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Introduction

The aim of this exercise is to solve the same problem as before (i.e. letter classification) but this time: using
deep learning. In scope of the exercise we'll use the same data and the same individual tasks as before – but
this time we'll use raw image data. It is likely that you already have access to DeepLearningData archive. If
not – you can build it from StudentData archive from previous class using script provided in attachment to
this instruction. 

imageDatastore

In deep learning we often use so much data that it is impossible to store that in RAM memory. Because of
that normally deep learning systems access data straight from disk. In scope of this exercise we will use
rather small set of data, but this principle will still be met. imageDatastore object can be created as follows:

 Path = {    'DeepLearningData/Normal/A',...
             'DeepLearningData/Normal/D'};
 imds = imageDatastore(Path,'IncludeSubfolders',true,'LabelSource','foldernames');

We've used two paths: To folders containing “A” and “D” letters, respectively. We can provide here any 
number of sources of data – as consecutive fields in “Path” vector. We only need to remember that folder 
names will became object labels – so if objects of the same class are in different folders in various locations, 
folder names have to be identical. 

Let us check how do our dataset look like. We'll plot here 20 random images:

        figure;
        perm = randperm(length(imds.Files),20);
        for i = 1:20
            subplot(4,5,i);
            imshow(imds.Files{perm(i)});
        end

Next, we'll check how many objects of each class we have:

        labelCount = countEachLabel(imds)

Similarily as before, we'll divide data into training and validation subsets. This time, however, we don't need
to do that manually. We'll use a built-in function instead: 

        numTrainFiles = 400;
        [imdsTrain,imdsValidation] = splitEachLabel(imds,numTrainFiles,'randomize');



We'll use 400 samples for training and remainder (200) for validation.

Elements building up the convolutional neural net

Our net will be designed using a layers vector, that will have various components of the following kinds: 

imageInputLayer([150 150 1]) 

Input layer – it defines size of the input data (letter image in our case).

 convolution2dLayer(3,8,'Padding','same')
    batchNormalizationLayer
    reluLayer

Convolution layer. First argument refers to the filter size (here: 3x3), second to the number of parallel filters
used  (here:  8).  Two latter  arguments  ensure  that  the  output  of  this  layer  has  the  same  size  as  input.
Convolution is usually followed by normalization and nonlinear activation (here: ReLU activation).

    maxPooling2dLayer(2,'Stride',2)   

A layer that performs MaxPooling operation – reducing the size of our data.

 fullyConnectedLayer(2)

A fully-connected layer – if it is used as a hidden layer, we define its neuron numbers in brackets. If it is just
before softmax layer – number of neurons needs to be equal to number of classes. 

softmaxLayer
    classificationLayer

Two final layers that map output of the last layer of the fully connected net to actual classification space. 

First (not so) deep net

Let us start with a net similar to the one used before, that is, having two hidden layers with 10 neurons in
each. Let us name it “MLP1”. As an activation function we'll use ReLU activation this time:

layers = [
    imageInputLayer([150 150 1])    
    fullyConnectedLayer(10)
    reluLayer
    fullyConnectedLayer(10)
    reluLayer
    fullyConnectedLayer(2)
    softmaxLayer
    classificationLayer];

This net should now be configured for training, using the following configuration vector:

options = trainingOptions('sgdm', ...
    'InitialLearnRate',0.01, ...
    'MaxEpochs',10, ...
    'Shuffle','every-epoch', ...
    'ValidationData',imdsValidation, ...
    'ValidationFrequency',30, ...
    'Verbose',false, ...



    'Plots','training-progress');

And finally train our net:

net = trainNetwork(imdsTrain,layers,options);

In our case we've obtained 95.5% accuracy on a validation subset – which seems to be suspiciously high, 
when we take into account the fact that we use pretty simple net and don't even have any data preprocessing!
Lets think on why this happened?

A problem "to think through": (Try to answer the following questions right now. The answers will 
probably be provided by the LA by the end of the class): 

1 – Using no data preprocessing and no feature extraction we have very good classification accuracy. May
it be caused by the fact that we initially divided our data fully randomly? Does it ensure that no overfitting
occurred?  
2 – What does the net have in its “world”? What is the only knowledge it did receive? Are we able to build
efficient classification rules based on particular pixel positions in this problem?
3 – How many data in our dataset are truly “difficult”? How many letters are basically copies of each
other? 

Task 1: According to the above codes prepare a MLP1 net to solve your individual task. What efficiency
did it receive? Is the result repeatable? 

Validation of decision systems on validation subset that is taken randomly from the initial data set may
prove to be risky. The most important threat is a hidden overfitting phenomenon, that is, a situation in which
testing data are in fact taken from different source (e.g. different folder) but are too similar to the ones used



in  training  (contain  the  same  information).  A practical  example  of  this  situation  may  be  a  road  sign
classification  task  in  which  we'd  like  to  distinguish  two speed limit  signs  from each  other:  each  with
different speed. Lets assume that we've taken 100 images of sign “speed limit 70 kph” and 100 images of
“speed limit 50 kph”. Let us further assume that for the “70 kph” sign all of the images were acquired with
clear sky as a background while for the “50kph” sign all of the images were acquired with a green forest as a
background. Now, we divide the data randomly into training and testing datasets. The algorithm can easily
learn to distinguish signs from each other based only on the background of the signs. If we use a standard
testing procedure based on our randomly selected dataset – we won't learn that the classification accuracy is
not general.

Because of that we'll  test  our net based on an independent set  of data.  We'll  use a “W2” dataset (with
distorted images) to this end. Let us build image datastore:

 Path = {    'DeepLearningData/W2/A',...
             'DeepLearningData/W2/D'};
 imdsTest = imageDatastore(Path,'IncludeSubfolders',true,'LabelSource','foldernames');

And now test our net:

YPred = classify(net,imdsTest);
YValidation = imdsTest.Labels;
accuracy = sum(YPred == YValidation)/numel(YValidation)

In this case we've obtained 93% efficiency – so it appears that the problem that we worked so hard to solve 
during previous instruction – is much more straightforward that we've anticipated! 

Task 2:  Check the accuracy of the net in your  individual task – when tested on “W2” dataset. Does
training and testing again changes this result? Save the obtained accuracy values in the table provided in
the last part of this instruction.

Convolutional neural net

Deep learning would not have much sense without layers that allow for low-level feature extraction. One of
the mechanisms for that purpose is a convolution layer. Let us incorporate it to our network. The modified
net we'll call  CNN1

Let the layers be organized as follows:

layers = [
    imageInputLayer([150 150 1])    
    convolution2dLayer(3,8,'Padding','same')
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2,'Stride',2) 
    convolution2dLayer(3,16,'Padding','same')
    batchNormalizationLayer
    reluLayer   
    fullyConnectedLayer(2)
    softmaxLayer
    classificationLayer];

This net is not particularly deep  (Credit Assignment Path Depth  is only 3 in here, so only 1 more than
before) – but in our example it allowed for accuracy equal to 98,5% - Below we can find a net even deeper
(let us call it CNN2): 



layers = [
    imageInputLayer([150 150 1])    
    convolution2dLayer(3,8,'Padding','same')
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2,'Stride',2) 
    convolution2dLayer(3,16,'Padding','same')
    batchNormalizationLayer
    reluLayer   
    maxPooling2dLayer(2,'Stride',2) 
    convolution2dLayer(3,16,'Padding','same')
    batchNormalizationLayer
    fullyConnectedLayer(10)    
    reluLayer 
    fullyConnectedLayer(2)
    softmaxLayer
    classificationLayer];

Do this net provide even better result?

Task 3: In solving your individual task train the CNN1 and CNN2 nets based on Normal data. Test them
now on “W2” dataset. What accuracy did you obtain? Does starting training from scratch and testing the
nets again change the results much? Save the results in table at the end of this instruction.

Testing the nets in multiclass problems

Task 4: Check the performance of the nets in a multiclass problem. Load all the letters from Normal 
dataset (A,D,F,H,K,L,M,N,T and Y). Remember to modify the size of output layer so it would be equal to 
the new class number (10). What is the validation accuracy and what is the testing accuracy on a separate 
dataset (W2)? Save the results in the table present at the end of this instruction. 

In order to find out which classes cause the net the most trouble, calculate a Confusion Matrix:

plotconfusion(YValidation,YPred)

Testing the nets in a more difficult classification task

Task 5: Check the performance of the three nets in your individual  task – this time using raw data from 
database that contain backgrounds (DeepLearningDataCaptcha). Of course the nets should be both trained
and tested on respective subsets of new dataset, so “Normal” data from Captcha dataset for training and 
validation and “W2” data from Captcha dataset for final testing.

If you don't have DeepLearningDataCaptcha dataset, you can easily build it by uncommenting lines of 
code in 2nd attachment.



Configuration of a training algorithm

Up until now we were just using deep nets in their default condition. Right now we'll investigate this a bit
deeper. For instance, we could modify an optimizer ('sgdm',  'rmsprop' oraz  'adam') used for net training
changing its type, learning rate, way of decrease of learning rate over time or regularization. 

For now, let us test just one of them and lets modify a LearningRate parameter:

Task 6: For Task 4 problem test LearningRate values from this set: [0.1 0.02, 0.01, 0.005, 0.001] – how
the  change  affects  the  learning  time?  How does  it  affect  convergence?  How does  is  affect  the  final
accuracy obtained? Are the result repeatable? Is the repeatability influenced by LearningRate value?

Additional tasks:

Task 7: Solve a task of “Waviness detection”, that is: classification whether the particular letter comes 
from Normal, W1 or W2 datasets. To this end you'll need to build a new imageDatastore:

Load images simultaneously from both categories, e.g. like that:

 Path_a = {    'DeepLearningData/Normal/A',...
            'DeepLearningData/W2/A'};
 imdsDistortion = 
imageDatastore(Path_a,'IncludeSubfolders',true,'LabelSource','none');

Now, 'manually' adjust labels for all the samples based on order of their loading, like that:

 LB1 = categorical(zeros(600,1));  for k = 1:600;    LB1(k) = 'N'; end
 LB2 = categorical(zeros(600,1));  for k = 1:600;    LB2(k) = 'W'; end
 imdsDistortion.Labels = [LB1;LB2];
 imdsDistortion.Labels = setcats(imdsDistortion.Labels,{'N','W'})

What is the accuracy obtained for all the three nets? Why that? Does adding more letters to the sets (e.g.
'N' dataset contain 'Normal' "F","K","M" and "N" letters, 'W' dataset contains the same letters but taken
from 'W1' folder) makes the task easier or harder? Is it possible to determine whether the letter unseen
during training is “wavy” or not?

Task 8: For the task chosen by the LA do optimization of at least three chosen metaparameters of the net.
Remember that the methods are non-deterministic – the optimization needs to be statistics-based (e.g.
using boxplots)

Description of the training parameters can be found e.g. in here: 
https://www.mathworks.com/help/deeplearning/ref/trainingoptions.html

Task  9:  Do task  4  again,  this  time  for  the  letters  in   DeepLearningDataCaptcha database.  Let  the
evaluation be statistically-significant. 



Result tables

Individual task: Classification of
…. and …. letters 

Validation (200 samples)
MLP1 Try 1

Try 2
Try 3

CNN1 Try 1
Try 2
Try 3

CNN2 Try 1
Try 2
Try 3

"All the letters"
Validation (200 samples)

MLP1 -
CNN1 -
CNN2 -

"Captcha",  individual  task:
Classification  of  ….  and  ….
letters 

Validation (200 samples)
MLP1 -
CNN1 -
CNN2 -

"Captcha", all the letters:
Validation (200 samples)

MLP1 -
CNN1 -
CNN2 -



Attachment 1

Code that builds folders for imageDatastore based on StudentData:

Letters = {'A','D','F','H','K','L','M','N','T','Y'};
for k = 1:length(Letters)
    Letter = Letters{k}
    BS = load(strcat('StudentData/Features',Letter));
    mkdir(strcat('DeepLearningData/Normal/',Letter));                                
    for k = 1:length(BS.Data);           Name = strcat('Image',num2str(k),'.png'); ...
        I = BS.Data(k).Normal.Image;         S = size(I);   
        offY = floor((150 - S(1))/2);    offX = floor((150 - S(2))/2);
        New = logical(zeros(150,150));   New(offY:offY+S(1)-1,offX:offX+S(2)-1) = I;
        % New = Captcha(New);     
        imwrite(New,strcat('DeepLearningData/Normal/',Letter,'/',Name));        
    end
    mkdir(strcat('DeepLearningData/W1/',Letter));                                 
    for k = 1:length(BS.Data);           Name = strcat('Image',num2str(k),'.png'); ...
        I = BS.Data(k).W1.Image;         S = size(I);   
        offY = floor((150 - S(1))/2);    offX = floor((150 - S(2))/2);
        New = logical(zeros(150,150));   New(offY:offY+S(1)-1,offX:offX+S(2)-1) = I; 
        % New = Captcha(New);    
        imwrite(New,strcat('DeepLearningData/W1/',Letter,'/',Name));       
    end
    mkdir(strcat('DeepLearningData/W2/',Letter));                                
    for k = 1:length(BS.Data);           Name = strcat('Image',num2str(k),'.png'); ...
        I = BS.Data(k).W2.Image;         S = size(I);   
        offY = floor((150 - S(1))/2);    offX = floor((150 - S(2))/2);
        New = logical(zeros(150,150));   New(offY:offY+S(1)-1,offX:offX+S(2)-1) = I; 
        % New = Captcha(New);
        imwrite(New,strcat('DeepLearningData/W2/',Letter,'/',Name));        
    end
end

Attachment 2

Captcha function that builds base with backgrounds:

function [ImageRes] = Captcha(ImgIn)
    ImgBG = rgb2gray(imread('D:\NAUKA\__DYDAKTYKA\2019_2020 (PhD 5)\Instrukcje\Database\Exported\BG.png'));
    Image1 = uint8(100*ImgIn);
    Image1 = imgaussfilt(Image1);
    ImgBG = ImgBG.*0.8;
    Cx = randi(size(ImgBG,1)-151);
    Cy = randi(size(ImgBG,2)-151);
    Image2 = ImgBG(Cx:Cx+149,Cy:Cy+149);
    ImageRes = Image1+Image2;
end
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