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Finite element formulation for stationary heat transfer problems
o For differential formulation of the form (with zero Dirichlet BC only, for
simplicity):
-V - (k(T,x)VT) =s |

o The following weak statement can be derived:

Find approximate function 7" € V%, such that the following
statement:

/k(Th,x)TﬁwﬁdQ:/swth
Q Q

holds for every test function w" € V7.

@ For material properties being the function of x only, the problem is
(quasi-)linear

@ For material properties being the function of 7" as well, the problem has
material non-linearity
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Finite element formulation for stationary heat transfer problems

@ Adding Neumann and Robin boundary conditions:

T
—k(Th,x)d— = —k(Th,x)T,'n,' = —(gN on FN
dn ’
n 4T h h
—k(T ,x)% = —k(T",x)T in; = c(T",x)(T — Text) on 'z

@ Lead to the formulation with additional terms:

Find approximate function 7" € V%, such that the following
statement:

/k(Th7x)T}fw}§dQ:/swth+/ quhdF—/ (T —Tog)W'dT'
Q T Q Ty g

holds for every test function w" € V
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Finite element formulation for stationary heat transfer problems
@ The final formulation for linear stationary heat transfer problems:

Find approximate function 7" € V2, such that the following
statement:

/ kT whdQ+ / cTwhdl’ = / swhdQ+ / gy dT+ / T o dT
Q Tk Q Ty T

holds for every test function w" € V!

V.

@ ... leads to the following formulae for the entries of the global stiffness matrix
and the global load vector

dy d
AyL = / g VL o L / cptprdl
o dx; dx; Tk

bM:/S¢MdQ+/ QN¢MdF+/ Texyymdl’
Q Iy
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Finite element systems of linear equations

o Standard discretizations for linear stationary problems require the
solution of a system of linear equations

N
> AwUi=by M=12..N = AU" =b
L=1
o for non-stationary problems and implicit time integration a system of
linear equations is solved at every time step
e for non-linear problems a system of linear equations is solved for every
iteration of the solution method
@ The procedures for solving a linear system include
o the creation of the system of linear equations that includes the integration
of the terms from the weak statement for suitable pairs of basis functions
o the integrals are calculated separately for each element, forming local, element
system matrices and right hand side vectors
o the local matrices and vectors are than assembled into the global system matrix
and the global right hand side vector

o the solution of the system, that takes into account its special form
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Finite element systems of linear equations

@ The assembly of global finite element systems of linear equations

o local element matrices computed using numerical integration

e numerical integration usually using Gaussian quadratures defined for the
reference elements (transformation to the reference elements required for
the application of The Change of Variables Theorem)

o local numbering of degrees of freedom for integration

o the assembly to the global system using the mapping of the local numbers
to the global numbers - for element’s nodes

CEECCOmO o
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Finite element systems of linear equations

@ The solved equations are
o usually large (up to billions of unknowns)
o sparse (for large systems more than 99.99% entries in the system matrix
are zero)
o often ill conditioned — with large condition number and slow convergence
of iterative methods
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Finite element systems of linear equations

Practical solutions for solving FEM systems of linear equations
@ Direct methods for solving large sparse systems of linear equations

o the variants of Gaussian elimination
o the problem of fill-in

@ renumbering
o frontal methods
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Finite element systems of linear equations

Practical solutions for solving FEM systems of linear equations
@ Iterative methods for solving large sparse systems of linear equations

o slow convergence of standard iterative methods

e simple preconditioners: Jacobi (diagonal scaling), Gauss-Seidel,
incomplete LU factorization

e complex preconditioners: multigrid, special preconditioners for specific
problems

o the best iterative solvers can have linear complexity, both in terms of
solution time and storage requirements

GPU times for the problem with smooth solution, NIPG formulation and p=2 Storage for the solver - the problem with smooth solution, NIPG formulation and p=2

CPUtime
Storage in MBytes

100 1000 10000 100000 100 1000 10000 100000
Number of dearees of freedom Number of derees of freedom
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Finite element solution procedures

Parallel solution based on domain decomposition
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Non-linear problem solution

Finite element space discretization of non-linear problems leads to the set
of non-linear algebraic equations for the vector of degrees of freedom U”,
that can be shortly written as:

A(UMHU" =b

The general methods for solving multidimensional systems of the form
F(U)=0

usually refer to the Newton’s iterative method, that finds the subsequent

approximations
PP U1 = Ui + AUy

where AUy is the solution to the equation
J(Up) - AU, = —F(Uy)
with the Jacobian matrix J representing the gradient of the function F

J = 9F/0U
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Non-linear problem solution
@ Applying the Newton’s method to the system:
A(UMNU" =b
leads to the equation

A
<§Uh (uhur + A(U’;)) AU = —A(UHUE +b

@ When the derivative %

form

is assumed to vanish, the system reduces to the
A<UZ) 'UZH =b

that can be interpreted as using fixed point (Picard’s) iterations

UL =AU b

for the original nonlinear problem
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Non-linear problem solution

@ In general (for 1D case) Picard’s (fixed point) iterations are defined as
subsequent computations

X1 = g(xk)
that after convergence lead to the satisfaction of the nonlinear problem
x = g(x)

e Newton’s method iterations for the problem f(x) = 0:

X1 = x(k) — () 7 f () [= g(x)]

can be interpreted as a special case of fixed point iterations
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