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Implementation of a simple genetic algorithm

Actually,  a simple genetic algoritm is already implemented.  Last  time we've prepared a 1+1
solution  which  is  essentially  a  genetic  algorithm  with  2  individuals  in  population,  elite
succession and 1-best succession. Lets develop this code so it would enable usage of a typical
genetic algorithm with n-best succession.

To this end we'll start our basic code (random sampling) to optimize of_2D_oneminimum_2
 function and prepare new metaparameters:

P_size = 20; %  Population size
n = 10; %  Parameter n for n best succession
Step = 0.1 %  Mutation range

We'll initialize population before starting a while loop:

    for k = 1:P_size
        Population(k).OF = Inf;
        Population(k).Parameters(1) = InitialRangeX(1) + ...
        rand()*(InitialRangeX(2) - InitialRangeX(1));
        Population(k).Parameters(2) = InitialRangeY(1) + ...
        rand()*(InitialRangeY(2) - InitialRangeY(1));
    end

Note, that genes (that is: X and Y coordinates of each individual) and a corresponding Objective
Function (OF) values will be stored now in a matlab structure. Now, we'll modify the  while
loop. To make matters clear we'll show here the whole body of a loop, so right now we can just
delete everything from inside of the while loop and fill it step-by-step with the code shown be-
low.

We'll start from the iteration counting:

        iter = iter + 1;

In each passing of a while loop, instead of assessment of fitness of just one current solution, we'll
assess fitness of the whole population. We'll store results in OF field of the Population structure:

        for k = 1:P_size
             Population(k).OF = FunctionForOptimization(Population(k).Parameters);
        end

We'll want to use n-best individuals, thus we need to sort the population with respect to OF field 
of the structure. Indices will preserve information about order of the individuals (that is: 
Indices(1) stores number of the best individual, and so on:

       [~,Indices] = sortrows([Population(:).OF]');

In order to see the best individual, we can simply use:

 Population(Indices(1))



Now we'll show current state of the population by showing the objective function plot again and 
adding to it all the individuals from the population:

        if(FunctionPlot == 1)
        figure(1);
        clf
        surf(X,Y,Val,'LineStyle','none');
        view(ViewVect)
        colormap(bone)
        hold on
        else
        end

 
        if(PointPlot == 1)
            for k = 1:1:P_size   
                plot3([Population(k).Parameters(1)],...
                [Population(k).Parameters(2)],[Population(k).OF],'.r'); hold on
            end
        end

We'll store the best individual (current best solution) in the same way as before, but this time
we'll also store the genome of the best individual:

        BestHistory(iter) = Population(Indices(1)).OF;
        CurrentHistory(iter) = Population(Indices(floor(P_size/2))).OF; 
        BestIndividualGenome(iter) = Population(Indices(1));

      

And now we can start building the offspring population. Until we have any space left in the
offspring population, we'll draw two random parents individual from n best individuals stored in
parent population, use one as a template for the offspring individual, add one parameter from
another parent, then mutate offspring individual. Note the border condition that checks if any
individual was created outside of search space and in such a situation moving it to the border.

       for k = 1:1:P_size
           ind1 = randi(n);
           ind2 = randi(n);
           NewPopulation(k) = Population(Indices(ind1));
           NewPopulation(k).Parameters(1) = Population(Indices(ind2)).Parameters(1);
           NewPopulation(k).Parameters = NewPopulation(k).Parameters + ...      
           Step*randn(size(NewPopulation(k).Parameters));
           NewPopulation(k).OF = Inf;
           NewPopulation(k).Parameters = ...    
           min(MaxRangeX(2),max(NewPopulation(k).Parameters,MaxRangeX(1)));

 
       end

Now we can replace parent population with offspring population:

       Population = NewPopulation;

And we are ready to end the loop:

      SimTime = toc;
        clc
        fprintf('\nCurrent best: %f',BestHistory(end));
        fprintf('\nIteration: %d',iter);
        fprintf('\nTime: %d',SimTime);
        if(iter > MaxSteps)



        EndingCondition = 1;
        else
        end
        pause(Delay);

If the result looks as in Fig. 1, than the algorithm probably works OK. Right now we don't have
proper exploration and exploitation capabilities – but we'll work on that later. We can see initial
starting points  for population,  most  of them are quickly abandoned, only few promising are
tested  and developed,  finally  population  looses  much of  its  diversity  and gradually  exploits
minimum from one approach. Convergence speed is pretty low right now.

 

Fig 1 – example of operation of a simple genetic algorithm. “Best result” does deteriorate at
least once.

Task 2.1:  Please configure and test  basic  GA to optimize your  individual*  function of  2D,
fewminima type. Please store the code as a separate script – so it could be checked by the LA
later.  

Elite succession requires that the best individual (or a group of the best individuals) would be
stored in the offspring population with no changes. Lets modify our code so the elite individual
would be straightforwardly copied from parent population to offspring population:

NewPopulation(1) = Population(Indices(1));

Of  course  we'll  now need  to  modify  the  beginning  of  the  for loop  that  fills  the  offspring
population, it should not start with index 1 but from index 2 (after all, 1st place in the offspring
population is already taken by the elite individual). Implemented elite succession will allow the
convergence curve to look similar to that in Fig 2. 



Fig 2 – Convergence curve of AG with elite succession implemented. The results do not
deteriorate any more. 

Note: we can compare two AGs with different configurations simply by running them one after
another without closing plot window showing convergence curves. Consecutive runs will draw
their CCs on previous results thus we can easily see where converence is faster or where it ends
lower. In order to keep track of what is going on in the figure its good to change color of a CC
after each run or after major change of metaparameters. Lack of figure closing we'll obtain by
commenting out  close all command in the code. Change of figure color is possible using  Co-
nvergenceColor variable.

Task 2.2:  Compare operation of AG with and without elite succession in optimization of your
individual*  function of  2D  manyminima  type. Show convergence curves from at least three
runs of the GA without elite in red color and results of at least three runs of the GA with elite in
blue color.  Did elite presence allowed for improvement of the overall result? Did it allowed for
faster convergence? Did it allowed for higher repeatability? Please store the code as a separate
script – so it could be checked by the LA later.  

Similarily  as  in  the  1+1  algorithm  case,  exploration  vs  exploitation  balance  is  crucial  in
configuration of GAs. Also similarily, proper values of metaparameters can be chosen on the
basis of a convergence curves. 

Lets now implement change of mutation step along reverse sigmoid curve. Similarily as before
lets start with metaparameters:

InitialStep = 2;    % Exploration/exploitation balance parameters:
P1 = 2;
P2 = 10;     

And calculate new value of a mutation step in each passing of a while loop as follows:

          Step(iter) = InitialStep * (1/(1+exp((iter-(MaxSteps/P1))/P2)));  

Of course during mutation we should no longer refer to Step but instead to particular value 
calculated for given iteration: Step(iter). Finally, we can plot Step value as a function of iteration 
number:



    figure(4);
    plot(Step)
    xlabel('iteration');
    ylabel('mutation step value');

First  of  the  parameters  (InitialStep)  influences  initial  range  of  mutation.  It  should  be  large
enough so the population would “spread” in the whole search range but small enough so the
border  condition  would  not  trigger  frequently  (we  don't  want  situation  when  most  of  the
individuals during first few iterations cover only border of a search space).

P1 determines x coordinate of a sigmoid curve (actually: x coordinate of a point in which second
derivative of a sigmoid changes sign). Setting it at “2” (effectively: dividin population number
by 2) would mean that this point is located at the middle iteration. 

P2 determines how steep the sigmoid is (thus: how clear is division between exploration and
exploitation phases).

These metaparameters should be set so in initial phase AG would maintain high diversity and
cover all of the search space and then gradually focus on few or one selected local minimum.
Final iterations should result in diversity approaching 0 (best and typical individuals on the CC
should be almost identical)

Example of a CC for well-configured GA is shown in Fig. 3. Examples of bad configuration are 
provided in Fig. 4.

Fig 3 –  Point map and convergence curve of a well-configured GA



a) Poor exploration (points are not 'probing'
the whole search space)

b) Too sharp change from exploration to
exploitation and lots of 'dead iterations' – from

the 80th iteration the algorithm is not doing
anything

c) Too long exploration and too sharp change
to exploitation (we are not sure if we've

actually hit the bottom here)

d) Too weak exploitation – the population has
very high diversity till the end. It means that

we could have focused stronger on the
neighborhood of the best minimum candidate

Fig 4 – Poor configuration of the GA parameters

Task 2.3: Set values of of metaparameters that govern exploration and exploitation (parameters
of  reverse  sigmoid  curve)  so  that  you'd  obtain  a  good-looking  CC in  optimization  of  your
individual* task of 2D manyminima type. Let your algorithm use roughly around 800 objective
function  checks.  Repeat  the  task  for  2D  fewminima  function,  this  time  use  400  objective
function checs. Please store the code as a separate script – so it could be checked by the LA later.

Task 2.4: Compare:
- Multistart gradient algorithm in configuration from task 1.5
- 1+1 algorithm in configurations from tasks 1.6 and 1.7
- Genetic algorithm in configurations from task 2.3



in optimization of your  individual*  task of 2D manyminima  type and  2D fewminima  type.
Calculate mean of the obtained results and standard deviation of the obtained results for 10 tries
for each algorithm and each task (you may use those from instruction 1 if they were accepted by
the LA).  Store  a representative example of  convergence curve for each configuration of  the
algorithm and each function. You should have 6 images: 2 functions * 3 methods. Please store
the code as a separate script – so it could be checked by the LA later.  

In practice, configuration of the evolutionary algorithms is done usually according to the 
following procedure:

1) Pick a 'reasonable' set of metaparameter values, let the convergence curve look OK
2) Run the algorithm many times
3) Observe several CCs at the same time. Is the algorithm repeatable? Does it have good 
exploration? Is it sensitive to local minima? Does it have problems with exploitation?
4) Propose a change to parameters to address the identified problems, then return to point 2. 
Repeat many times – until you see no improvement in consecutive tries. 

We'll apply this process to configuration of the GA for multidimensional optimization problems. 
To this end we'll 

1. Turn off all the visualizations except convergence curve plot and
2. Modify way of population generation. Instead of generating just two numbers for 

Parameters of each individual, we'll generate as many as is the number of dimensions of 
our problem. Note, that in mutation and in objective function value check we don't have 
to modify anything – the solution is already general enough and can handle any number 
of dimensions. 

Task 2.5: Configure the GA to solve your individual* function of the multidimensional type.
Use the default set of metaparameters. Use 1000 objective function checks:

  P_size = 20; 
  n = 10;

InitialStep = 2;
P1 = 2;
P2 = 10;

 Check repeatability of the GA with these meataparameters, identify possible problems, correct
configuration and test it again. In case of poor repeatability test not only the change between
exploration and exploitation, but also population size and selective pressure. Were you able to
improve the results in a statistically-significant way? Repeat these steps several times (parameter
change and test of its influence), save all the results (consecutive convergence curves and the
obtained results). Be prepared to explain your actions.

Additional tasks:

Task 2.6:  How non-deterministic objective function affects results provided by GA? Test your
GA in optimization of a rand function, compare your results with well-configured 1+1 method.
Check if you can improve the result by better choice of metaparameter values for GA algorithm

Task  2.7:  In  some  cases  optimization  task  changes  during  optimization  process  (so-called
adaptive optimization problems). In our case we can try to solve this kind of problem by using



functions which name contain  _Adaptive component. In addition to change of name, we also
need to send to the function information about how many iterations are left (as a percent of time
left), so instead of calling objective function like this: 
Population(k).OF = FunctionForOptimization(Population(k).Parameters);

 we'll do it like this: 
Population(k).OF = FunctionForOptimization(Population(k).Parameters,iter/MaxSteps);

In this type of tasks it is essential to aim not for the final result of optimization (the final value of
the BestHistory) but rather to keep the current best value as low as possible for the whole run of 
the code. One of the many possible modifications of the GA to work in this scenario is getting rid
of the variable step and build the population using the following aproach:

1) Half of the offspring individuals is created using small value of mutation
2) The other half is created using big value of mutation.

The former half is responsible for exploitation, the latter for exploration. Your task will be to 
configure the method, so to check what values of big and small are the best in order to minimize 
the average value of BestHistory. 

Task 2.8: Starting from the best result obtained in task 5 try improving it even further using a
1+1 solution. A starting point for your solution should be set of metaparameter values that you
were not able to improve any further. Was 1+1 solution able to provide even better result? Was
this improvement statistically significant?

Now change the problem to any other multidimensional function and again start from your set of
metaparameter values optimized in task 5 - and improve them using 1+1 algorithm. Was the
improvement better in this problem?

Task 2.9*: One of the very efficient method in evolutionary computation is a memetic algorithm.
It consists of additional gradient optimization loop implemented within a main genetic loop, for
the purpose of pre-optimization of each new individual. The procedure is as follows:

1) Evaluate all the individuals
2) Generate offspring population
3) For each offspring individual run several iterations of a gradient search. The gradient method
step should be constant within this run, but depending on the current mutation step value.
4) Return to point (1)

Now configure this solution: Check how many gradient steps are necessary to provide the best
performance. Then compare it with the best configuration of function from task 5 in optimization
of your  individual  function of the  multidimensional type. Is memetic algorithm statistically
different? Remember, that you need to observe how many objective function checks each of the
algorihms have. For instance:

10 individuals  x  3  steps  of  gradient  x  (4+1)  dimensions  x 10 generations  = 1500 objective
function checks. You may increase number of available checks, but this needs to be done for both
the algorithms (standard and memetic one).


