
09.10.2024

1

Regression

Ziemowit Dworakowski

AGH University of Krakow

Mechatronic Engineering program:
Python for machine learning and data science

Example 1: Used car retail (2023)

We have a 7-year old Opel Astra, with 80 000 km mileage.
We want to sell it quickly with as high price as possible.

Too highToo low

Car won’t
sell quickly

We will not
earn much

Initial price

Example 1: Used car retail (2023)

Mileage [1000 km]

Price
[1000 PLN]

50 100 150 200

80

25

50

75

Our car has 80 000 km mileage.
What price should we set?

Roughly 65k maybe?

1

2

3

09.10.2024

2

Example 1: Used car retail (2023)

Age [years]

Price
[1000 PLN]

2 4 6 8

7

25

50

75

Our car is 7 years old.
What price should we set now?

~40k maybe?

Example 1: Used car retail (2023)

Mileage [1000 km]

Price
[1000 PLN]

50 100 150 200

Age [years]

2

4

6

8

74 606581

65 53
60 5772

50 43
66 4456 4949

2545
52 38

56 4337

303243 42

Now we sell this one.
What price should we set?

50k seems like a good choice

What would happen if we aimed to sell this one?
(Probably we should not look for closest neighbors only)

Example 1: Used car retail (2023)

Mileage [1000 km]

Price
[1000 PLN]

50 100 150 200

Age [years]

2

4

6

8

74 606581

65 53
60 5772

50 43
66 4456 4949

2545
52 38

56 4337

303243 42

Of course we still don’t see all the contributing factors.
- These cars can have different equipment versions

(e.g. manual vs automatic gearbox)
- They can have different levels of general wear
- Prices can be affected by geographical factors

These could be included as
further data dimensions

But then we should probably gather much
more data to densely fill the feature space

4

5

6

09.10.2024

3

Let’s recap:

Target
value

We want to have a model that predict
Target value based on features values.

𝑓(𝒙)
A vector of inputs
(Features)

x

Let’s recap: We want to have a model that predict
Target value based on features values and model parameters.

𝑓(𝒘, 𝒙)Linear model
3D+: using hyperplane

Nonlinear model
3D+: using surface

Feature 1

Target
value

Feature 1

Target
value

𝑓 𝒘, 𝒙 = 𝒘𝒙 + 𝑏
𝑤1𝑥1 + 𝑤2 𝑥2 +… + 𝑤𝑛 𝑥𝑛 + 𝑏

Features

Model parameters

We will still have a general 𝑓 𝒘, 𝒙
form, but the relations will be

nonlinear now and depending on
the model.

Regression means finding a model that estimates
relationship between one data variable and the others

𝑦 = 𝑓(𝒘, 𝒙)

Target value

a.k.a:
Dependent variable
Outcome
Response
(Label)

Features

a.k.a:
Independent variables
Explanatory variables
Inputs
Predictors

Model parameters

a.k.a:
Weights
Unknown parameters

(often also denoted as 𝜷)

7

8

9

09.10.2024

4

𝑦 = 𝑓(𝒘, 𝒙)

We want to minimize error between known targets 𝒀 and targets predicted
by model for a known set of input data 𝑿 by adjusting model parameters 𝒘

For that we can use least squares minimization:

𝑎𝑟𝑔𝑚𝑖𝑛𝒘

𝑖

(𝑦𝑖 − 𝑓 𝒘, 𝒙𝑖)
2

Regression means finding a model that estimates
relationship between one data variable and the others

Linear regression

x1

Target
value

𝑦 = 𝑤1𝑥 + 𝑤𝑏 𝑎𝑟𝑔𝑚𝑖𝑛𝒘

𝑖

(𝑦𝑖 − (𝑤1𝑥𝑖 + 𝑤𝑏))
2

Model:
Model fitting:

We want to find such line that sum
of squares of these green line
segments is as small as possible

A straight line does not really allow to
model these data properly…

Locally weighted regression

y

x1

But what we actually use this line for, is
to predict values for particular x

So maybe we could use a line model –
with a small change of fitting method

10

11

12

09.10.2024

5

Locally weighted regression

y

x1

Lets answer what should be the
model output (y) for this value of x

We want to use the same model: 𝑦 = 𝑤1𝑥 + 𝑤𝑏

This time we will fit it separately for each point
so that neighboring points will be more
important

Given a point 𝒙𝒕 assign weights 𝜶𝒊
for each data sample 𝒙𝒊 where 𝝉
serves as a „width” metaparameter

𝛼𝑖 = 𝑒−
(𝑥𝑖−𝑥𝑡)

2

𝜏

𝑎𝑟𝑔𝑚𝑖𝑛𝒘

𝑖

𝛼𝑖 ∙ (𝑦𝑖 − (𝑤1𝑥𝑖 + 𝑤𝑏))
2

𝒙𝒕

𝒙𝟏 𝒙𝟐 𝒙𝟑 …

𝝉

y

Locally weighted regression is nice, but requires
calculation of a regression model each time we
need an answer – it is not viable if our model
needs to be fast and memory efficient

x

y

Do your remember a kNN classifier? This works using a similar idea! We
are ignoring what happens in the entire feature space – we just assign a
value or class based on the neighbors of the point of interest…

x
x

13

14

15

09.10.2024

6

y

We just need to try a nonlinear one
and check if it helps…

How do we know that we actually
need a nonlinear model?

We could measure fitting error…

A better model…

Not so much better…

x

x

y

We want to have a model that predict
Target value based on features values and model parameters.

𝑓(𝒘, 𝒙)Linear model
3D+: using hyperplane

Nonlinear model
3D+: using surface

We want to have a model that predict
Target value based on features values and model parameters.

𝑓(𝒘, 𝒙)Linear model
3D+: using hyperplane

Nonlinear model
3D+: using surface

And now we just need to think how we want to
introduce nonlinearities…

We will cover three examples:
- Polynomial model
- SVM
- Neural network

16

17

18

09.10.2024

7

Polynomial model

𝑓 𝒘, 𝒙 = 𝑏 + 𝒘𝟏𝒙
𝟏 +𝒘𝟐𝒙

𝟐 +𝒘𝟑𝒙
𝟑 + …

Linear model

Quadratic model

Polynomial models work just like linear models, with one exception – we
actually need to set up a metaparameter – degree of the used polynomial

Note that these are vectors of
weights, not just single numbers!

We do it usually by increasing the degree
until the model stops improving significantly

Support Vector Machine (SVM)

y

y

x

x

Margn width

Support vectors

(We are no longer interested in
point-by-point errors)

We fit the model so the width of
the margin is minimal

Support Vector Machine (SVM)
y

x
y

x

We allow a few points to fall outside
of margin (we add their errors to the
cost function)

We fit the model so the width of
the margin is minimal

Error

19

20

21

09.10.2024

8

Support Vector Machine (SVM)
y

x
We allow a few points to fall outside
of margin (we add their errors to the
cost function)

We fit the model so the width of
the margin is minimal

We change nonlinear regression into
linear one by morphing the feature
space using kernels

Support Vector Machine (SVM) : kernel trick

𝑓(𝒘, 𝒙)

𝑓(𝒘,𝐾(𝒙))
Kernel K maps data nonlinearily into
space with higher number of
dimensions

y

x
y

K(x)

Support Vector Machine (SVM) : kernel trick

y

x1 2 3

𝑓(𝒘, 𝒙)

𝑓(𝒘,𝐾(𝒙))

1
2
3
4

22

23

24

09.10.2024

9

Support Vector Machine (SVM) : kernel trick

y

x -> x21 2 3 4 5 6

𝑓(𝒘, 𝒙)

𝑓(𝒘,𝐾(𝒙))

1
2
3
4

Support Vector Machine (SVM) : kernel trick

y

x

We are not hand-crafting a „proper” function!
We are just allowing the method to figure it out by allowing additional
flexibility. That is: The function family is chosen so that it enables many
different transformations.

A polynomial?

A sigmoid?
(also: combination of
different sigmoids)

Artificial neural network

y

x

𝑓 𝒘,𝒙 = 𝑓1 𝒘1, 𝒙 + 𝑓2 𝒘2, 𝒙 + ⋯+ 𝑓3 𝒘3, 𝒙

The idea here is to take a lot of simple nonlinear functions
and add them together to get a more complex one

25

26

27

09.10.2024

10

Artificial neural network

𝑓 𝒘,𝒙 = 𝑓1 𝒘1, 𝒙 + 𝑓2 𝒘2, 𝒙 + ⋯+ 𝑓3 𝒘3, 𝒙

The idea here is to take a lot of simple nonlinear functions
and add them together to get a more complex one

Sigmoid

ReLU

… or many others

𝜎(𝑥) =
𝑒𝑥

1 + 𝑒𝑥

𝜎 𝒘1 ∙ 𝒙 + 𝑤𝑏,1 + 𝜎 𝒘2 ∙ 𝒙 + 𝑤𝑏,2 +⋯+ 𝜎 𝒘𝑘 ∙ 𝒙 + 𝑤𝑏,2

Artificial neural network

𝑓 𝒘,𝒙 = 𝑓1 𝒘1, 𝒙 + 𝑓2 𝒘2, 𝒙 + ⋯+ 𝑓3 𝒘3, 𝒙

The idea here is to take a lot of simple nonlinear functions
and add them together to get a more complex one

𝜎 𝒘1 ∙ 𝒙 + 𝑤𝑏,1 + 𝜎 𝒘2 ∙ 𝒙 + 𝑤𝑏,2 +⋯+ 𝜎 𝒘𝑘 ∙ 𝒙 + 𝑤𝑏,2

𝒙
𝑥1
𝑥2…
𝑥𝑛

𝑤1,1

𝑤1,2
…
𝑤1,𝑛

+𝑤𝑏,1

𝒘1

𝒙′

This becomes an input
to the next layer

Artificial neural network

28

29

30

http://www.agh.edu.pl/

09.10.2024

11

Model summary

Linear regression
Simple, straightforward,

quick

Weighted linear regression
Able to simplify nonlinear regression to linear one,

slow, memory-consuming

Polynomial fit
Simple, able to tackle simple

nonlinearities in data relations

Artificial neural network
Adjustable for any problem (universal),

complex configuration, slow training

Support Vector Machine
Quick learning, shallow reasoning

(requires good features),
good scalability, adjustable for outliers

How to set model complexity?

M
o

d
el

 c
o

m
p

le
xi

ty
 (r

el
at

iv
e

to
 t

h
e

ta
sk

)

„Sweet spot” – model complexity allows to model
all relevant data characteristics and generalizes
well

Model is general enough (but not optimal) –
General characteristics are modeled, nuances are

lost

Model overfits unless training is stopped early

Model performs well but contains unnecessary
complexity

Model is too simple

How to set model complexity?

M
o

d
el

 c
o

m
p

le
xi

ty
 (r

el
at

iv
e

to
 t

h
e

ta
sk

)

„Sweet spot” – model complexity allows to model
all relevant data characteristics and generalizes
well

Model is general enough (but not optimal) –
General characteristics are modeled, nuances are

lost

Model is too simple

Model performs well but contains unnecessary
complexity

We can start from the bottom up,
increasing model complexity until
validation error stops decreasing

We can start from the top down,
reducing model complexity until
overfitting stops

OR

OR

We can pick complexity based on
data: 10 independent samples
per adjustable parameter

Model overfits unless training is stopped early

31

32

33

http://www.agh.edu.pl/

09.10.2024

12

Overfitting revisited
Overfitting means that the model memorizes training samples at the cost of
generalization capabilities

We recognize it by looking at the error on an independent subset of data
(either validation or testing subset). If it is significantly higher than for
training subset – the model overfits.

x

y

training validation
er

ro
r

training validation

er
ro

r

similar

different

Practical uses: General interpretation of data

x

y

We want to infer a relationship between
one (target) feature y and other features.

We use a labeled dataset and fit the
model

From now on, we don’t need to measure
y any more, we can get it from other

features

Assume, we have a dataset with some
values missing

Practical uses: Data imputation

?
?

RPM

We can build a regression model to
predict missing values

RMS

34

35

36

09.10.2024

13

We can fit a regression model to predict
one of its elements given others

Practical uses:
novelty detection

Assume, we recorded a measurement
and want to check if it „feels OK”

(if it is within a normal range)

𝒙 = [𝑥1 + 𝑥2 +⋯ + 𝑥𝑛]

RPM

RMS

Model prediction

Distance

Now we can check how distant is this
prediction from reality. If it is too far we

mark data as anomaly (novelty)

Practical uses:
prediction

Time

Cost

Model

We are here now

We can fit the model to data as usual.
Now we have a tool to predict future

(kind of)

1. This works only for a short time
window (a few steps at most)

2. This does not allow to predict
trend changes!

1. Explain some real-life examples of regression (including new ones, not from the
lecture!)

2. Explain generalized regression model y = f(w,x)
3. Explain simple regression methods: linear, weighted, polynomial
4. Explain differences between linear and nonlinear models
5. Explain what overfitting is and how to avoid it (in regression context)
6. Explain how SVM algorithm works (three main distinct features)
7. Explain a kernel trick
8. Explain what happens when model complexity increases for the same problem
9. Explain how to adjust model complexity for a problem
10. Show and describe MLP scheme
11. Explain particular regression uses: data imputation, novelty detection,

prediction

Things to remember:

37

38

39

	Slajd 1: Regression
	Slajd 2: Example 1: Used car retail (2023)
	Slajd 3: Example 1: Used car retail (2023)
	Slajd 4: Example 1: Used car retail (2023)
	Slajd 5: Example 1: Used car retail (2023)
	Slajd 6: Example 1: Used car retail (2023)
	Slajd 7: Let’s recap:
	Slajd 8: Let’s recap:
	Slajd 9: Regression means finding a model that estimates relationship between one data variable and the others
	Slajd 10
	Slajd 11: Linear regression
	Slajd 12: Locally weighted regression
	Slajd 13: Locally weighted regression
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19: Polynomial model
	Slajd 20: Support Vector Machine (SVM)
	Slajd 21: Support Vector Machine (SVM)
	Slajd 22: Support Vector Machine (SVM)
	Slajd 23: Support Vector Machine (SVM) : kernel trick
	Slajd 24: Support Vector Machine (SVM) : kernel trick
	Slajd 25: Support Vector Machine (SVM) : kernel trick
	Slajd 26: Support Vector Machine (SVM) : kernel trick
	Slajd 27: Artificial neural network
	Slajd 28: Artificial neural network
	Slajd 29: Artificial neural network
	Slajd 30: Artificial neural network
	Slajd 31: Model summary
	Slajd 32: How to set model complexity?
	Slajd 33: How to set model complexity?
	Slajd 34: Overfitting revisited
	Slajd 35: Practical uses: General interpretation of data
	Slajd 36: Practical uses: Data imputation
	Slajd 37: Practical uses: novelty detection
	Slajd 38: Practical uses: prediction
	Slajd 39: Things to remember:

