
Krzysztof Banaś Computational Performance 1

Analysis and modeling of

Computational Performance

Latency and throughput of memory

Krzysztof Banaś Computational Performance 2

Memory latency

➔ Latency:
 in general (recall):

• time between the stimulation and the response, between the cause
and the effect, between the beginning of operation and its end

 for memory accesses the time between issuing a memory request
and its finalization

• for reading: arrival of data
• for writing: storing data in memory

➢ complicated by cache coherence protocols (see Lecture 6)
 theoretical values based on hardware characteristics
 experimental estimates:

• very short times, impossible to measure individually
• there must be multiple accesses to measure time
• how to arrange multiple accesses so that the average access time

corresponds to a single separate memory access
➢ how to eliminate the effects of all latency hiding techniques

Krzysztof Banaś Computational Performance 3

Memory latency

➔ Typical loop:
.L5:
addsd 0(%rbp,%rdx), %xmm7
addq $8, %rdx
cmpq $80000000, %rdx
movsd %xmm7, (%rsp)
jne .L5

 in each iteration:
• time for arithmetic operations: several cycles
• time for DRAM memory accesses: hundreds of cycles

➔ Two mechanisms for latency hiding:
 cache memories
 prefetching (hardware and software)

• e.g. for the loop above
addsd 0(%rbp,%rdx), %xmm7
[prefetch data for next iteration]

• critical hardware ability to process many memory requests concurrently

Krzysztof Banaś Computational Performance 4

Memory latency

➔ How to measure latency experimentally:
 different types of accesses (depends also whether inclusive or

exclusive caches, shared or separate per core caches etc.)
• L1 (L1 hit)
• L2 (L1 miss)
• L2 from a different core (L1, L2 miss, cache coherence protocol)
• L3 (L1, L2 miss)
• L3 from a different processor (L1, L2, L3 miss, cache coherence

protocol)
• DRAM (L1, L2, L3 miss)
• other? (NUMA?)

 organization of accesses
• should not have data locality

➢ temporal – single data element accesses separated by accesses
to many other elements (to force eviction from caches)

➢ spatial – no accesses to the same cache line

Krzysztof Banaś Computational Performance 5

Memory latency

➔ How to measure latency experimentally:
 several simple strategies:

• only one array accessed
• read only accesses

➢ e.g. sum += tab[index];
• write only accesses

➢ e.g. tab[index] = data;
• read-modify-write accesses:

➢ e.g. tab[index]++;
• strided accesses:

➢ e.g. tab[index]++; index+= stride;
• random accesses:

➢ e.g. index = random_cache_line*cache_line_size; tab[index]++;
• pointer chasing:

➢ e.g. index = tab[index];

Krzysztof Banaś Computational Performance 6

Memory throughput (bandwidth)

➔ The maximal transfer rate between processor and a given level
of memory hierarchy

➔ Should use all available latency hiding mechanisms (except
caches closer to pipelines and temporal locality):

 prefetching (hardware and may be software)
 concurrency (including multithreading)

• at all levels – memory controller, buses, DRAM modules
➢ pipelining, multi-banking, non-blocking, etc.

➔ Theoretical throughput (bandwidth)
 based on hardware characteristics

➔ Experimental estimates:
 massive transfers
 many independent memory requests

• maximizing concurrency
• multithreading for accesses to shared resources

Krzysztof Banaś Computational Performance 7

Memory throughput (bandwidth)

➔ How to measure throughput experimentally:
 massive transfer

• array(s) fitting in the given memory level
• multiple repetitions

➢ accesses to the same element must be from the tested memory
level – separated by sufficient number of accesses to different
elements to evict from levels of memory closer to the core

 spatial locality
• stride 1, full exploitation of the content of cache lines

 many independent memory requests
• for different cache lines

 number_of_accesses * sizeof(data) / execution_time
• number of accesses from source code (checked with assembly code)

➢ effective accesses – data used in the code
» not the data transferred by hardware, due e.g. to prefetching
» the use of hardware counters can be misleading

Krzysztof Banaś Computational Performance 8

Little's law for memory accesses

➔ Little's law (recall)
 the average number L of customers in a stationary system is equal

to the average effective arrival rate λ multiplied by the average time
W that a customer spends in the system: L = λ W

 for memory access requests:
• L – the number of requests processed concurrently [B]

➢ should be measured by the number of cache lines
• λ – the throughput [GB/s]
• W – the time to process each of the memory requests [ns]

 in order to maximize the throughput, λ = L / W, i.e. to keep it as
close as possible to the theoretical maximum, given the time W that
depends on hardware and operating system:
• maximize the number of requests processed concurrently L

➢ sufficient number of independent requests in the code

Krzysztof Banaś Computational Performance 9

Little's law for memory accesses

Krzysztof Banaś Computational Performance 10

Memory throughput

➔ Memory throughput factors:
 hardware

• memory technology (e.g. DDR4)
• number of banks, ranks etc.
• number of channels
• the width of a single channel (bus, usually 64 bits)
• processor's memory system capabilities (often expressed as

the number of (usually 64-bit) transactions per second)
 software

• number of generated cache line accesses
➢ several arrays or proper loop unrolling for a single array

• spatial locality of accesses
➢ full use of the whole cache hierarchy

• vectorization of accesses (e.g. -march=core-avx2)
• alignment of arrays in memory (e.g. posix_memalign(...))

Krzysztof Banaś Computational Performance 11

Latency and throughput

Krzysztof Banaś Computational Performance 12

Example theoretical cache parameters

Krzysztof Banaś Computational Performance 13

Paged virtual memory and caches

Krzysztof Banaś Computational Performance 14

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14

