
PODSTAWY PROGRAMOWANIA

dr hab. Mariusz Meszka

Akademia Górniczo-Hutnicza w Krakowie
http://home.agh.edu.pl/∼meszka

1 / 35

Program wykładu
1. Podstawowe pojęcia i definicje. Metody zapisu algorytmów.
2. Język programowania C: wprowadzenie, typy i rozmiary danych,
operatory i wyrażenia.
3. Język programowania C: składnia języka – instrukcje, struktura
programu.
4. Język programowania C: funkcje, preprocesor, klasy pamięci.
5. Język programowania C: operacje na wskaźnikach i adresach,
tablice dynamiczne.
6. Język programowania C: wejście i wyjście, pliki.
7. Język programowania C: podstawowe biblioteki i narzędzia,
przetwarzanie kodu źródłowego w różnych systemach operacyjnych.

2 / 35

Program wykładu (cd.)
8. Maszynowa reprezentacja informacji (systemy zapisu liczb i
arytmetyka).
9. Elementy teorii złożoności algorytmów: notacja, złożoność
pesymistyczna i średnia, klasyfikacja problemów.
10. Rekurencja i iteracja – porównanie metod.
11. Wybrane algorytmy sortowania: proste wstawianie, proste
wybieranie, bąbelkowe, szybkie, scalanie, stogowe.
12. Sortowanie w czasie linowym: przez zliczanie i kubełkowe.
Wyszukiwanie mediany.
13. Złożone struktury danych: stosy, kolejki, listy pojedynczo
wiązane.
14. Listy podwójnie i wielokrotnie wiązane.
15. Drzewa – implementacje, porządki w drzewach. Drzewa
przeszukiwań binarnych.

3 / 35

Literatura
[1] B. Kernighan, D.M. Ritchie, Język ANSI C. Programowanie.
Wydanie II , Helion 2020.
[2] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein,
Wprowadzenie do algorytmów, PWN 2012.
[3] N. Wirth, Algorytmy + struktury danych = programy, WNT
2002.

4 / 35

Podstawowe obiekty danych
(1) stałe
(2) zmienne

Rodzaje stałych
(1) liczbowe
(2) znakowe
(3) tekstowe

5 / 35

Typy danych
(1) proste

(a) liczbowe
(i) całkowite: int
(ii) zmiennopozycyjne: float, double

(b) znakowe: char
(c) logiczne
(d) wyliczeniowe: enum

(2) złożone
(a) tablice
(b) struktury
(c) unie

Modyfikatory
short, long, signed, unsigned

6 / 35

Definicja stałej
const typ nazwastałej = wartość;

Deklaracja zmiennej
typ nazwazmiennej;
typ nazwazmiennej = wartość;

7 / 35

Operatory
(1) arytmetyczne:

+ − ∗ / % ++ −−
(2) relacyjne:

< > <= >= == ! =
(3) logiczne

&& || !
(4) przypisania

= operator=
(5) bitowe

& | ˆ << >> ∼
(6) rozmiaru
sizeof(zmienna)
sizeof(typ)

(7) warunkowy
wyrażenie1 ?wyrażenie2 :wyrażenie3

8 / 35

Instrukcje warunkowe
(1)
if (warunek)
instrukcja;

(2)
if (warunek)
instrukcja1;

else
instrukcja2;

9 / 35

Instrukcje warunkowe cd.
(3)
switch (wyrażenie)
{
case przypadek1: instrukcja1;

break;
case przypadek2: instrukcja2;

break;
...
case przypadekN: instrukcjaN;

break;
default: instrukcja;
}

10 / 35

Instrukcje iteracyjne
(1)
while (warunek)
instrukcja;

(2)
do
instrukcja;

while (warunek);
(3)
for (wyrażenie1 ; wyrażenie2 ; wyrażenie3)
instrukcja;

11 / 35

Instrukcje skoku
(1)
break;

(2)
continue;

(3)
return wyrażenie ;

(4)
goto etykieta ;

12 / 35

Blok instrukcji
{
instrukcja1;
instrukcja2;
...
instrukcjaN;

}

Instrukcja pusta
;

13 / 35

Funkcja to zamknięty w całość fragment kodu programu, który jest
wykonywany po jego jawnym wywołaniu. Do funkcji można
przekazywać parametry, funkcja może zwracać wartość.

Definicja funkcji
typzwracanejwartości nazwafunkcji(deklaracjeparametrów)
{
ciąg deklaracji i instrukcji
return wyrażenie;
}

14 / 35

Struktura programu
dyrektywy preprocesora
definicje i deklaracje obiektów zewnętrznych
definicje funkcji

15 / 35

Dyrektywy preprocesora
#include <nazwapliku>
#include "nazwapliku"
#define identyfikator ciągznaków
#undef identyfikator
#if wyrażenie1 ... #endif

16 / 35

Standardowe wejście i wyjście
int getchar(void)
int putchar(int)
int printf(char *format, argument1, argument2, ...)
int scanf(char *format, wskaźnik1, wskaźnik2, ...)

format:
%<flaga><szerokość><.precyzja><modyfikator>typ

17 / 35

typ:

d,i int
u unsigned int
o int w formacie ósemkowym
x int w formacie szesnastkowym
o int w formacie ósemkowym
c char
s char*
f,e double

18 / 35

Wskaźniki i adresy
Wskaźnik to zmienna, która zawiera adres innej zmiennej.
(1) operator referencji zwracający adres zmiennej:

& zmienna
(2) operator deferencji, kórego argumentem jest adres:
∗wskaźnik

Alokacja pamięci
void ∗malloc(size_t liczbabajtów)
void ∗calloc(size_t liczbaelementów, size_t rozmiar)
void free(void ∗wskaźnik)

19 / 35

Pliki
FILE ∗wskaźnikplikowy;
FILE ∗fopen(char ∗nazwapliku, char ∗tryb)
int fclose(FILE ∗wskaźnikplikowy)

int main(int argc, char * argv[])

20 / 35

Złożoność czasowa pesymistyczna algorytmu

T (n) = max{t(d) : d ∈ Dn}

przy oznaczeniach:
n - rozmiar danych wejściowych
Dn - zbiór danych wejściowych rozmiaru n
t(d) - czas wykonania obliczeń dla zestawu danych wejściowych d ,
wyrażony liczbą operacji elementarnych lub dominujących

Złożoność czasowa średnia algorytmu

A(n) =
∑

d∈Dn

p(d) t(d)

gdzie:
p(d) - prawdopodobieństwo z jakim zestaw danych d może
pojawić się na wejściu

21 / 35

Złożoność pamięciowa algorytmu

S(n) = max{s(d) : d ∈ Dn}

gdzie:
s(d) - liczba komórek pamięci wykorzystywanych podczas obliczeń
dla zestawu danych wejściowych d

22 / 35

Sortowanie elementów w tablicy
Wejście: Tablica T zawierająca n liczb.
Wyjście: Rozmieszczenie elementów w T w porządku
niemalejącym.

23 / 35

void proste_wstawianie(int n,int *T)
{

int i,j,x;
for (i=1;i<n;i++)

{
x=T[i];
j=i-1;
while (j>=0 && x<T[j])

{
T[j+1]=T[j];
j- -;

}
T[j+1]=x;

}

}

T (n) = Θ(n2)

24 / 35

void wstawianie_polowkowe(int n,int *T)
{

int i,j,l,m,p,x;
for (i=1;i<n;i++)

{
x=T[i];
l=0;
p=i-1;
while (l<=p)

{
m=(l+p)/2;
if (x<T[m])

p=m-1;
else

l=m+1;
}

for (j=i-1;j>=l;j- -)
T[j+1]=T[j];

T[l]=x;
}

}

25 / 35

T (n) = Θ(n2)

26 / 35

void proste_wybieranie(int n,int *T)
{

int i,j,k,x;
for (i=0;i<n-1;i++)

{
x=T[i];
k=i;
for (j=i+1;j<n;j++)

if (T[j]<x)
{

x=T[j];
k=j;

}
T[k]=T[i];
T[i]=x;

}

}

T (n) = Θ(n2)

27 / 35

void sortowanie_babelkowe(int n,int *T)
{

int i,j,x;
for (i=1;i<n;i++)

{
for (j=n-1;j>=i;j- -)

if (T[j-1]>T[j])
{

x=T[j];
T[j]=T[j-1];
T[j-1]=x;

}
}

}

T (n) = Θ(n2)

28 / 35

void scalanie(int n,int *T,int *S,int l,int p)
{

int i,j,k,m;
if (l==p)

return;
m=(l+p)/2;
scalanie(n,T,S,l,m);
scalanie(n,T,S,m+1,p);
i=l;
j=m+1;
k=l;
while (i<=m && j<=p)

if (T[i]<=T[j])
S[k++]=T[i++];

else
S[k++]=T[j++];

while (i<=m)
S[k++]=T[i++];

while (j<=p)
S[k++]=T[j++];

for (i=l;i<=p;i++)
T[i]=S[i];

}

29 / 35

void sortowanie_przez_scalanie(int n,int *T)
{

int S[n];
scalanie(n,T,S,0,n-1);

}

T (n) = Θ(n log n)

30 / 35

void przesiewanie(int n,int *T,int l,int p)
{

int i,j,x;
i=l;
j=2*i+1;
x=T[i];
while (j<=p)

{
if (j<p && T[j]<T[j+1])

j=j+1;
if (x>=T[j])

break;
T[i]=T[j];
i=j;
j=2*i+1;

}
T[i]=x;

}

31 / 35

void buduj_kopiec(int n,int *T)
{

int l;
for (l=n/2-1;l>=0;l- -)

przesiewanie(n,T,l,n-1);

}

32 / 35

void sortowanie_stogowe(int n,int *T)
{

int p,x;
buduj_kopiec(n,T);
for (p=n-1;p>0;p- -)

{
x=T[0];
T[0]=T[p];
T[p]=x;
przesiewanie(n,T,0,p-1);

}

}

T (n) = O(n log n)

33 / 35

void sortuj(int n,int *T,int l,int p)
{

int i,j,x,y;
i=l;
j=p;
x=T[(l+p)/2];
while (i<=j)

{
while T[i]<x)

i++;
while T[j]>x)

j- -;
if (i<=j)

{
y=T[i];
T[i]=T[j];
T[j]=y;
i++;
j- -;

}
}

if (l<j)
sortuj(n,T,l,j)

if (i<p)
sortuj(n,T,i,p)

}
34 / 35

void sortowanie_szybkie(int n,int *T)
{

sortuj(n,T,0,n-1);

}

T (n) = Θ(n2)
A(n) = Θ(n log n)

35 / 35

