PODSTAWY PROGRAMOWANIA

dr hab. Mariusz Meszka

Akademia Gérniczo-Hutnicza w Krakowie

http://home.agh.edu.pl/~meszka

1/35

Program wyktadu

1. Podstawowe pojecia i definicje. Metody zapisu algorytmoéw.

2. Jezyk programowania C: wprowadzenie, typy i rozmiary danych,
operatory i wyrazenia.

3. Jezyk programowania C: sktadnia jezyka — instrukcje, struktura
programu.

4. Jezyk programowania C: funkcje, preprocesor, klasy pamieci.

5. Jezyk programowania C: operacje na wskaznikach i adresach,
tablice dynamiczne.

6. Jezyk programowania C: wejécie i wyjscie, pliki.

7. Jezyk programowania C: podstawowe biblioteki i narzedzia,
przetwarzanie kodu zrédtowego w réznych systemach operacyjnych.)

2/35

Program wyktadu (cd.)

8. Maszynowa reprezentacja informacji (systemy zapisu liczb i
arytmetyka).

9. Elementy teorii ztozonosci algorytméw: notacja, ztozonosé
pesymistyczna i Srednia, klasyfikacja problemoéw.

10. Rekurencja i iteracja — poréwnanie metod.

11. Wybrane algorytmy sortowania: proste wstawianie, proste
wybieranie, babelkowe, szybkie, scalanie, stogowe.

12. Sortowanie w czasie linowym: przez zliczanie i kubetkowe.
Wyszukiwanie mediany.

13. Ztozone struktury danych: stosy, kolejki, listy pojedynczo
wigzane.

14. Listy podwdjnie i wielokrotnie wigzane.

15. Drzewa — implementacje, porzadki w drzewach. Drzewa
przeszukiwan binarnych.

3/35

[1] B. Kernighan, D.M. Ritchie, Jezyk ANSI C. Programowanie.
Wydanie Il , Helion 2020.

[2] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein,
Woprowadzenie do algorytméw, PWN 2012.

[3] N. Wirth, Algorytmy + struktury danych = programy, WNT
2002.

4/35

Podstawowe obiekty danych

(1) state
(2) zmienne

.

Rodzaje statych

(1) liczbowe
(2) znakowe
(3) tekstowe

A

5/35

(1) proste
(a) liczbowe
(i) catkowite: int
(ii) zmiennopozycyjne: float, double
(b) znakowe: char
(c) logiczne
(d) wyliczeniowe: enum
(2) ztozone
(a) tablice
(b) struktury
(c) unie

Modyfikatory
short, long, signed, unsigned

6/35

Definicja statej

—

Deklaracja zmienne;j

const typ nazwastatej = wartosc;

typ nazwazmiennej;
typ nazwazmiennej = wartosc,

7/35

Operatory

(1) arytmetyczne:
+ =%/ % ++ ——
(2) relacyjne:

€ 3 2= 3= == l=

(3) logiczne
&& || !
(4) przypisania
= operator=
(5) bitowe
& | " << >> ~
(6) rozmiaru
sizeof(zmienna)
sizeof(typ)
(7) warunkowy
wyrazeniel ? wyrazenie2

: wyrazenie3

8/35

(1)
if (warunek)
instrukcja;
(2)
if (warunek)
instrukcjal;
else
instrukcja2;

9/35

Instrukcje warunkowe cd.
(3)
switch (wyrazenie)
{
case przypadekl: instrukcjal;
break;
case przypadek2: instrukcja2;
break;

case przypadekN: instrukcjalN,
break;
default: instrukcja;

}

10/35

Instrukcje iteracyjne
(1)
while (warunek)
instrukcja;
(2)
do
instrukcja;
while (warunek);
(3)
for (wyrazeniel; wyrazenie2; wyrazenie3)
instrukcja;

11/35

[Instrukcjeskoku |
(1)

break;

(2)

continue;

(3)

return wyrazenie;

(4)

goto etykieta;

12/35

Blok instrukgcji
{

instrukcjal;
instrukcja2;

instrukcjalN;

}

Instrukcja pusta

.

13/35

Funkcja to zamkniety w cato$¢ fragment kodu programu, ktory jest
wykonywany po jego jawnym wywofaniu. Do funkcji mozna
przekazywac¢ parametry, funkcja moze zwraca¢ warto$c.

Definicja funkcji

typzwracanejwartosci nazwafunkcji(deklaracjeparametréw)

cigg deklaracji i instrukcji
return wyrazenie;

}

14/35

Struktura programu

dyrektywy preprocesora
definicje i deklaracje obiektéw zewnetrznych
definicje funkcji

15/35

Dyrektywy preprocesora

#include <nazwapliku >
#include '‘nazwapliku "'

#define identyfikator ciggznakéw
#undef identyfikator

#if wyrazeniel ... #endif

16 /35

Standardowe wejscie i wyjscie

int getchar(void)

int putchar(int)

int printf(char *format, argumentl, argument2, ..)
int scanf(char *format, wskaznikl, wskaznik2, ...)

% <flaga><szerokos¢><.precyzja><modyfikator>typ

17/35

0O O X O c Ao

—H On

Ko

int

unsigned int

int w formacie 6semkowym
int w formacie szesnastkowym
int w formacie 6semkowym
char

char*

double

18/35

Wskazniki i adresy

Wskaznik to zmienna, ktéra zawiera adres innej zmiennej.
(1) operator referencji zwracajacy adres zmiennej:

& zmienna
(2) operator deferencji, kérego argumentem jest adres:

* wskaznik

Alokacja pamieci

void xmalloc(size_t liczbabajtéw)
void xcalloc(size_t liczbaelementéw, size_t rozmiar)
void free(void xwskaznik)

19/35

FILE xwskaznikplikowy;
FILE «fopen(char xnazwapliku, char xtryb)
int fclose(FILE xwskaznikplikowy)

int main(int argc, char * argv[]) J

20/35

Ztozono$¢ czasowa pesymistyczna algorytmu

T(n) = max{t(d): d € Dp}

przy oznaczeniach:

n - rozmiar danych wejsciowych

D,, - zbiér danych wejsciowych rozmiaru n

t(d) - czas wykonania obliczen dla zestawu danych wejsciowych d,

wyrazony liczba operacji elementarnych lub dominujacych)

Ztozono$¢ czasowa Srednia algorytmu

A(n)= Y p(d) t(d)

deD,

gdzie:
p(d) - prawdopodobienstwo z jakim zestaw danych d moze
pojawic¢ sie na wejsciu

€

21/35

Ztozono$¢ pamieciowa algorytmu

S(n) = max{s(d) : d € D,}

gdzie:
s(d) - liczba komérek pamieci wykorzystywanych podczas obliczen
dla zestawu danych wejsciowych d

22/35

Sortowanie elementéw w tablicy

Wejscie: Tablica T zawierajaca n liczb.
Wyjscie: Rozmieszczenie elementéw w T w porzadku
niemalejacym.

23/35

void proste_wstawianie(int n,int *T)

{
int i,j,x;
for (i=1;i<n;i++)
{
x=T[i];
j=i-1;
while (§>=0 && x<T[j])
{
T[j+11=T[j]1;
==
}
T[j+1]=x;
}

T(n) = ©(n?) J

24/35

void wstawianie_polowkowe(int n,int *T)

int i,j,1,m,p,x;
for (i=1;i<n;i++)
{
x=T[i];
1=0;
p=i-1;
while (1<=p)
{
m=(1+p)/2;
if (x<T[m])
p=m-1;
else
1=m+1;
}
for (j=i-1;j>=1;j--)
T[j+11=T[j];
T[1]=x;

25 /35

T(n) = ©(r?) J

26 /35

void proste_wybieranie(int n,int *T)

{
int i,j,k,x;
for (i=0;i<n-1;i++)
{
x=T[i];
k=i;
for (j=i+1l;j<m;j++)
if (T[jl<x)
{
x=T[j];
k=j;
}
T[k]=T[i];
T[il=x;

T(n) = O(n?) 1

27/35

void sortowanie_babelkowe(int n,int *T)
{

int 1i,j,x;
for (i=1;i<n;i++)
{
for (j=n-1;j>=i;j--)
if (T[j-11>T[31)

{
x=T[j];
T[j1=T[j-11;
Tlj-11=x;
}
}
} v
T(n) = ©(n?) |

28/35

void scalanie(int n,int *T,int *S,int 1,int p)

int i,j,k,m;

if (1==p)
return;

m=(1+p)/2;

scalanie(n,T,S,1,m);

scalanie(n,T,S,m+1,p);

i=1;

j=m+1;

k=1;

while (i<=m && j<=p)
if (TL[il<=T[jD)

S[k++]1=T[i++];
else
S[k++]1=T[j++];

while (i<=m)
S[k++]1=T[i++];

while (j<=p)
S[k++]1=T[j++];

for (i=1;i<=p;i++)
T[i]=S[i];

29/35

void sortowanie_przez_scalanie(int n,int *T)

{
int S[n];
scalanie(n,T,S,0,n-1);

T(n) = ©(nlogn))

30/35

void przesiewanie(int n,int *T,int 1,int p)

int i,j,x;
i=1;
j=2%i+1;
x=T[i];
while (j<=p)
{
if (j<p && T[jI<T[j+1]1)
J=i+L;
if (x>=T[j])
break;
T[i]=T[j1;
i=j;
j=2%i+1;
}
T[il=x;

31/35

void buduj_kopiec(int n,int *T)

int 1;
for (1=n/2-1;1>=0;1--)
przesiewanie(n,T,1,n-1);

32/35

void sortowanie_stogowe(int n,int *T)
{

int p,x;
buduj_kopiec(n,T);
for (p=n-1;p>0;p--)
{
x=T[0];
T[0]1=T[p];
T[pl=x;
przesiewanie(n,T,0,p-1);

T(n) = O(nlog n) J

33/35

void sortuj(int n,int *T,int 1,int p)

int i,j,x,y;
i=1;
j=p;
x=T[(1+p)/2];
while (i<=j)
{
while T[i]<x)
i++;
while T[j1>x)
i
if (i<=j)
{
y=T[i];
T[i1=T[j];
T[j1=y;
i++;
==

¥
if (1<3)
sortuj(n,T,1,j)
if (i<p)
sortuj(n,T,i,p)

4 /35

void sortowanie_szybkie(int n,int *T)
{

sortuj(n,T,0,n-1);
} J
T(n) =0©(n%)
A(n) = ©(nlog n)

35/35

