1 Basic definitions from probability theory

Let Ω be a given set.

Definition 1 (σ -field). Let $\mathcal{F} \subset 2^{\Omega}$. We call \mathcal{F} a $\underline{\sigma$ -field if it satisfies the following conditions

- 1. $\emptyset \in \mathcal{F}$,
- 2. $A \in \mathcal{F} \Rightarrow A' \in \mathcal{F}$.
- 3. $A_1, A_2, \ldots \in \mathcal{F} \Rightarrow \bigcup_{i=1}^{+\infty} \in \mathcal{F}$.

Definition 2 (σ -field generated by a family of subsets). Let $\mathcal{A} \subset 2^{\Omega}$. Then the smallest (with respect to inclusion) σ -field containing \mathcal{A} is called a $\underline{\sigma}$ -field generated by $\underline{\mathcal{A}}$ and is denoted by $\overline{\sigma}(\mathcal{A})$.

Definition 3 (σ -field of borel sets). Let $\Omega = \mathbb{R}$. By $\mathcal{B}(\mathbb{R})$ we denote the σ -field generated by $\mathcal{A} = \{(a, b) : a < b, a, b \in \mathbb{R}\}.$

Definition 4 (measurable space). Let $\mathcal{F} \subset 2^{\Omega}$ be a σ -field. Then a pair (Ω, \mathcal{F}) will be called a measurable space.

Definition 5 (measurable set). Let (Ω, \mathcal{F}) be a measurable space. Any $A \in \mathcal{F}$ will be called a measurable set.

Definition 6 (partition). Let (Ω, \mathcal{F}) be a measurable space and let $\mathcal{P} = \{A_1, A_2, \dots, A_n\}$ be a finite family of measurable sets. Then \mathcal{P} will be called a partition of Ω if

- 1. $A_i \cap A_j = \emptyset$ for any $i \neq j$,
- 2. $\Omega = \bigcup_{i=1}^n A_i$.

Definition 7 (finer/coarses partitions). Let (Ω, \mathcal{F}) be a measurable space and let $\mathcal{P}_1, \mathcal{P}_2$ be partitions of Ω . We say that \mathcal{P}_2 is finer than \mathcal{P}_1 (or equivalently that \mathcal{P}_1 is coarser than \mathcal{P}_2) if

$$\forall A \in \mathcal{P}_1 \exists B_1, B_2, \dots, B_n \in \mathcal{P}_2 : A = \bigcup_{i=1}^n B_i.$$

Definition 8 (filtration). Let (Ω, \mathcal{F}) be a measurable space and let $\mathbb{T} = \{0, 1, \dots, N\}$. Let $(\mathcal{F}_t)_{t \in \mathbb{T}}$ be a family of σ -fields, such that $\mathcal{F}_t \subset \mathcal{F}$ for each t. Then $(\mathcal{F}_t)_{t \in \mathbb{T}}$ is called a filtration if

$$\forall s, t \in \mathbb{T}, s < t : \mathcal{F}_s \subset \mathcal{F}_t$$
.

Lemma 9. Let (Ω, \mathcal{F}) be a measurable space and let $\mathbb{T} = \{0, 1, ..., N\}$. Assume $\{\mathcal{P}_t\}_{t\in\mathbb{T}}$ is a sequence of partitions, satisfying

$$\forall t \in \mathbb{T}, t < N : \mathcal{P}_{t+1} \text{ is finer then } \mathcal{P}_t.$$

Define a sequence of σ -fields $\{\mathcal{F}_t\}_{t\in\mathbb{T}}$ by

$$\mathcal{F}_t = \sigma(\mathcal{P}_t).$$

Then $\{\mathcal{F}_t\}_{t\in\mathbb{T}}$ is a filtration.

Definition 10 (measurable function). Let (Ω, \mathcal{F}) , (Ω', \mathcal{F}') be measurable spaces. We call $X : \Omega \to \Omega'$ a measurable function if

$$\forall A \in \mathcal{F}' : X^{-1}(A) \in \mathcal{F}.$$

Definition 11 (borel function). Let $X:(\Omega,\mathcal{F})\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$ be a measurable function. Then X will be called a borel function.

Remark 12. The property of being a borel function depends on the σ -field \mathcal{F} from the domain of X. Therefore to stress this dependence the function X satisfying the previous definition is often said to be \mathcal{F} -measurable.

Theorem 13. Let $\mathcal{P} = \{A_1, \ldots, A_n\}$ be a partition of Ω and let $\mathcal{F} = \sigma(\mathcal{P})$. Then $X : \Omega \to \mathbb{R}$ is \mathcal{F} -measurable if and only if X is constant on each A_i .