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Model problem

@ 1D computational domain 2 = (0, 1)
e two-point boundary — 0 and 1
e model elliptic problem (second order in one space variable)
o differential equation [particular model problem]:

L f) rw =2
e boundary conditions [particular model problem]:
o Dirichlet: u(0) = uo luo = 0]
e Neumann: %(l) _ u/l [u,l )

@ two-point boundary value problem with proven existence and
uniqueness of results

e the exact solution for the particular model problem: u*(x) = x*
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Function spaces for the interval (0, 1)

@ Assumptions:

e functions can be added and multiplied by real numbers
o functions (and their powers) can be integrated
e functions can be measured using integrals

@ L norm: 1
s = [ treolax
o [, norm: 1 1/2
e = ( [ rerar)
e L, norm:

i, = (| v<x>|"dx)l/p
@ Lo norm:

i = i ([ rcorar) Y s 9

o the difference of two functions can be measured in the same way
— giving the distance between the two functions
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Function spaces for the interval (0, 1)

o the integral of the pointwise product of two functions satisfies
the requirements of the inner (scalar) product:

1
(f.9) = /0 £(x) - g(x)dx

e the L, norm of each function can be defined using scalar product:
flle = (£

@ it is possible to define the norms that take into account functions
and their derivatives, e.g.:

1 2 24\ 2 3\ 2
af a’f &f
2
2= + | = — — dx
e = ([ (24 (2) +(2) + (52
o Sobolev spaces WX are the spaces of functions f with finite

|If lwx» norms (L, norms for functions and their k derivatives)
e especially important are H* spaces with L, norms: H* = W*?

1/2
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Function spaces

Sobolev spaces

e the definitions and properties of Sobolev spaces W*? for the
interval (0, 1) can be generalized to any interval in 1D and to
(almost) arbitrary computational domains (satisfying certain
assumptions) in 2D and 3D

o spaces WX and especially spaces H* are important in the

mathematical theory of ordinary and partial differential
equations

o further on, we will use the notation ||f|| for the L, norm of
function f and ||f||x (H* norm) to denote ||f||y«> norm
@ the space H(l) will denote the subspace of H'! with functions that
vanish on the boundary of the computational domain

o we will use several properties of functions in Sobolev spaces (as
special cases of vector spaces, normed spaces, Hilbert spaces,
Banach spaces etc.)
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Weak formulation for the model 1D problem

Derivation (weighted residual approach):
e multiplication of the ODE (or PDE) by a test function w(x)

d2
(_a’xl; —f(x)> -w(x) =0  Vw —at every point x € (0, 1)

@ integration over the computational domain (the interval (0, 1))

/01 (_ZZ —f(x)> wx)dx =0 VYw

@ application of the generalized integration by parts formulae

du dw

’ 1 1
—(1)-w(1)+ic(0)-w(0)+/0 Cbcdxdx:/of(x)-w(x)dx Vw
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Weak formulation for the model 1D problem

Derivation (weighted residual approach):
o function spaces:

o V —the subspace of H' space for the computational domain (the
interval (0, 1)) with functions satisfying the Dirichlet boundary
conditions on the respective parts of the boundary

o V) — the subspace of H' space for the computational domain (the
interval (0, 1)) with functions vanishing on the Dirichlet parts of
the boundary

@ assumption: u € V, i.e. u satisfies (by construction) the Dirichlet
boundary conditions, i.e. #(0) = up

e assumption: w € Vp, i.e. w(0) =0

@ application of the assumptions concerning Dirichlet boundary
and the formulae for the Neumann (and possibly Robin)
boundary conditions (for the model problem %(1) = u'l)

du dw
——dx = x)d. 1 A Vi
/0 o /f x—i—ul w(l) w e Vy
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Weak formulation for the model 1D problem

Find a function u(x) € V such that the following holds:

1
dudw
— x)d 1 Y Vi
dedx /f x—i—ul w(l) w € Vy

It can be proven that:
o If u satisfies the original differential problem then it also satisfies
the derived weak formulation

o If u satisfies the derived weak formulation and possess
continuous second order derivative then it also satisfies the
original differential problem
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Equivalence of three problem formulations

Assumption: only zero Dirichlet boundary conditions

Differential formulation

d*u .
T2 =f(x) in Q u(0)=0 on 0}

Weak (variational) formulation
Find a function u# € V such that the following holds:

(W', w)=(f,w) VYweVy

.

Minimization of functional formulation
Find a function u € V such that the following holds:

1 1
E(u’,u/)—(f,u)Si(wl,w/)—(f,w) Yw € Vy

€
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Interpretation in mechanics

10/23

The three different formulations have the following origins and
interpretations in mechanics

(e.g. for the problem of tensile test, with the displacement u and
external force (load) f):
o differential formulation
e corresponds to Newton’s laws of mechanics
@ minimization formulation

e corresponds to the minimization of the total potential energy
principle
o 1(u',u') - internal elastic energy of the body

o (f,u) - potential energy of the load
@ weak (variational) formulation

e corresponds to the principle of virtual work
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The finite element method

The finite element method is a method for approximating the
solutions to boundary value problems
@ The two fundamental ingredients of the FEM are:
o the use of weak variational statements of the problems
o the discretization of the computational domains into small parts,
called elements, within which the solution is approximated using
simple polynomials
e The FEM is especially efficient for solving elliptic problems
(stationary with no time variable) in complex 3D domains

@ The FEM can also be used for solving initial boundary value
problems (with time variable), usually in combination with other
discretization methods such as the finite difference method or the
discontinuous Galerkin method
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The finite element method

Discretization of the computational domain:

@ The sum of all elements must completely fill the computational
domain

o Elements cannot overlap
o Elements should have sufficient quality

o the ratio of the sizes of edges should be limited
o the internal angles between the edges should not be too small

o The ratio of the sizes of neighbouring elements should be limited

o Types of meshes:
e 1D —division into small intervals
e 2D — popular elements: triangles, quadrilaterals
e 3D — popular elements: tetrahedra, hexahedra, prisms (less
frequent: pyramids)
e apart from elements with straight edges (and plane faces in 3D)
there are elements with curved boundaries
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The finite element method

Finite element function spaces:

@ elements — shape functions, ¢; (/ - local numbering)
@ computational domain — basis functions constructed from shape
functions, 9 (L - global numbering)
e in the standard FEM basis functions are continuous
e basis functions have as small support (the domain of non-zero
values) as possible

o finite element solutions as linear combinations of basis functions

N
W'(x) = Uty + Uy + Ulths + ...+ Uppoy = > ULy
L=1

uh(x) S Vh(x) = Span {whw%w% "'7¢N}

e coefficients U’Z of linear combination (degrees of freedom) form a
discrete FEM solution to the approximation problem

e N — the size of vector Uh, i.e. the number of degrees of freedom,
is the size of a particular FEM problem
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Finite element formulation for the model 1D problem

@ The division of computational
. . wl el w2 @ w3
domain into elements

) . o 2o N 92
@ Shape functions ¢; inside | . h

elements

@ Basis functions 1, for the
whole computational domain

Example:
e domain: (0, 1)
e clements: e; — (0,0.5) and
ez — (0.5,0)
@ element vertices (finite element

nodes):
{wi,wz,w3} — {0,0.5,1.0}
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Finite element interpolation

e Using finite element spaces it is possible to construct not only
approximate solutions but also interpolants (functions that agree
with a set of discrete values)

e Finite element interpolation is especially easy for the spaces
where finite element degrees of freedom correspond to the values
at specific points (warning: there are spaces where it is not true!)

e for typical finite element spaces with linear basis (shape)
functions the values of degrees of freedom are the values of finite
element solutions at element vertices

e Example:

e interpolation for the set of points: {(wy,0.5), (w2, 0.3), (w3, 1.0)}
o U'={05,03,1.0}
o u"(x) = 0.5¢1(x) + 0.3t (x) + 1.0¢)3(x)

el w2 e2 w3
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Finite element formulation for the model 1D problem

@ Weak formulation:
Find a function «" € V" C V such that the following holds:

du" dwh /
(495 oy iowb) e

@ Domain discretization:
Partition of (0, 1) into subintervals (xj_i, x;) of length
hj =Xj — Xj—1 with &4 = max hj

o Finite element discretization (approximation):

N N
=Y Ul wh=>" Wi
L=1 M=1

Hence:

(dZILVlUZ¢L dZZ 1 MT/)M> th ZUh (de W)

dx ’ dx dx ’ dx
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Finite element approximation for the model 1D problem

@ General finite element solution procedure consists of two steps:
e creation of the system of linear equations:

N N h P— h
E Wy E UL( dx dx) (f ¢M) '¢M(1) =0 YW :{Wllvwia-"aWN}
M L=1

Hence:

N
Z (de dw) f,om) +uy - Yu(1)  M=1,2,..,N

i.e. N "
> AmUj=by M=12,..N
=1
) dyy dyy
with: Ay = (dx’ dx> and by = (f, Yw) + uy - hu(1)

e solution of the system of linear equations
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Finite element approximation for the model 1D problem

@ For the particular problem
( f(X):—2, M(O):uozo’ dl(l):MIIZQ, )

dx
the solution procedure leads to the system of linear equations:
-2 2 0 0.5
2 -4 2 = 1.0
0o 2 =2 —1.5

@ The application of the Dirichlet boundary condition can be
accomplished by the assumption Uﬁ‘ = 0, that, after substituting
to the system of equations, lead to the final system:

—4uh + 2UF = 1
2Uuh — 2UF = —15

o The final solution is the vector U" = [0.0,0.25, 1.0]
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Finite element approximation for the model 1D problem

The exact and approximate solutions for the particular case of the
model problem:

The error:
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Finite element approximation

Finite element approximations to elliptic problems have several
important properties:
e For many problems it is relatively easy to prove the existence

and uniqueness of exact and approximate finite element solutions
using the corresponding weak formulations

o this concerns in particular the model 1D problem considered
e FEM approximate solutions satisfy the best approximation
property:
o for the model 1D problem:
" =) < |W" —w) W' e Vg

o Using the interpolant of the exact solution as the function w" in
the formula above and the interpolation error estimate it is

possible to estimate the error of the finite element solution as:
e for the model 1D problem:

le"|| = ||u" — u| < Ch? - max |u”|
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Finite element approximation

The properties of FEM approximations have important consequences:

@ one can control the error of finite element solutions by a suitable
choice of element sizes

e with the maximal element size going to zero finite element
solutions converge to the exact solution

Additional observations:
@ the error depends on the second order derivative of the exact solution, not the
gradient (as is often incorrectly stated)

@ with the element size going to zero, the number of elements in the
computational domain and the number of degrees of freedom in the system of
linear equations associated with the problem go to infinity

@ however: the computational cost does not grow quadratically with the
number of degrees of freedom, since the matrices of linear systems are
very sparse

o for really large problems the number of zeros in the system
matrices can easily exceed 99,99%
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Finite element approximation

The geometric interpretation of the finite element method:
o the integral on the left hand side of the weak finite element
statement for many problems (especially for elliptic PDEs) can
be interpreted as a special form of scalar product, for example:

[,
BT o dxdx
@ the definition of the scalar product leads to the definition of a

norm (so called energy norm — due to some interpretations in
mechanics):

el = (u, )
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Finite element approximation

The geometric interpretation of the finite element method:
@ the finite element formulation can then be interpreted as the condition
of orthogonalization of the error with respect to the space V" using
the scalar product (., .)g:

(up —u,vp)p =0 Vv, €V

@ hence, the finite element solution u;, can be interpreted as the
projection of the exact solution u# onto the space Vj,

o with the finite element solution u;, being the closest function in V}, to
the exact solution u# with the distance measured by the energy norm
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