Mathematical modelling in science and engineering

Lecture 3 Finite element solution procedures

Krzysztof Banaś

Department of Applied Computer Science and Modelling AGH University of Science and Technology, Kraków, Poland

Finite element formulation for stationary heat transfer problems

• For differential formulation of the form (with zero Dirichlet BC only, for simplicity):

$$-\nabla \cdot (k(T, x)\nabla T) = s$$

• The following weak statement can be derived:

Find approximate function $T^h \in V_T^h$, such that the following statement:

$$\int_{\Omega} k(T^h, \mathbf{x}) T^h_{,i} w^h_{,i} d\Omega = \int_{\Omega} s w^h d\Omega$$

holds for every test function $w^h \in V_w^h$.

- For material properties being the function of x only, the problem is (quasi-)linear
- For material properties being the function of *T* as well, the problem has material non-linearity

Finite element formulation for stationary heat transfer problems

• Adding Neumann and Robin boundary conditions:

$$-k(T^h, \mathbf{x}) \frac{dT}{d\mathbf{n}} = -k(T^h, \mathbf{x}) T_{,i} n_i = -q_N \qquad \text{on} \qquad \Gamma_N$$
$$-k(T^h, \mathbf{x}) \frac{dT}{d\mathbf{n}} = -k(T^h, \mathbf{x}) T_{,i} n_i = c(T^h, \mathbf{x}) (T - T_{ext}) \qquad \text{on} \qquad \Gamma_R$$

• Lead to the formulation with additional terms:

Find approximate function $T^h \in V_T^h$, such that the following statement:

$$\int_{\Omega}k(T^h,\boldsymbol{x})T^h_{,i}w^h_{,i}d\Omega=\int_{\Omega}sw^hd\Omega+\int_{\Gamma_N}q_Nw^hd\Gamma-\int_{\Gamma_R}c(T-T_{ext})w^hd\Gamma$$

holds for every test function $w^h \in V_w^h$

Finite element formulation for stationary heat transfer problems

• The final formulation for linear stationary heat transfer problems:

Find approximate function $T^h \in V_T^h$, such that the following statement:

$$\int_{\Omega} k T^{h}_{,i} w^{h}_{,i} d\Omega + \int_{\Gamma_{R}} c T w^{h} d\Gamma = \int_{\Omega} s w^{h} d\Omega + \int_{\Gamma_{N}} q_{N} w^{h} d\Gamma + \int_{\Gamma_{R}} c T_{ext} w^{h} d\Gamma$$

holds for every test function $w^h \in V_w^h$

 ... leads to the following formulae for the entries of the global stiffness matrix and the global load vector

$$A_{ML} = \int_{\Omega} k \frac{d\psi_M}{dx_i} \frac{d\psi_L}{dx_i} d\Omega + \int_{\Gamma_R} c\psi_M \psi_L d\Gamma$$

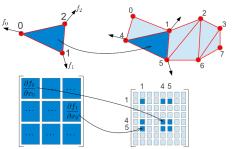
$$b_M = \int_{\Omega} s\psi_M d\Omega + \int_{\Gamma_N} q_N \psi_M d\Gamma + \int_{\Gamma_R} cT_{ext} \psi_M d\Gamma$$

 Standard discretizations for linear stationary problems require the solution of a system of linear equations

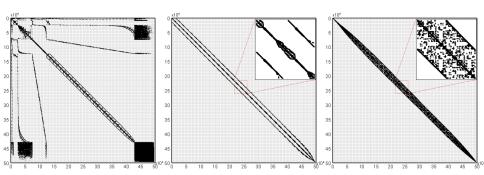
$$\sum_{L=1}^{N} \mathbf{A}_{ML} \mathbf{U}_{L}^{h} = \mathbf{b}_{M} \qquad M = 1, 2, ..., N \qquad \equiv \qquad \mathbf{A} \mathbf{U}^{h} = \mathbf{b}$$

- for non-stationary problems and implicit time integration a system of linear equations is solved at every time step
- for non-linear problems a system of linear equations is solved for every iteration of the solution method
- The procedures for solving a linear system include
 - the creation of the system of linear equations that includes the integration of the terms from the weak statement for suitable pairs of basis functions
 - the integrals are calculated separately for each element, forming local, element system matrices and right hand side vectors
 - the local matrices and vectors are than assembled into the global system matrix and the global right hand side vector
 - the solution of the system, that takes into account its special form

- The assembly of global finite element systems of linear equations
 - local element matrices computed using numerical integration
 - numerical integration usually using Gaussian quadratures defined for the reference elements (transformation to the reference elements required for the application of The Change of Variables Theorem)
 - local numbering of degrees of freedom for integration
 - the assembly to the global system using the mapping of the local numbers to the global numbers for element's nodes

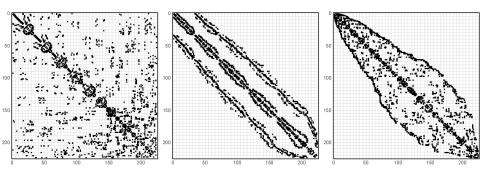


- The solved equations are
 - usually large (up to billions of unknowns)
 - sparse (for large systems more than 99.99% entries in the system matrix are zero)
 - often ill conditioned with large condition number and slow convergence of iterative methods



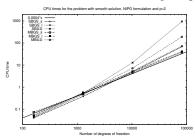
Practical solutions for solving FEM systems of linear equations

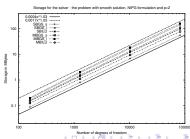
- Direct methods for solving large sparse systems of linear equations
 - the variants of Gaussian elimination
 - the problem of fill-in
 - renumbering
 - frontal methods



Practical solutions for solving FEM systems of linear equations

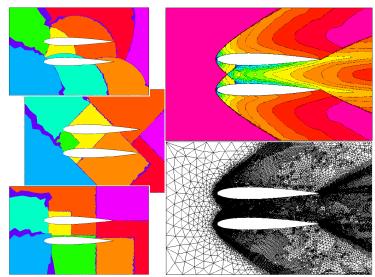
- Iterative methods for solving large sparse systems of linear equations
 - slow convergence of standard iterative methods
 - simple preconditioners: Jacobi (diagonal scaling), Gauss-Seidel, incomplete LU factorization
 - complex preconditioners: multigrid, special preconditioners for specific problems
 - the best iterative solvers can have linear complexity, both in terms of solution time and storage requirements





Finite element solution procedures

Parallel solution based on domain decomposition



Non-linear problem solution

• Finite element space discretization of non-linear problems leads to the set of non-linear algebraic equations for the vector of degrees of freedom \mathbf{U}^h , that can be shortly written as:

$$\mathbf{A}(\mathbf{U}^h)\mathbf{U}^h=\mathbf{b}$$

• The general methods for solving multidimensional systems of the form

$$\mathbf{F}(\mathbf{U}) = 0$$

usually refer to the Newton's iterative method, that finds the subsequent approximations $\mathbf{U}_{k+1} = \mathbf{U}_k + \Delta \mathbf{U}_k$

where $\Delta \mathbf{U}_k$ is the solution to the equation

$$\mathbf{J}(\mathbf{U}_k) \cdot \mathbf{\Delta} \mathbf{U}_k = -\mathbf{F}(\mathbf{U}_k)$$

with the Jacobian matrix J representing the gradient of the function F

$$J = \partial F / \partial U$$

Non-linear problem solution

• Applying the Newton's method to the system:

$$\mathbf{A}(\mathbf{U}^h)\mathbf{U}^h=\mathbf{b}$$

leads to the equation

$$\left(\frac{\partial \mathbf{A}}{\partial \mathbf{U}^h}(\mathbf{U}_k^h)\mathbf{U}_k^h + \mathbf{A}(\mathbf{U}_k^h)\right) \cdot \mathbf{\Delta}\mathbf{U}_k^h = -\mathbf{A}(\mathbf{U}_k^h)\mathbf{U}_k^h + \mathbf{b}$$

• When the derivative $\frac{\partial \mathbf{A}}{\partial \mathbf{U}^h}$ is assumed to vanish, the system reduces to the form

$$\mathbf{A}(\mathbf{U}_k^h) \cdot \mathbf{U}_{k+1}^h = \mathbf{b}$$

that can be interpreted as using fixed point (Picard's) iterations

$$\mathbf{U}_{k+1}^h = \mathbf{A}(\mathbf{U}_k^h)^{-1} \cdot \mathbf{b}$$

for the original nonlinear problem

Non-linear problem solution

• In general (for 1D case) Picard's (fixed point) iterations are defined as subsequent computations

$$x_{k+1} = g(x_k)$$

that after convergence lead to the satisfaction of the nonlinear problem

$$x = g(x)$$

• Newton's method iterations for the problem f(x) = 0:

$$x_{k+1} = x(k) - f'(x_k)^{-1} \cdot f(x_k) = g(x_k)$$

can be interpreted as a special case of fixed point iterations

