
5/5/2024

1

Image interpretation and
Deep Learning

Ziemowit Dworakowski

AGH University of Krakow

zdw@agh.edu.pl

Signal Processing and Identification in Control and
Monitoring of Mechatronic Devices

AI usage in image processing tasks

- Classification / Labeling
Putting labels on the image or its parts

- Intelligent global processing of images
Filter calibration, filtration, image segmenation, enhancing

- Modeling – advanced interpretation of vision data
Understanding what is going on in the image (and why)

- Artificial image generation
Building new images from prompts, augmenting image datasets

Can be done by
shallow and
deep learning

Can be done
by deep
learning only

x1

x2

x3

…

xn

x1

x2

x3

…

xn

x1

x2

x3

…

xn

Basic representation

Interpretation

(e.g. object recognition)

Problem at hand

Data

(eg. an image,
video sequence,

etc.)
Features

Dimensionality
reduction

x1

x2

x3

…

xn

Feature vector:
a point in a feature space

Model
(e.g. a classifier)

S
h

a
ll

o
w

 l
e

a
rn

in
g

Model
(e.g. a classifier)

D
e

e
p

 l
e

a
rn

in
g

1

2

3

5/5/2024

2

x1

x2

x3

…

xn

x1

x2

x3

…

xn

x1

x2

x3

…

xn

Interpretation

(e.g. object recognition)

Problem at hand

Data

(eg. an image,
video sequence,

etc.)
Features

Dimensionality
reduction

x1

x2

x3

…

xn

Feature vector:
a point in a feature space

Model
(e.g. a classifier)

How to select features?
- Have low number of them
(The higher the numer is, the more advanced
classification algorithms are needed)
- Independent, uncorrelated
(We don’t want to copy information stored in
other features)
- Informative (meaningful)
(Each feature should contribute to the solution)

Typically, the more difficult the task is, the
higher level of abstraction is required from
features

Steps required for design
of a shallow image-based classifier

1. Data acquisition (many examples of objects from all the classes)
2. Preprocesing to highlight class differences
3. Design of a good feature vector (sensitive to damage)
4. Design and training of a classifier based on training subset of data
5. (optional) Optimization of metaparameters using a validation subset of data
6. Test using a testing subset of data

Circumference to area ratio

Corner number

Moment invariants

Number of detected objects

Area

Object location

Object color

Steps required for design
of a shallow image-based classifier

1. Data acquisition (many examples of objects from all the classes)
2. Preprocesing to highlight class differences
3. Design of a good feature vector (sensitive to damage)
4. Design and training of a classifier based on training subset of data
5. (optional) Optimization of metaparameters using a validation subset of data
6. Test using a testing subset of data

Circumference to area ratio

Corner number

Moment invariants

Number of detected objects

Area

Object location

Object color

If problem is simple enough and features
are good enough, even simple decision
tree will get the job done. Otherwise, we
need to try to improve classifier

4

5

6

5/5/2024

3

Assumptions:
- Task is so difficult that simple classifiers are not usable
- We’ve decided to use MLP

Decisions to be made:
- How to divide data among train/val/test datasets?
- What algorighm should be used for training?
- How to structure our neural network?
- How to actually evaluate our decisions?

How many layers?

How to assign neurons to layers?

#W = 51 #W = 44 #W = 49 #W = 41

Versatile
High level of

abstraction, difficult
training

Versatile,
representation-

centered

Low level of
abstraction, easy

training

How to choose a MLP structure?

How many neurons?

Its best to start from an arbitrary
point based on experience and
then proceed with changes from
there. Because otherwise we
would need to do full
optimization…

Error

Hyperparameter value
(e.g. number of neurons)

A „mean” approach Average several tries for each of the methods. Usually only a few
tries is required to observe „general tendencies” (e.g. in which
area should we look for an actual minimum)

7

8

9

5/5/2024

4

Error

Hyperparameter value
(e.g. number of neurons)

A „mean” approach Average several tries for each of the methods. Usually only a few
tries is required to observe „general tendencies” (e.g. in which
area should we look for an actual minimum)

Often metaparameter value changes affect not only general error values
but also their spread. Using many tries and generating box plots of the
results allows for understanding of the meaning of the results.

A „box-plot” approach

x

Outlier

Max (minus outliers)

1st quartile

Median (2nd quartile)

3rd quartile

Min (minus outliers)

1. Classifier should be chosen on a basis of our knowledge of a feature space
(How many dimensions? How many features? Are the samples clustered?)
The „task type”, (e.g. do we classify cookies or vegetables) is much less relevant.

2. Training, testing (and validation) datasets should be separate
Either we begin with random division of a data into training and testing subsets, or
(better!) we gather new portion of data for testing purposes in another experiment.

3. Number of degrees of freedom of a classifier (e.g. net weights) should depend on
number of data samples
A good „rule of thumb” is that for each DOF of a classifier at least 10 data samples are
required. If we can’t do that, we make sure that overfitting is accounted for!

4. Feature quality > Classifier
Good features allow for easy classification even with a simple classifier. Advanced
classifier won’t overcome weak features. It is better to spend more time on feature
extraction than on classifier configuration.

General remarks:

Credit Assignment Path (CAP) -> numer of consecutive nonlinear
transformations of input data (neural network layers)

Structural difference Functional difference

Shallow learning: CAP depth <= 3 Features as inputs

Deep learning: CAP depth > 3 Raw data as inputs

CAP = 3

This distinction
is more important…

10

11

12

5/5/2024

5

So… What actually allows us learning path
from raw data to high-level interpretation?

- ReLU and Leaky ReLU activations
- Convolutional kernels
- Pooling
- Regularization
- Fine-tuning

- Adversarial training
- Attention mechanisms
- Autoencoders
- Latent space
- Embeddings
- Reinforcement learning
- Transfer learning
- Transformers
- Recurrent neural networks
(including Long-Short-Term-Memory)

These are basic concepts – most of DL state-of-
the-art engines use them in one form or another

These are more advanced and required to
understand specialized applications, for
instance Midjourney or ChatGPT

Sigmoid activation
+ works nice for small nets
- may cause gradient decay in large nets
(rendering training to be inefficient)

Rectified Linear Unit (ReLU) activation
+ Combats gradient decay in large nets
+ Faster training
-/+ Can cause „neuron death” problem

Provides:

* Convolutional filtration

* Nonlinear filtration

* Morphological filtration

* Extracts low-level features
(recognition of „small objects”)

* Thanks to weight sharing one net can
do multiple tasks at once

* We can have feature maps as outputs

Convolutional kernel

13

14

15

http://www.agh.edu.pl/

5/5/2024

6

* We preserve the highest map values

* We preserve spatial relations
between features

* We decrease dimensionality
of the problem

(Max) pooling

In order to prevent memorizing data we can use additional
constraints – typically refering to admissible level of task
complexity.

In practice we usually iteratively slightly spoil the classifier.
Whenever generalization is achieved and the classifier begins
fitting to noise, regularization factor starts do dominate over
parameter-update routine.

For example:
• In gradient-based training, apart from weight update by the gradient-based policy
we also randomly modify all or some weights

• Some net connections are deleted in-between net training cycles (a „brain
damage” approach)

Regularization

f2

f1

We can stop this proces in two
ways:

1. By iteratively adding random
noise to weights – not allowing
the algorithm to actually
memorize data samples

Graphical example – for explanation purposes only. Deep learning
systems never work in only two-dimensional feature spaces!

16

17

18

http://www.agh.edu.pl/
http://www.agh.edu.pl/

5/5/2024

7

f2

f1

We can stop this proces in two
ways:

1. By iteratively adding random
noise to weights – not allowing
the algorithm to actually
memorize data samples

2. By penalizing high weights
(indirectly: not allowing high
model complexity)

Fine tuning
In any case we’ll need a lot of data and large computing power

In specialized cases there is often not enough data samples for training
It is often costly and time consuming to train a full model from scratch

Solution:
general training on general data, fine-tuning on the most relevant data

We do that generally by reinitializing weights
of final layers of the neural network while

freezing the remaining layers

Fine tuning - examples

Train a Large Language Model to
generate plausible text on a general

text corpus (large text database)

Fine-tune it on texts by one author to
allow mimicking his style

Train a Deep Neural Network for
general object recognition

Fine-tune it on examples of two
squirrel species to increase accuracy

for a specific task

Train a Deep Neural Network for
speech recognition

Fine-tune it on ultrasound inspection
data to allow for distinguishing
healthy from broken structures

19

20

21

5/5/2024

8

Examples: Matlab DCNN

Examples: YOLO v4

Generator
(a „reverse DCNN)

Random vector

Real images

Discriminator
(a DCNN)

Real
or fake?

Train to maximize error (fool the discriminator)

Train to minimize error
(expose the Generator)

Generated (fake) images

Examples: Generative-adversarial nets

22

23

24

http://www.agh.edu.pl/
http://www.agh.edu.pl/
http://www.agh.edu.pl/
http://www.agh.edu.pl/
http://www.agh.edu.pl/
http://www.agh.edu.pl/

5/5/2024

9

Generator
(a „reverse DCNN)

Can be anything

Discriminator
(a DCNN)

Real
or fake?

Train to maximize error (fool the discriminator)

Train to minimize error
(expose the Generator)

Generated anything

Examples: Generative-adversarial nets

Summary (topics for test):

1) Examples of tasks in inteligent image processing
2) Processing path in deep and shallow learning (steps necessary, with example)
3) Functional and structural difference between shallow and deep learning
4) Differences between various MLP configurations
5) How can we optimize MLP structure? (Mean approach, box-plot approach)
6) Explain 4 general remarks for classifier training
7) Explain ReLU activation function, compare to sigmoid
8) Explain convolutional kernel
9) Explain max pooling
10)Explain regularization
11)Explain fine-tuning (with examples)

(Detailed schemes of various deep learning systems won’t be asked on tests)

25

26

http://www.agh.edu.pl/
http://www.agh.edu.pl/
http://www.agh.edu.pl/
http://www.agh.edu.pl/

	Slide 1: Image interpretation and Deep Learning
	Slide 2: AI usage in image processing tasks
	Slide 3: Basic representation
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Convolutional kernel
	Slide 16: (Max) pooling
	Slide 17: Regularization
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Examples: Matlab DCNN
	Slide 23: Examples: YOLO v4
	Slide 24: Examples: Generative-adversarial nets
	Slide 25: Examples: Generative-adversarial nets
	Slide 26: Summary (topics for test):

