

Wyjscie: Przeptyw fpax :
|fmax| = max{|f| : f jest przeptywem w Gp}, lub NULL jesli f nie

istnieje.

Warunki konieczne na istnienie przeptywu dopuszczalnego

Vv e V\ {s,t}: Zb(u,v)< Zc(v,u)

ueV ueV
Vv e V\{s, t}: Z b(v,u) < Z c(u,v)
ueV ueV

41/104

Siecig pomocnicza dla sieci Gy, jest sie¢ G' = (V' A", s/, t/, '), w

ktorej:

Vi=Vvu{s, t'}

A =AU{(s,v) : dla kazdego v € V' \ s}
U{(v,t") : dla kazdego v € V' \ t} U (t,s)

Swev b(w,v) jesliu=5s

Ywev blu,w) jesliv =1t

c(u,v) — b(u,v) jesli (u,v) €A

00 dla (t,s)

c(u,v) =

Twierdzenie

Sie¢ Gp, posiada przeptyw dopuszczalny wtedy i tylko wtedy, gdy
maksymalny przeptyw w sieci pomocniczej G’ jest réwny

'l = Xvev (s, v) = Evev (v, t).

42 /104

Maksymalny przeptyw w Gp,
if znajdz przeptyw dopuszczalny()==0 then
return NULL
for kazdy tuk (u,v) € A do
f(u,v):=f'(u,v)+ b(u,v)
cr(u,v) = c(u,v) — f(u,v)
cr(v,u) = f(u,v) — b(u, v)
while istnieje sciezka powiekszajaca p w Gr do
cr(p) := min{cr(u,v) : (u,v) € p}
for kazdy tuk (u,v) € p do
f(u,v):= f(u,v)+ cr(p)
cr(u,v) :=c(u,v) — f(u,v)
cr(v,u) :== f(u,v) — b(u, v)

43 /104

Przeptywem (rozszerzonym) w sieci Gp nazywamy funkcje
f: A— R+

spetniajaca warunki:
(1) Y(u,v) € A: b(u,v) < f(u,v) < c(u,v) lub f(u,v) =0
(2) Vv e V\ {s, t}:

Z f(u,v) = Z f(v,u).

ueV: (u,v)EA ueV: (v,u)eA

Problem maksymalnego przeptywu rozszerzonego w Gp,

Wejscie: Sie¢ Gp = (V, A, s, t, b,).

Wyjscie: Przeptyw fax :

|fmax| = max{|f| : f jest przeptywem rozszerzonym w Gp}, lub
NULL jesli f nie istnieje.

44 /104

Kosztem w sieci G = (V, A, s, t, c) nazywamy funkcje k : A +—]RJF.J

Niech f bedzie przeptywem w sieci G. Kosztem przeptywu f jest
wartosé

kf = Z f(u,v)k(u,v).

(u,v)EA

Problem przeptywu o minimalnym koszcie w G

Wejscie: Sie¢ G = (V, A, s, t, c) wraz z funkcja kosztu k, oraz
decRy.

Wyjscie: Przeptyw fojnk : kg, = min{kf : f jest przeptywem w G
i |f] =d}.

45 /104

Twierdzenie

Przeptyw f w G jest przeptywem o minimalnym koszcie wtedy i
tylko wtedy, gdy w sieci residualnej Gr nie istnieje cykl o ujemnym
koszcie.

Przeptyw o minimalnym koszcie w G

f := znajdz_ przeptyw(d)

Gy := siec residualna dla f w G

while istnieje w Gf cykl C o koszcie ujemnym do
modyfikuj f wzdtuz cyklu C
modyfikuj G

-

46 /104

Sie¢ uogdlniona

to sie¢ postaci G; = (V,A,s, t, c,v), gdzie (V, A) jest grafem
skierowanym, s jest zrédtem, t ujsciem, c¢ funkcja przepustowosci,
natomiast 7 jest funkcja zysku (straty)

v: A—RT.

Przeptywem uogédlnionym w sieci Gz nazywamy funkcje
f: A R, spetniajaca warunki:

(1) V(u,v) € A: 0< f(u,v) < c(u,v)

(2) Vv e V\ {s, t}:

Z f(v,u) = Z f(u,v)y(u,v).

ueV: (v,u)eA ueV: (u,v)EA

Wartoscig przeptywu f jest liczba
1] = > (u,t)ea f(u; t)¥(u; t).

v

47 /104

Problem przeptywu maksymalnego w sieci G,

Wejscie: Sie¢ Gz = (V, A,s,t,c,7).
Wyjscie: Przeptyw fax :
|fmax| = max{|f| : f jest przeptywem w G, }.

Cykl C nazywamy cyklem generujacym przeptyw jesli

Y(C) = uv)ec v(u, v) > 1. Jesli 7(C) < 1 to wéwczas méwimy
o cyklu absorbujacym przeptyw. Gdy v(C) = 1 to cykl jest
Jednostkowy.

Uogdlniong sciezka powiekszajaca (GAP) nazywamy cykl C
generujacy przeptyw, wraz z dotaczona (dopuszczalnie pusta)
Sciezka P od jednego z wierzchotkéw cyklu C do ujscia t w sieci
residualnej Gr.

48 /104

Twierdzenie
Przeptyw f jest przeptywem maksymalnym w Gz wtedy i tylko

wtedy, gdy w sieci residualnej G nie istnieje uogdlniona Sciezka
powiekszajaca.

Przeptyw maksymalny w G,

f=0

Gr := Gg

while istnieje w Gf uogdlniona Sciezka powiekszajagca CP do
modyfikuj f wzdtuz CP
modyfikuj G

| A\

N

49 /104

Problem minimalnego przekroju w grafie

Wejscie: Graf G = (V, E) oraz funkcja wagowa w : E — R,
Wyijscie: Przekrdj (X, Y):
w(X,Y) =min{w(X’, Y'"): (X', Y’) jest przekrojem w G}.

W(Xa Y) = Z{x,y}GE:XEX,yEY W({X7.y})

Niech A C V. Jesli v & A to w(A,v) =31, vyee aca w({a, v}).
Wierzchotek z ¢ A nazywamy najsilniej potaczonym z A jesli
w(A, z) = max{w(A,v): v & A}.

50 /104

redukuj(G,v)

A:={w}
while A # V do
dotacz do A wierzchotek najsilniej potaczony
(X, Y) = (t, V\{t})
ztacz w G dwa ostatnio dotgczone do A wierzchotki s i ¢
return (X, Y)

N

Algorytm Stoera-Wagnera
Wmin ‘= W(V07 v \ {VO})
while |V| > 1 do
(X, Y)=redukuj(G,v)
if w(X,Y) < wpnin, then
(X, Y)min == (X, Y)
Whin = w(X,Y)
return (X, Y)min, Wmin

v

51/104

T = ©(ne + n®log n).

M~

Niech s i t beda dwoma wierzchotakmi w grafie G = (V/, E). Niech
G/{s, t} oznacza graf otrzymany z G poprzez ztaczenie
wierzchotkéw s i t. Wéwczas minimalnym przekrojem w G jest albo
przekrdj (S, T) albo minimalny przekréj w grafie G/{s, t}.

Przekroj zwracany przez funkcje redukuj() jest minimalnym
(S, T)-przekrojem zadanego na wejsciu grafu G, gdzie s i t sa
ostatnimi dotgczonymi wierzchotkami.

.

52 /104

Skojarzeniem w grafie G = (V, E) nazywamy podzbiér M C E
wierzchotkowo roztacznych krawedzi.

Licznoscia skojarzenia M jest liczba |M|.

Méwimy, ze M jest najliczniejszym skojarzeniem w G jesli
M| = max{|M'| : M’ jest skojarzeniem w G}. Wéwczas liczbe
u(G) = |M| nazywamy liczba skojarzeniowa grafu G.

Problem najliczniejszego skojarzenia w grafie

Wejscie: Graf G = (V, E).
Wyjscie: Najliczniejsze skojarzenie M w G.

53 /104

Skojarzenie M w grafie G = (V/, E) nazywamy pefnym jesli
(M| = |V]/2.

e

Twierdzenie Tutte'a

Graf G posiada petne skojarzenie wtedy i tylko wtedy, gdy |S| > ¢
dla kazdego podzbioru S C V/, gdzie ¢ oznacza liczbe spéjnych
sktadowych o nieparzystym rzedzie w grafie G[V \ S].

Twierdzenie Halla'a

Graf dwudzielny G(X, Y; E) zawiera skojarzenie rozmiaru | X|
wtedy i tylko wtedy, gdy dla kazdego podzbioru S C X zachodzi
S| < [N(S)I.

.

54 /104

Sieciag pomocnicza dla grafu dwudzielnego G = (X, Y; E) jest sie¢
G=(V,A s, t,c) w ktérej:

V=XUYU/{s,t}

A ={(x,y) : dla kazdego {x,y} € E} U{(s, x) : dla kazdego

x € X}U{(y,t): dla kazdego Y € Y}

c(u,v) =1 dla kazdego tuku (u,v) € A.

Twierdzenie

Graf dwudzielny G = (X, Y; E) zawiera skojarzenie o licznosci | M|
jezeli istnieje przeptyw f o wartosci |f| = |[M| w sieci pomocniczej
G=(V,A s tc).

55 /104

Sciezka P =< vg, v1,..., vk > 0 nieparzystej dtugosci k jest
Sciezka powiekszajacg wzgledem skojarzenia M w grafie G jesli
VIi:1<I1< % : {wai_1, vo1} € M, a wierzchotki vy oraz vy sa
wolne (czyli nie s3 incydentne z zadng krawedzig skojarzenia M).

Twierdzenie Berge'a

M jest najliczniejszym skojarzeniem w grafie G wtedy i tylko wtedy,
gdy G nie zawiera Sciezki powiekszajacej wzgledem M.

v

56 /104

Kielich to cykl o nieparzystej dtugosci 2k + 1, w ktérym k krawedzi
nalezy do skojarzenia M.

Podstawa kielicha jest albo wierzchotek wolny, albo skojarzony z
krawedzig z M nie nalezaca do kielicha.

Zwinieciem kielicha B do podstawy y nazywamy taka transformacje
grafu G = (V,E) do grafu G’ = (V', E'), ze

V' = V\ (V(B)\ {y}), oraz

E'=E\{{u,v}: ue V(B)Ilubve V(B)}U

{{y,v}: {u,v} € E,ue V(B), v ¢ V(B)}.
Operacje odwrotng nazywamy rozwinieciem kielicha B.

57 /104

Niech S oznacza zbiér wierzchotkéw wolnych wzgledem skojarzenia
M. Lasem naprzemiennym nazywamy las F, w ktérym:

- kazdy wierzchotek ze zbioru S jest korzeniem w F

- kazda krawedz o nieparzystej odlegtosci od korzenia nalezy do M.
Kazdy wierzchotek w F majacy nieparzysta odlegtos¢ od korzenia
ma stopien 2 i nazywany jest wierzchotkiem wewnetrznym.
Pozostate wierzchotki s3 zewnetrzne.

58 /104

Algorytm Edmondsa

M=10
F = V(G)
while (1) do

if istnieje zewnetrzny wierzchotek x € F sasiedni z y & F then
znajdz wierzchotek z: {y,z} € M
Fu{xy}uly,z}
else
if istnieja zewnetrzne wierzchotki x1,x € F : {x1,x2} € E then
if x1 oraz x; naleza do ré6znych sktadowych w F then
p1 := Sciezka od root(x1) do x3 w F
p2 := Sciezka od root(xz) do x2 w F
modyfikuj M wzdtuz Sciezki powiekszajacej p1 U {x1, x2} U p2
F := zbiér wierzchotkéw wolnych wzgledem M
else
B := kielich zamkniety przez {xi,x2} o podstawie y
zwin B do y
modyfikuj M wzgledem B
else
break
for kazdy zwiniety kielich B do
rozwin B
modyfikuj M wzgledem B

y

59 /104

T = O(n?e) J

60 /104

Warianty zagadnienia

1. Petne skojarzenie o minimalnej wadze.
2. Petne skojarzenie o maksymalnej wadze.
3. Skojarzenie o maksymalnej wadze.

Problem petnego skojarzenia o minimalnej wadze

Wejscie: Graf dwudzielny petny zréwnowazony G(X, Y; E) oraz
funkcja kosztu w : E — RT.

Wyjscie: Petne skojarzenie M o minimalnej wadze
Wpmin = min{w(M) : M jest skojarzeniem petnym w G}.

61/104

Etykietowanie / : X U Y +— Z nazywamy dopuszczalnym jesli
I(x)+ I(y) < w(x,y) dla kazdych x € X, y € Y.

Dla dopuszczalnego etykietowania /, pograf Gy = (X, Y; E|) grafu
G, w ktérym E; = {xy : I(x)+ I(y) = w(x,y)} nazywamy grafem
nasycenia.

Twierdzenie

Niech / bedzie dopuszczalnym etykietowaniem grafu G.

Jesli M jest petnym skojarzeniem w G;, wéwczas M jest petnym
skojarzeniem o minimalnej wadze w G.

Moéwimy, ze wierzchotek z jest osiggalny z x jesli istnieje
naprzemienna S$ciezka x — z w G.

62 /104

skoryguj _etykietowanie

x := wierzchotek wolny wzgledem M w X
S := wierzchotki w X osiggalne z x
T := wierzchotki w Y osiggalne z x
o = minyes yey r{w(x,y) — 1(x) — (1)}
for kazdy wierzchotek x € S

I(x) = I(x)+«
for kazdy wierzchotek y € T

I(y) = Ily) —a

63 /104

Algorytm Kuhna-Munkresa
M=
for kazdy wierzchotek x € X
I(x) = minyey {w(x, y)}
for kazdy wierzchotek y € Y
I(y) =0
wyznacz Gy
while M nie jest skojarzeniem petnym w G
if istnieje Sciezka powickszajaca P wzgledem M w G; then
modyfikuj M wzdtuz sciezki P
else
skoryguj _etykietowanie
modyfikuj G;

T =0(n%)

64 /104

Problem skojarzenia o maksymalnej wadze

Wejscie: Graf dwudzielny G(X, Y; E) oraz funkcja kosztu
w: E— RT.

Wyjscie: Skojarzenie M o maksymalnej wadze
Wmax = max{w(M) : M jest skojarzeniem w G}.

Niech G'(X’, Y’; E') bedzie takim nadgrafem G(X,Y; E), ktéry
jest grafem dwudzielnym petnym zréwnowazonym. Niech

w': E' — R bedzie funkcja kosztu o wtasnosciach:

w'(e) = w(e) jesli e € E oraz

w'(e)=0jeslieg E

65 /104

Przez pfaska reprezentacje grafu G = (V, E) rozumiemy takie
rozmieszczenie wierzchotkéw zbioru V na ptaszczyznie, ze jedyny
punkt przeciecia dowolnych dwéch krawedzi to ewentualnie ich
wspdlny koniec.

A

Graf G = (V, E) nazywamy planarnym jesli posiada ptaska
reprezentacje.

.

Testowanie planarnosci grafu

Wejscie: Graf G = (V, E).
Wyjscie: Graf jest/nie jest planarny.

\,

Znajdowanie ptaskiej reprezentacji
Wejscie: Graf G = (V, E).
Woyjscie: Ptaska reprezentacja grafu G - jesli istnieje.

.

66 /104

Rozdzieleniem krawedzi {u, v} w grafie G = (V, E) nazywamy
dodanie nowego wierzchotka w oraz zastgpienie tej krawedzi przez
dwie krawedzie {u,w} i {w, v}.

Rozdzieleniem grafu G nazywamy graf G’ powstaty z G poprzez
wykonanie kolejnych rozdzieler krawedzi.

Twierdzenie Kuratowskiego

Graf G jest planarny wtedy i tylko wtedy, gdy nie zawiera podgrafu
bedacego rozdzieleniem grafu Ks lub K3 3.

67 /104

Zwinigciem krawedzi {u, v} w grafie G = (V/, E) nazywamy
operacje ztaczenienia wierzchotkéw u oraz v wraz z usunieciem
powstate]j petli oraz zastapienia potencjalnych réwnolegtych
krawedzi przez pojedynczg krawedz.

Minorem grafu G nazywamy graf G’ powstaty z G poprzez
wykonanie kolejnych operacji usuwania wierzchotkéw, usuwania
krawedzi oraz/lub zwijania krawedzi.

Twierdzenie Wagnera

Graf G jest planarny wtedy i tylko wtedy, gdy nie posiada minoréw
bedacych Ks lub K3 3.

68 /104

Dla danego grafu G = (V/, E) oraz jego podgrafu G’ = (V' E'),
poprzez fragment rozumiemy kazdy podgraf grafu G, ktéry jest
albo:

(1) taka pojedyncza krawedzia {u, v}, ze {u,v} & E" ale u,v € V/,
albo

(2) podgrafem indukowanym przez spéjng sktadowa C w G\ G/,
wraz ze wszystkimi krawedziami {u, v} postaci u € V(C), v € V.
Wierzchotkami zewnetrznymi fragmentu nazywamy wierzchotki
nalezace do V'.

a-Sciezka to dowolna sciezka zawarta we fragmencie, ktérej
wierzchotki konicowe sa wierzchotkami zewnetrznymi.

69 /104

Algorytm Demoucron, Malgrange, Pertuiset

G’ := dowolny cykl w G
while (1) do

wyznacz wszystkie sciany w G’

wyznacz zbiér P wszystkich fragmentéw w G ze wzgledu na G’

if P == () then
G jest planarny
G’ jest ptaska reprezentacja grafu G
return

for kazdy fragment p € P do
wyznacz F(p)

if istnieje fragment p: f(p) == 0 then
G nie jest planarny
return

if istnieje fragment p: f(p) == 1 then
r:=p

else
r := dowolny inny fragment

wyznacz dowolng a-Sciezke w r

umie$¢ o w Scianie f € F(r)

G' =G Ua

y

70 /104

T = 0(n?) J

71/104

Niech G bedzie grafem 2-spéjnym, w ktérym e < 3n — 6.

Algorytm Hopcrofta-Tarjana

for kazdy wierzchotek v w G do
dlv] :=0
w[v] =0

for kazdy krawedz {v,u} w G do
wykorzystana[{v, u}] := 0

lv:=0

DFS _etykietowanie(vp)

konwertuj(G,G*)

sortuj_listy sasiadéw()

DFS _testowanie(vp)

T = O(n)

72 /104

Oznaczenia

d[v] - etykieta wierzchotka v w porzadku DFS

P(v) oznacza zbiér potomkéw wierzchotka v w drzewie DFS, wraz
zv

S(v) ={d[u] : {w,u} € E oraz d[w] > d[u] dla pewnego

w e P(v)}

L1(v) = min{{d[v]} U S(v)}

L2(v) = min{{d[v]} U (S(v) \ {LL()})}

73 /104

DFS _etykietowanie(v)

lv++

dv] :=Iv
L1[v] :=Iv
L2[v] :=Iv

for kazdy sasiad u wierzchotka v w G do
if wykorzystana[{v, u}] == 0 then
if d[u] == 0 then
mlu] == v
DFS _etykietowanie(u)
else
if d[u] < L1[v] then
L2[v] := L1|[v]
L1[v] := d[u]
else
if d[u] > L1[v] then
L2[v] := min{d[u], L2[v]}
wykorzystana[{v, u}] := 1

74 /104

DFS _etykietowanie(v) (cd.)

if d[v] > 1 then
if L1[v] < L1[x[v]] then
L2[x[v]] := min{L2[v], L1[=[v]]}
| L1[r[v]] := L1[v]
if L1[v] == L1[x[v]] then
| L2[x[v]] := min{L2[v], L2[x[v]]}
L2[n[v]] := min{L1[v], L2[x[v]]}

75 /104

Graf (V/, E) zastapiony zostanie grafem zorientowanym
G* = (V,A):

Niech {v,u} € E: d[v] < d[u].

(v,u) € A jesli {v, u} jest krawedzig drzewa DFS,

w przeciwnym przypadku (u,v) € A.

Etykietowanie tukéw

w(v,u) =
2d[u] jesli (v, u) jest tukiem zwrotnym
2L1(u) jesli (v, u) jest tukiem drzewa oraz L2(u) > d[v]

2L1(u) + 1 jesli (v, u) jest tukiem drzewa oraz L2(u) < d[v]

76 /104

DFS _ testowanie(v)

for kazdy tuk (v,u) € A do
if d[v] < d[u] then
w = L1[u]
if Sciezka v — w nie koliduje z L; then
umies¢ v — w w L;
else
if sciezka v — w nie koliduje z L, then
umies¢ v — w w Lo
else
m=zamien _strony(v — w)
if m==0 then
return "nie jest planarny"
if m==1 then
umies¢ v — w w L;
else
umie$¢ v — w w L,
DFS _ testowanie(u)

else

77 /104

DFS _testowanie(v) (cd.)

if sciezka v — u nie koliduje z L; then
umie$¢ v — u w L;
else
if Sciezka v — u nie koliduje z L, then
umies¢ v — uw Lo
else
m=zamien _strony(v — u)
if m==0 then
return "nie jest planarny"
if m==1 then
umies¢ v — u w L;
else

umiesé¢ v — uw Lo

78 /104

zamien _strony(u — v)

while (1) do
B := pobierz_blok ze stosu()
B’ := pobierz_blok ze stosu()
if czotowa cieciwa z L, znajduje sie w B, then
if czotowa cieciwa z L; znajduje sie w B; then
return 0
if czotowa cieciwa z L; znajduje sie w B/ then
zamien cieciwy pomiedzy B; i B,
pot6z_na_stos(ztacz B z B')
znajdz nowe czotowe cieciwy w L; oraz L,
if u — v nie koliduje z L, then
return -1
else
potéz na_stos(ztacz B z B')

else

79 /104

zamien _strony(u — v) (cd.)

if czofowa cieciwa z L, znajduje siec w B, then
zamien cieciwy pomiedzy B; i B,
pot6z_na_stos(ztacz B z B')
znajdz nowe czotowe cieciwy w L; oraz L,
if v — v nie koliduje z L; then
return 1
else

pot6z_na_stos(zfacz B z B')

80 /104

Droga Eulera (zamknigta) w spéjnym multigrafie G = (V, E)
nazywamy droge zamknietg zawierajaca kazda krawedz ze zbioru E.J

Twierdzenie

Multigraf spéjny G = (V, E) posiada zamknieta droge Eulera wtedy
i tylko wtedy, gdy stopien kazdego wierzchotka w G jest parzysty.

81/104

droga Eulera(G)
D:=1
V=W
for kazda krawedz {v,u} w G do
odwiedzona[{v, u}] := 0
do
if istnieje nieodwiedzona krawedz {v, u} incydentna do v then
potéz na_stos({v, u})
odwiedzona[{v, u}] ;=1
else
{v,u} := zdejmij ze stosu()
D:=DU{v,u}
vVi=u
while stos niepusty()
return D

T =09(e)

J

82 /104

Otwarta droga Eulera w spéjnym multigrafie G = (V, E)
nazywamy droge otwartg zawierajaca kazda krawedz ze zbioru E.

Twierdzenie

Multigraf spéjny G = (V, E) posiada otwarta droge Eulera wtedy
i tylko wtedy, gdy doktadnie dwa wierzchotki w G maja stopnie
nieparzyste.

.

83 /104

Problem chinskiego listonosza

Wejscie: Graf spéjny G = (V, E) oraz funkcja kosztu w : E — R,
Wyjscie: Zamkniety spacer D o minimalnej wadze w(D)
zawierajacy kazda krawedz z E.

84/104

spacer_chiniskiego listonosza(G)

W := zbiér wierzchotkéw nieparzystego stopnia w G
utwérz graf petny K, = (W, F) indukowany przez W
for kazda krawedz {v, u} w K,, do
w({v, u}) := dtugosé najkrétszej sciezki p z v do u w G
P({v, u}) := zbiér krawedzi nalezacych do sciezki p
M := skojarzenie petne o minimalnym koszcie w K,
G =G
for kazda krawedz {v,u} € M do
E(G") := E(G")UP({v,u})
D := droga_Eulera(G)
return D

85 /104

Cykl zawierajacy kazdy wierzchotek grafu G = (V, E) nazywamy
cyklem Hamiltona.
Graf G posiadajacy cykl Hamiltona jest grafem hamiltonowskim.

Sciezke zawierajaca kazdy wierzchotek grafu G = (V, E) nazywamy
sciezka Hamiltona.
Graf G posiadajacy sciezke Hamiltona jest trasowalny.

Problem cyklu Hamiltona
Wejscie: Graf G = (V, E).
Wyjscie: Czy G jest hamiltonowski?

\,

Problem komiwojazera (TSP)

Wejscie: Graf petny K, = (V, E) oraz funkcja kosztu w : E — R,
Wyjscie: Cykl Hamiltona o minimalnej wadze.

86 /104

Dany jest problem optymalizacyjny (minimalizacyjny) I1.
Dp - zbiér instancji problemu [l
Sn(/) - zbidr rozwiazah dopuszczalnych dla | € Dp
mp(/, o) - koszt rozwigzania o € Sp(/)
o* € Sn(l) - rozwiagzanie optymalne dla problemu I:
mn(l,0*) < mp(/,0) dla kazdego o € Sn(/)
A - strategia aproksymacyjna dla 1
A(l) := mnp(l, o)
- koszt rozwigzania o znalezionego przez algorytm A dla / € D
OPT(I) := mp(/,0*) - koszt rozwigzania optymalnego dla / € D

Ra(l) := %lel) - wspétczynnik efektywnosci dla | € Dn

Bezwzgledny wspétczynnik efektywnosci strategii A

Ra = sup{Ra(l): | € Dn}

87 /104

Metryczny problem komiwojazera (A-TSP)

Wejscie: Graf petny K, = (V, E) oraz funkcja kosztu w : E — RT
spetniajaca nieréwnos¢ tréjkata.

Wyjscie: Cykl Hamiltona o minimalnej wadze.

88 /104

algorytm _ drzewowy(K,)
C:=0
T := minimalne drzewo spinajace w K,
G := podwojone drzewo T
D := droga_Eulera(G)
for kazdy wierzchotek v € D do
if v nie wystepuje na wczesniejszej pozycji w D then
C:=CuU{v}
return C

Rp=2

89 /104

algorytm_ Christofidesa(K},)
C:=0
T := minimalne drzewo spinajace w K,
W := zbiér wierzchotkéw nieparzystego stopnia w T
utwérz graf petny K, indukowany przez W w K,
M := skojarzenie petne o minimalnym koszcie w K,
G:=T
dotacz krawedzie z M do G
D := droga_Eulera(G)
for kazdy wierzchotek v € D do
if v nie wystepuje na wczesniejszej pozycji w D then
C:=CU{v}
return C

Ra =

N|Ww

90 /104

Zbiorem niezaleznym w grafie G = (V, E) nazywamy taki podzbidr
| C V, ze zadne dwa wierzchotki w / nie s3 sasiednie.

.

Moéwimy, ze zbiér niezalezny | w grafie G jest najliczniejszy, jesli
nie istnieje inny zbiér niezalezny w G o rzedzie wiekszym niz |/|.
Woéwcezas a(G) = |I| nazywamy liczba niezaleznosci grafu G.

.

Klika w grafie G = (V, E) nazywamy taki podzbiér Q C V, ze
kazde dwa wierzchotki w @ sa sasiednie.

Moéwimy, ze klika Q w grafie G jest najliczniejsza, jesli nie istnieje
klika w G rzedu wiekszego niz |Q|.
Woéwczas w(G) = |Q| nazywamy liczba klikowa grafu G.

\,

91/104

Kolorowaniem (wierzchotkowym) grafu G = (V/, E) nazywamy
odwzorowanie ¢ : V — C, gdzie C oznacza zbiér koloréw.
Jesli dla kazdych dwéch sasiednich wierzchotkéw v, u zachodzi
c(v) # c(u), to kolorowanie nazywamy wfasciwym.

Jesli |C| = k to méwimy o k-kolorowaniu.

Minimalna liczbe k, dla ktérej istnieje k-kolorowanie wiasciwe
wierzchotkéw grafu G nazywamy liczba chromatyczna grafu G i
oznaczamy x(G).

Zbiér wierzchotkéw pokolorowanych tym samym kolorem nazywamy
klasa kolorowa.
Kazda klasa kolorowa jest zbiorem niezaleznym.

92 /104

Kolorowanie wierzchotkowe grafu

Wejscie: Graf G = (V, E) oraz stata k € N.
Wyjscie: G jest/nie jest wierzchotkowo k-kolorowalny.

.

Wyznaczenie liczby chromatycznej
Wejscie: Graf G = (V, E)
Wyjscie: x(G)

.

93 /104

Dla kazdego grafu G zachodzi 1 < x(G) < n.

Niech G bedzie grafem, w ktérym A(G) > 1. Wéwcezas x(G) = 2
wtedy i tylko wtedym gdy G jest grafem dwudzielnym.

W kazdym grafie G zachodza zaleznosci:

x(G) > w(6)

X(G) > r$1

X(G) < A(G) +1

y

94 /104

Niech G,, oznacza graf otrzymany z G poprzez zwinigcie
wierzchotkéw x i y. J

Twierdzenie

Dla kazdego grafu G = (V, E) oraz {x,y} & E zachodzi:
x(G) = min{x(G U {x,y}),x(Gx)}

95 /104

Twierdzenie Brooks'a

Dla kazdego grafu G zachodzi

(G) = A(G)+1 gdy G=K,lub G = Copt1
< A(G) wpp

Twierdzenie

Jesli G jest grafem planarnym, to x(G) < 4.

Twierdzenie

Jesli G jest grafem planarnym nie zawierajacym tréjkatéw, to
x(G) < 3.

96 /104

Kolorowanie wierzchotkowe jest problemem wielomianowym dla
wielu klas graféw, m.in.:

- podkubicznych

- planarnych bez tréjkatéw

- doskonatych (w tym przekatniowych oraz przedziatowych)

97 /104

Graf G = (V, E) jest r-cyrkularnie kolorowalny jesli istnieje
takie odwzorowanie ¢’ : V — [0, r), ze
V{x,y} e E: 1<|c(x)—c(y)|<r-1

Cyrkularna liczba chromatyczna grafu G, oznaczona x.(G), wynosi
Xc(G) = inf{r : G jest r-cyrkularnie kolorowalny}.

Twierdzenie
Dla kazdego grafu G zachodzi x(G) — 1 < x(G) < x(G).

98 /104

Krawedziowym k-kolorowaniem (wtasciwym) grafu G = (V/, E)
nazywamy takie odwzorowanie ¢ : E — C, gdzie C oznacza zbidr
koloréw oraz |C| = k, ze dla kazdych dwéch incydentnych krawedzi
e1, & zachodzi c(e1) # c(e).

Minimalna liczbe k, dla ktérej istnieje k-kolorowanie krawedzi grafu
G nazywamy indeksem chromatycznym grafu G i oznaczamy x/(G)

v

Zbior krawedzi pokolorowanych tym samym kolorem nazywamy
klasa kolorows.
Kazda klasa kolorowa jest skojarzeniem.

99 /104

Krawedziowe kolorowanie grafu

Wejscie: Graf G = (V, E) oraz stata k € N.
Wyjscie: G jest/nie jest k-kolorowalny krawedziowo.

.

Woyznaczenie indeksu chromatycznego
Wejscie: Graf G = (V, E)
Wyjscie: x'(G)

.

100 / 104

Dla kazdego grafu G spetniona jest zaleznos¢ x/(G) < 2A(G) — 1.

Twierdzenie
Jesli G jest grafem dwudzielnym, to x'(G) = A(G).

Twierdzenie
W dowolnym grafie G zachodzi x'(G) < [3A(G)].

Twierdzenie
Dla kazdego grafu G zachodzi A(G) < X/(G) < A(G) + 1.

101/ 104

Wachlarzem o $rodku w wierzchotku v nazywamy ciag
wierzchotkéw < vy, up, ..., ux >, spetniajacy wiasnosci:

(1) {u1, ug, ..., ux} jest niepustym zbiorem parami réznych
sasiadéw wierzchotka v,

(2) krawedz {v, u1 } jest niepokolorowana, natomiast kazda z
krawedzi {v, u;} jest pokolorowana, 2 < i < k,

(3) kolor krawedzi {v, u;} jest brakujacym kolorem w palecie
wierzchotka u;_q, dla kazdego 2 < i < k.

Wachlarz, ktéry nie moze zosta¢ powiekszony poprzez dodanie
kolejnej krawedzi incydentnej do v nazywamy maksymalnym.

102 /104

znajdz_wachlarz_maksymalny(v, u;)

a := brakujacy kolor w palecie wierzchotka 1
=2
while istnieje krawedz {v, u} pokolorowana kolorem a oraz
u nie nalezy do wachlarza do
umies¢ u; := u w wachlarzu
a := brakujacy kolor w palecie wierzchotka u;
i++

odwré¢ wachlarz(< uy, up, ..., ug >\)

fori:=1to k—1do

kolor[{v, u;}] := kolor[{v, ujt1}]
usuni kolor krawedzi {v, uy}

103 /104

Algorytm Misra-Gries

while istnieje niepokolorowana krawedz {v,u} w G do

if istnieje kolor a brakujacy w paletach v i u then
kolor[{v,u}] := a

else
znajdz_wachlarz_maksymalny(v, u)
wyznacz wierzchotek brzegowy w wachlarza
zamien kolory a < b wzdtuz Sciezki od v do w
odwr6¢_wachlarz(< ug, u, ..., w >)
kolor[{v,w}] :== b

T = O(ne)

104 /104

