Analysis and modeling of

Computational Performance

Latency and throughput of memory

Krzysztof Banas Computational Performance 1

Memory latency

> Latency:
* in general (recall):

* time between the stimulation and the response, between the cause
and the effect, between the beginning of operation and its end

* for memory accesses the time between issuing a memory request
and its finalization

* for reading: arrival of data
* for writing: storing data in memory
> complicated by cache coherence protocols (see Lecture 6)
= theoretical values based on hardware characteristics
= experimental estimates:
* very short times, impossible to measure individually
* there must be multiple accesses to measure time

* how to arrange multiple accesses so that the average access time
corresponds to a single separate memory access

> how to eliminate the effects of all latency hiding techniques

Krzysztof Banas Computational Performance 2

Memory latency

> Typical loop: P
addsd 0(%rbp,%rdx), %xmm?7

addq $8, %rdx

cmpg $80000000, %rdx
movsd %xmm?7, (%rsp)
jne L5

" in each iteration:
* time for arithmetic operations: several cycles
* time for DRAM memory accesses: hundreds of cycles

> Two mechanisms for latency hiding:

* cache memories
= prefetching (hardware and software)
* e.g. for the loop above
addsd 0(%rbp,%rdx), %xmm?7

[prefetch data for next iteration]
* critical hardware ability to process many memory requests concurrently

Krzysztof Banas Computational Performance 3

Memory latency

> How to measure latency experimentally:

= different types of accesses (depends also whether inclusive or
exclusive caches, shared or separate per core caches etc.)

* L1 (L1 hit)

* L2 (L1 miss)

* L2 from a different core (L1, L2 miss, cache coherence protocol)
* L3 (L1, L2 miss)

* L3 from a different processor (L1, L.2, .3 miss, cache coherence
protocol)

 DRAM (L1, L2, L.3 miss)
* other? (NUMA?)
" organization of accesses
* should not have data locality

> temporal — single data element accesses separated by accesses
to many other elements (to force eviction from caches)

> spatial — no accesses to the same cache line

Krzysztof Banas Computational Performance 4

Memory latency

> How to measure latency experimentally:

" several simple strategies:
* only one array accessed
* read only accesses
> e.g. sum += tab[index];
write only accesses
> e.g. tab[index] = data;
read-modify-write accesses:
> e.g. tab[index]++;
strided accesses:
> e.g. tab[index]++; index+= stride;
random accesses:
> e.g. Index = random_cache_line*cache line_size; tablindex]++;
pointer chasing:
> e.g. index = tab[index];

Krzysztof Banas Computational Performance 5

Memory throughput (bandwidth)

> The maximal transfer rate between processor and a given level
of memory hierarchy

> Should use all available latency hiding mechanisms (except
caches closer to pipelines and temporal locality):

= prefetching (hardware and may be software)
* concurrency (including multithreading)
* at all levels — memory controller, buses, DRAM modules
> pipelining, multi-banking, non-blocking, etc.
> Theoretical throughput (bandwidth)
* based on hardware characteristics
> Experimental estimates:
" massive transfers
* many independent memory requests
* maximizing concurrency
* multithreading for accesses to shared resources

Krzysztof Banas Computational Performance 6

Memory throughput (bandwidth)

> How to measure throughput experimentally:

" massive transfer
* array(s) fitting in the given memory level
* multiple repetitions

> accesses to the same element must be from the tested memory
level — separated by sufficient number of accesses to different
elements to evict from levels of memory closer to the core

= gspatial locality
* stride 1, full exploitation of the content of cache lines
" many independent memory requests
* for different cache lines
* number_of_accesses * sizeof(data) / execution_time
* number of accesses from source code (checked with assembly code)

- effective accesses — data used in the code
» not the data transferred by hardware, due e.g. to prefetching
» the use of hardware counters can be misleading

Krzysztof Banas Computational Performance 7

Little's law for memory accesses

> Little's law (recall)

= the average number L. of customers in a stationary system is equal
to the average effective arrival rate A multiplied by the average time
W that a customer spends in the system: L. = A W

= for memory access requests:

|, — the number of requests processed concurrently [B]
> should be measured by the number of cache lines
 \ —the throughput [GB/s]
« W — the time to process each of the memory requests [ns]

* in order to maximize the throughput, A =L /W, i.e. to keep it as
close as possible to the theoretical maximum, given the time W that
depends on hardware and operating system:

* maximize the number of requests processed concurrently L
> sufficient number of independent requests in the code

Krzysztof Banas Computational Performance 8

Little's law for memory accesses

60 ns latency, 6.4 GB/s (=10ns per 64B cache line)

Time (ns)

60

-50 -40

30

-20

-10

Buffer0
Bufferl
Buffer2
Buffer3
Bufferd

Buffer5

Request 0

0

10 20 30 40 50

60

70

100

110

Request 2

Request 3

Request 4

« 60 ns * 6.4 GB/s = 384 Bytes = 6 cache lines

» To keep the pipeline full, there must always be 6 cache lines “in flight”
« Each request must be launched at least 60 ns before the data is needed

Krzysztof Banas

Computational Performance

Memory throughput

> Memory throughput factors:

* hardware
* memory technology (e.g. DDR4)
number of banks, ranks etc.
number of channels
the width of a single channel (bus, usually 64 bits)

processor's memory system capabilities (often expressed as
the number of (usually 64-bit) transactions per second)

" software
* number of generated cache line accesses
» several arrays or proper loop unrolling for a single array
* spatial locality of accesses
> full use of the whole cache hierarchy
* vectorization of accesses (e.g. -march=core-avx2)
* alignment of arrays in memory (e.g. posix_memalign(...))

Krzysztof Banas Computational Performance 10

Latency and throughput

ns|10° ——] L1 cache _[—— 10™
108 ——] L2/L3 cache
1077 } Main memory 1010
MS | 105 —— r
HPC networks
105 —— ~ 1 q0°
104 —— -
] Solid state disk
ms 102 —— H = 102
102 —1_] Local hard disk —
Internet
107 —— _| —— 107
Latency Bandwidth
[sec] [bytesisec]

Krzysztof Banas

Computational Performance

1 GB/s

11

Example theoretical cache parameters

Table 2-1. Cache Comparison Between Skylake Microarchitecture and Broadwell Microarchitecture
Cache level Category Broadwell Skylake Server
Microarchitecture Microarchitecture
L1 Data Cache Size [KB] 32 32
Unit (DCU)
Latency [cycles] 4-6 4-6
Max bandwidth [bytes/cycles] 96 192
Sustained bandwidth [bytes/cycles] 93 133
Associativity [ways] 8 8
L2 Mid-level Cache |Size [KB] 256 1024 (TMB)
(MLC)
Latency [cycles] 12 14
Max bandwidth [bytes/cycles] 32 64
Sustained bandwidth [bytes/cycles] 25 52
Associativity [ways] 8 16
L3 Last-level Size [MB] Up to 2.5 per core up to 1.3751 per core
Cache (LLC)
Latency [cycles] 50-60 50-70
Max bandwidth [bytes/cycles] 16 16
Sustained bandwidth [bytes/cycles] 14 15

Krzysztof Banas

Computational Performance

12

Paged virtual memory and caches

Page
table
Hit Hit

Miss | Possible, although the page table is never really checked if TLB hits.
Miss | Hit Hit
Miss | Hit Miss | TLB misses, but entry found in page table; after retry, data misses in cache.
Miss | Miss | Miss | TLB misses and is followed by a page fault; after retry, data must miss in cache.
Hit | Miss Miss | Impossible: cannot have a translation in TLB if page is not present in memory.
Hit | Miss Hit | Impossible: cannot have a translation in TLB if page is not present in memory.
Miss | Miss Hit | Impossible: data cannot be allowed in cache if the page is not in memory.

Typical values Typical values Typical values for Typical values
for L1 caches for L2 caches paged memory for a TLB

Possible? If so, under what circumstance?

TLB misses, but entry found in page table; after retry, data is found in cache.

Total size in blocks 250-2000 15,000-50,000 16,000-250,000 40-1024
Total size in kilobytes 16-64 500-4000 1,000,000-1,000,000,000 0.25-16
Block size in bytes 16-64 64-128 4000-64,000 4-32
Miss penalty in clocks 10-25 100-1000 10,000,000-100,000,000 10-1000
Miss rates (global for L2) 2%-5% 0.1%2% 0.00001%-0.0001% 0.01%-2%

Krzysztof Banas

Computational Performance

13

Instruction

Front End
Cache Tag

Branch HOP Cache
Predicition Tag

L1 Instruction Cache
32KB 8-Way

Instruction
TLE

T 16 Bytes

Instruction Fetch
& PreDecode

& |A Instructions

Instruction Queus
(50, 2x25 entries)

S IA Instructions

4-Way Decode
{Micro-Fusion & Macro-Fusion)

MicroCode
ROM

Complex
Decoder

Simple
Decoder

Simple
Decoder

Simple
Decoder

Upto 4

4 F d LLOP
Fuseel pQFPs usgs nulbs

HOP Cache / |

Allocation Queue (56, 2x28 WOPs) |
(1.5l nOPs; B-\Way) | 32 Bytes

4 Fused pOPs

Rename [/ Allocate / Retirement
ReOrder Buffer (192 entries)

Zeroing ldioms

E E E E E E E E
[=] (=] (=] (=] (=] (=] (=] [=]
3 | | | | | | B
Scheduler
Unified Reservation Station (RS)
Integer Physical Register Fle (64 entries) Wector Physical Register Fle N
(168 Registers) (168 Registers) wn
—
Port O Port 1 Port & Port & Port 2 Paort 3 Port 4 Part 7 = % [%]
) @ N I
= ©
AL & Shift [aLU & shiftlLead Addrs]Load Addrs) Store tore Addr o D0 5
Branch LEA LEA | Branch Data E g
Divide Multip by Wect Shuffle o
256b FMA 256b FMA Weck Int AL ~
256b FP Mul||256b FP Add||vector Logic
Wect Int Mul || Vect Int AL
Wector Logic | [Vector Logic
Vector Shift
Store Buffer & Forwarding
(42 entries)
32B/Cycle store
Data TLB
L1 Data Cache 4
I(_ggd B:fj'ﬁeg 32KB 8-Way 64B/Cycle
2x32B/Cycle load entries
|

I Execution Engine

Memory

14

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14

