
Wydział Inżynierii
Mechanicznej i Robotyki

Katedra Robotyki i Mechatroniki

Signal processing and identification in control of
mechatronic devices

Signal processing and identification in monitoring of
mechatronic devices

Topic: Classification and regression

Aim: Classification of 2D data using a simple classifier

Issues covered: Data clusters, dividing data for training and testing, outliers,
overfitting, decision tree classifier, classifier training

Copyright: Ziemowit Dworakowski, zdw@agh.edu.pl, galaxy.agh.edu.pl/~zdw

mailto:zdw@agh.edu.pl

Classification dataset generation

We'll start today's work with generation of a simple classification problem. Let's assume that our
data are divided into two classes, there are 5 clusters of data in A class and 4 clusters of data in B
class. Using this code we will generate cluster centers and display them on screen:

close all
rng('shuffle'); % To get different results each time
Clusters.ClustersA = 5; % How many clusters of data exist in class 1?
Clusters.ClustersB = 4; % How many clusters of class 2 exist?

% Definition of clusters centers
Clusters.ACoordinates = randn(2,Clusters.ClustersA);
Clusters.BCoordinates = randn(2,Clusters.ClustersB);

for k = 1:Clusters.ClustersA
 plot(Clusters.ACoordinates(1,k),Clusters.ACoordinates(2,k),...
'or','MarkerSize',25); hold on
end
for k = 1:Clusters.ClustersB
 plot(Clusters.BCoordinates(1,k),Clusters.BCoordinates(2,k),...
'ob','MarkerSize',25); hold on
end
xlim([-2 4]);
ylim([-2,4]);

save Clusters Clusters

Exemplary result should look similar to that shown in Fig 1.

Fig 1 – Cluster centers for two-class classification problem. The data are not linearly separable.

SPICMD, Optimization 3 Strona 2

Task 3.1: Please run the script to generate your data clusters. Circles marked in the plot should
not overlap, the problem should NOT be linearly separable. After obtaining a result that fulfills
these requirements ask LA to check whether data look OK. Then save Clusters structure on disk
– this will define your classification task for the rest of this instruction.

After obtaining cluster centers we can fill them with data. This code uses Clusters structure so
make sure that you are using the very same clusters set that was approved by LA:

clear all
close all
clc

load Clusters

Samples = 1000; % How many data samples there are?
DataDivision = 0.5; % How many data samples fall into which class?
v = 2; % v parameter of T Student's distribution

% Definition of data
for k = 1:Samples
 if(rand()>DataDivision)
 DATA(1,k) = 1;
 Ind = randi(Clusters.ClustersA);
 DATA(2,k) = Clusters.ACoordinates(1,Ind)+random('T',v)*0.15;
 DATA(3,k) = Clusters.ACoordinates(2,Ind)+random('T',v)*0.15;
 else
 DATA(1,k) = 0;
 Ind = randi(Clusters.ClustersB);
 DATA(2,k) = Clusters.BCoordinates(1,Ind)+random('T',v)*0.15;
 DATA(3,k) = Clusters.BCoordinates(2,Ind)+random('T',v)*0.15;
 end
end

for k = 1:Samples
 if(DATA(1,k) == 1)
 plot(DATA(2,k),DATA(3,k),'or'); hold on
 else
 plot(DATA(2,k),DATA(3,k),'ob'); hold on
 end
end
xlabel('x');
ylabel('y');
ylim([-3 4])

save DATA DATA

Note that DataDivision value determines split of data into classes (we can have more examples
in one class than in the other) while v value determines how heavy are tails of the data distribu-
tion – the lower the parameter, the heavier are distribution's tails (we are using T-Student's distri-
bution here). These parameter values allowed for obtaining dataset visible in Fig 2. It is worth
noting that using T-Student distribution instead of a gaussian allowed for generation of a bunch
of outliers and conveniently connected clusters to each other while still maintaining separate
cluster centers, so we've obtained a nice and interesting classification problem.

SPICMD, Optimization 3 Strona 3

Fig 2 – Generated dataset

Training and testing data

Our data should now be prepared for the purpose of training and testing classifiers. We'll ran-
domly divide it into three subsets: training, validation and testing, with 50%, 25% and 25% of
data samples, respectively. In our case it would equal 500, 250 and 250 samples. To this end we
can use the following code:

Indices = randperm(length(DATA));
DATA_permutated = DATA(:,Indices)

TR_number = ceil(length(DATA)*0.5);
VA_number = ceil(length(DATA)*0.25);
TE_number = ceil(length(DATA)*0.25);

TR_DATA = DATA_permutated(:,1:TR_number);
VA_DATA = DATA_permutated(:,TR_number+1:TR_number+VA_number);
TE_DATA = DATA_permutated(:,TR_number+VA_number+1:end);

save TR_DATA TR_DATA
save VA_DATA VA_DATA
save TE_DATA TE_DATA

Task 3.2: Using your Clusters structure generate dataset containing 1000 samples divided
equally among two classess, using v=2. Save generated dataset on disk so it could be used to
train and test classifiers. Save both the original datatset (DATA) and its divided subsets. Save
also a script that was used to generate data – so it could later be used to generate other datasets as
well.

SPICMD, Optimization 3 Strona 4

Design of a simple linear classifier

We've made sure that our dataset is not linearily separable. Nontheless, we will try and divide
these data using a straight line. To design a classifier we'll just ask a simple question regarding
each data point: “Is this point above or below a predefined line?”

Lets formulate equation for it:

W1 * x1 + W2 * x2 + b > 0 (1)

And now lets find such W1 and W2, to maximize efficiency of classification. Our classifier
should look like this:

function [ClassLabel] = InitialClassifier(x,y,Parameters)
 if(Parameters.W1*x + Parameters.W2*y + Parameters.B > 0)
 ClassLabel = 1;
 else
 ClassLabel = 0;
 end
end

Such a classifier can be saved as a function and then used to classify our data as in here:

load VA_DATA

Parameters.W1 = 1;
Parameters.W2 = 0.3;
Parameters.B = 1;

ErrorsA = 0;
ErrorsB = 0;

for k = 1:length(VA_DATA)
 if(InitialClassifier(VA_DATA(2,k),VA_DATA(3,k),Parameters) == 1)
 % Data point classified as A
 if(VA_DATA(1,k) == 1)
 % Data point classified correctly!
 plot(VA_DATA(2,k),VA_DATA(3,k),'ok'); hold on
 else
 plot(VA_DATA(2,k),VA_DATA(3,k),'or') ; hold on
 ErrorsA = ErrorsA + 1;
 end
 else
 % Data point classified as B
 if(VA_DATA(1,k) == 0)
 % Data point classified correctly!
 plot(VA_DATA(2,k),VA_DATA(3,k),'xk'); hold on
 else
 plot(VA_DATA(2,k),VA_DATA(3,k),'xr') ; hold on
 ErrorsB = ErrorsB + 1;
 end
 end
end
xlabel('x');
ylabel('y');
ErrorsA
ErrorsB
ErrorsA+ErrorsB

SPICMD, Optimization 3 Strona 5

The above script rendered results that are shown in Fig 3. There were 34 errors in A class and 61
errors in B class – not great, but so far we've picked W1 and W2 parameters quite randomly.

Fig 3 – Results of classification. Errors are marked in red

Could we score better? Lets note that we have a two-parameter, one-criterion optimization prob-
lem. Our objective function that we would want to minimize is a sum of errors in both classes.

We already have tools that can deal with this kind of problems, namely: various optimization al-
gorithms developed in scope of 1st and 2nd laboratory. It is worth noting that despite having a
continuous problem (we can assign floating point values to W1 and W2) we cannot use gradient
descent algorithm. The reason for this is as follows: If we move our separation line and cross
with it location of any data point the objective function value would not change gradually – in-
stead it will be incremented or decremented. Very small change of any parameter would likely
not cause any change of the objective function value.

In order to use any of the solutions developed before (e.g. 1+1 or genetic algorithm) we'll need to
save our script for using a classifier as a function – taking parameter values as input (marked in
green in the code), returning a sum of errors (marked in cyan) and commenting out lines for plot-
ting (marked in grey).

SPICMD, Optimization 3 Strona 6

Task 3.3: Using scripts developed in class 1 and 2 optimize parameters of your linear classifier.
Use a grid search algorithm. To optimize parameters use training data (TR_DATA). After suc-
cessful optimization test your classifier using validation data (VA_DATA). Save the script so it
could be checked by the LA later.

Task 3.4: Using scripts developed in class 1 and 2 optimize parameters of your linear classifier.
Use a genetic algorithm. To optimize parameters use training data (TR_DATA). After success-
ful optimization test your classifier using validation data (VA_DATA). Save the script so it
could be checked by the LA later.

Classifier with more degrees of freedom

Our classifier won't allow for correct classification or even just relatively small error value – be-
cause it can't classify the data that are not linearily separable. Lets allow it to have more degrees
of freedom – so it could provide more complex classification rule.

We'll modify InitialClassifier by adding a ClassLikelihood variable that will be incremented
each time when condition (1) is met and decremented each time the condition (1) is not met.
Number of degrees of freedom will be increased by increasing length of vectors of Parameters.
Our new Parameters structure might look like this:

Parameters =
 struct with fields:

Parameters.W1 = [-1.7,4.8,0];
Parameters.W2 = [-1,-1,1];
Parameters.B = [-2.7,4,0];

Inside the classifier we'll thus need checking of all the linear conditions, using e.g. such for loop:

for k = 1:length(Parameters.W1)

…
end

In each passing of this loop we'll check whether the point is classified into Class A or Class B by
each consecutive line incrementing or decrementing ClassLikelihood. If after this for loop it is
positive, the classifier will return 1 indicating that it belongs to class A. Otherwise we'll return 0.
Exemplary result of such a classification might look as in Fig. 4. It can be seen that the overall
error was greatly reduced (to 63) and the classifier is able to develop a non-linear classification
rule.

After genetic optimization the classifier with 10 degrees of freedom is able to reduce error num-
ber to 28. The result of this classification is shown in Fig 5.

SPICMD, Optimization 3 Strona 7

Fig 4 – Result of classifcation with classifier using three linear conditions.

Fig 5 – 10-lines Classifier optimized with genetic algorithm resulted in 28 errors only. Linear
conditions used are plotted as blue lines – each polygon contain a field in which data are classi-

fier to particular class.

SPICMD, Optimization 3 Strona 8

Task 3.5: Using scripts developed during instructions 1 and 2 optimize parameters of a 3, 5 and
7-line classifiers. In order to train a classifier use training data (that is: TR_DATA), Use a ge-
netic algorithm. After optimization test the obtained solution using validation dataset
(VA_DATA). Store the code for further evaluation by the LA.

Overfitting possibility

Was the efficiency of classification obtained in training and testing similar so far? Probably yes,
because number of adjustable parameters of a classifier was so low that overfitting was practi-
cally not possible. However, if we had less training data and more advanced classifier, it could
have been an issue. We have to protect the classifier from it using a validation dataset during
training.

First, however, let us consider a problem in which overfitting might occur. This time let us gen-
erate only 100 data samples (including 50 training ones, 25 for validation and 25 for test).
Exemplary dataset might look as in Fig. 6

Now, we will optimize the classifier using genetic algorithm similarily as before (using
TR_DATA) but for a stopping criterion, instead of checking only number of iterations of our op-
timization algorithm we'll also check performance on validation data (VA_DATA set) and stop
the training as soon as it starts to deteriorate. In other words, we'll assess fitness of individuals on
the basis of TR_DATA only (and based on that fitness select individuals for reproduction) but
check efficiency of selected elite individual on VA_DATA and use results of this latter check to
either continue or stop the GA. If stopping criterion based on VA_DATA efficiency deteriora-
tion triggers, GA should return the historical best solution (not a current, deteriorated one).

Fig 6 – Reduced dataset.

SPICMD, Optimization 3 Strona 9

Task 3.6: Optimize parameters of a 10-line classifier (30 degrees of freedom) on a basis of a
small training dataset (containing 50 samples). As a stopping criterion use efficiency on valida-
tion data (VA_DATA). Then, compare efficiency of this new training method with the previous
one (10-line classifier with number of interations as the only stopping criterion) using testing
data (TE_DATA). Save the script so it could be assessed later by the LA.

Additional tasks:

Task 3.7: Up until now we rarely used a final testing dataset (TE_DATA). Optimize metaparam-
eters of a GA used to train our 10-line classifier. Use large (1000 sample) dataset. After each run
or series of runs of GA test the obtained solution using VA_DATA. Finally, after deciding which
parameters' values appear to be optimal test the final optimized classifier on a TE_DATA. Pro-
vide statistical results in each case. Is TE_DATA efficiency similar to VA_DATA efficiency ob-
tained for the final classifier?

Task 3.8: Let the classification problem have non-uniform distribution of data among classess.
Let DataDivision be equal to 0.1. Does it affect overall final results? Des it affect results in par-
ticular classess? Is the obtained percentage efficiency different than before? What can we do in
such a situation? Solve this problem using two approaches: (1) by reduction of data in more nu-
merous data class and (2) by using as objective function weighted sum of errors in both classes –
where weight for less numerous class should be proportionally higher than that for more numer-
ous class. Which of this two approaches render statistically better overall results? Which allowed
for increase of efficiency in less numerous dataset?

Task 3.9: Build a classifier that is using circles instead of lines (Variable ClassLikelihood should
be incremented or decremented if a point is inside or outside of a particular circle). Each circle
should be defined by coordinates of its center and its radius. Negative radius mean that the class
the circle respond to is reversed (class B inside, class A outside of a circle). Train the classifier
using GA. Is this problem more or less dificult than before? Why?

Task 3.10: How many degrees of freedom should our classifier have for the best efficiency?
Check it using two approaches: (1) – train classifiers with different number of degrees of free-
dom starting from 8 lines, increasing this parameter e.g. by 3 until the efficiency clearly starts to
decrease. What is a source of this deterioration? Is it the increase of diffifulty of training? Is it
the overfitting? (2) Include number of lines used by the classifier in GA genome (the algorithm
is allowed to mutate genome of an individual in such a way, that it adds or deletes one line. Are
the results in both approaches consistent? Are we able to obtain classifier structure that was
found optimal in (1) approach also using (2)?

SPICMD, Optimization 3 Strona 10

SPICMD, Optimization 3 Strona 11

