

Faculty of Mechanical Engineering
and Robotics

Department of Robotics and

Mechatronics

Python for Machine Learning and Data Science

Course for Mechatronic Engineering

Instruction 6:

Models configuration

&
results assessment

 You will learn: how to configure and assess learners.

 Additional materials:

- Course lecture 5 [obligatory]

http://galaxy.agh.edu.pl/~zdw/Materials/Python/LectureNote
s/

 Learning outcomes supported by this instruction:
IMA1A_W07, IMA1A_W12 , IMA1A_U01, IMA1A_U05, IMA1A_U07,
IMA1A_U14, IMA1A_K08

Course supervisor:

Ziemowit Dworakowski, zdw@agh.edu.pl

Instruction author:
Adam Machynia, machynia@agh.edu.pl

http://galaxy.agh.edu.pl/~zdw/Materials/Python/LectureNotes/
http://galaxy.agh.edu.pl/~zdw/Materials/Python/LectureNotes/
mailto:zdw@agh.edu.pl
mailto:machynia@agh.edu.pl

2

PMLDS: Instruction 6

Introduction

During this laboratory session, you will learn how to configure and assess a learner model
performing either a regression or classification task. First, we will begin by learning cross-
validation techniques, followed by model configuration, and finally, we will assess the final
model.

Cross-validation

You are already familiar with holdout validation. In this approach, a portion of the training
dataset is left out to create a validation set. The model is then trained on the reduced
training set, and its performance is evaluated on the validation set.

In the k-fold cross-validation approach, the training set is divided into k subsets, called
folds. The model is trained and assessed k times, once for each fold. During each iteration,
the model is trained on the data excluding the kth fold, which serves as the validation set.
The scores obtained from these iterations are averaged to derive the final score for the
model. While this approach requires repeated training, making it computationally
expensive, it has the advantage of preserving a larger portion of the data for training.

After applying these approaches, the final assessment is conducted on the test set, which
follows training on the entire training set, including the validation set.

Now, let’s implement cross-validation using scikit-learn. Two similar methods we will use
are cross_val_score and cross_validate. We will begin with the basic cross_val_score method.
To use this method, we need to pass the following arguments: the model (classifier or
regressor), X (data), and y (target). Additionally, we can specify two crucial parameters. The
first is cv, which when set as an integer determines the number of folds (k) in k-fold cross-
validation. The cv parameter can also specify more sophisticated data splits, but that’s
beyond our scope for now. Another essential parameter is scoring, which sets the metric for
model evaluation. Previously, you used accuracy for classification and RMSE for regression.
To apply cross-validation with these metrics, you may use the following code. Note that
cross_val_score (and similarly cross_validate) uses the rule "the higher, the better," so
instead of RMSE, we use negated RMSE.

The output of cross_val_score is an array of scores for each fold, giving us k scores for the k-
fold cross-validation.

You should begin by preparing your data, classifier, and regressor as you did in Lab 4.

from sklearn.model_selection import cross_val_score, cross_validate

in case of classification

clf = svm.SVC()

scores = cross_val_score(clf, x_train, y_train, cv=5, scoring='accuracy')

in case of regression

scores = cross_val_score(reg, x_train, y_train, cv=5,

 scoring='neg_root_mean_squared_error')

3

PMLDS: Instruction 6

Task 6.1: Implement cross-validation for a selected classifier and regressor. Use accuracy
for the classifier and negated RMSE for the regressor. For regression, convert the negated
output back to RMSE. Calculate the mean of the obtained scores.

Task 6.2: Compare the results of 3-fold, 5-fold, and 10-fold cross-validation.

As mentioned earlier, there are a wide range of available metrics for scoring purposes. You
can explore these metrics via the following link: https://scikit-
learn.org/stable/modules/model_evaluation.html#scoring-parameter. These metrics can
be used either through the scoring parameter or as direct functions, similar to how
accuracy was used in previous labs.

Additionally, the cross_validate method was introduced. It differs from cross_val_score in
two key ways. First, it tracks the time taken for training and validation, which is important
when model efficiency is a factor. Second, it can handle multiple scoring metrics at once by
passing a dictionary of strings describing the desired metrics. The output includes arrays
for each metric's scores, as well as arrays for training times and scoring times. The keys in
this dictionary include 'test_score,' 'train_score,' 'fit_time,' and 'score_time.' The '_score'
suffix corresponds to a particular metric, such as 'test_recall,' 'train_f1,' and so forth.

Task 6.3: Utilize different metrics for cross-validation.
For classification, evaluate: recall, precision, and f1.
For regression, assess: R2 and mean absolute error.

Tuning the hyperparameters of a model

Since hyperparameters are not learned by the model, we need an effective method to set
them. In scikit-learn, hyperparameters are set as method attributes (e.g., kernel, C, and
gamma for SVM, or the number of neurons in a hidden layer for MLP). So far, you've set
these manually. Let's explore grid search, which tests all combinations of specified
hyperparameters.

Grid search serves as a search method. Before applying this technique, we need to define
the model type (e.g., SVM), the scoring function (e.g., accuracy), the evaluation scheme
(commonly cross-validation), and the parameter space to search. We can utilize
GridSearchCV in the following way.

scores = cross_validate(clf, x_train, y_train, cv=5,

 scoring=['accuracy','f1'])

print(scores['test_accuracy'])

print(scores['test_f1'])

print(scores['fit_time'])

print(scores['score_time'])

https://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter
https://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter

4

PMLDS: Instruction 6

In this example, we're using an SVM model with 5-fold cross-validation and accuracy as the
scoring metric, similar to previous tasks. The key part is the 'parameters' variable, which
can be defined in two ways. First, it can be a dictionary containing the hyperparameters to
explore, where the keys correspond to specific parameters/attributes of the model (e.g.,
'kernel' or 'C'), and the values represent the respective options, as shown in the
parameters_1 example. In this approach, all parameter combinations are explored.
Alternatively, you can use a sequence of dictionaries, as in the parameters_2 variable. This
method evaluates all parameter combinations within each dictionary, allowing you to avoid
unnecessary configurations – such as setting the degree for kernels other than polynomial,
as shown in the example.

To obtain the results, you can use one of the following attributes:

• best_params_ – returns the configuration with the highest score,
• best_estimator_ – returns the model with the highest score,
• cv_results_ – returns a dictionary containing all the results.

The cv_results_ attribute can be easily used to display the results as a table, as demonstrated
in the example above.

Task: 6.4: Implement a grid search for the SVM classifier. Compare different kernels and
different values for C parameter. Use 5-fold cross-validation.

Task 6.5: Implement a grid search for another classifier. Choose an appropriate parameter
space and scoring metric.

Task 6.6: Implement a grid search for the selected regressor.

Grid search is typically computationally expensive and time-consuming because the model
needs to be trained and evaluated for each parameter combination k times, where k
represents the number of folds in cross-validation. An alternative approach is the random
search method, which specifies a set number of tests and explores the parameter space
randomly. This can be easily executed using RandomizedSearchCV, which functions similarly
to GridSearchCV.

from sklearn.model_selection import GridSearchCV

clf = svm.SVC()

dictionary of parameters: takes all combinations

parameters_1 = {'kernel':('linear', 'rbf', 'poly'), 'C':[0.1, 1, 10]}

OR a sequence of dictionaries of parameters; usefull to avoid unnecessary parameters

combination

parameters_2 = [

 {'kernel':('linear', 'rbf',), 'C':[0.1, 1, 10]},

 {'kernel':['poly'], 'C':[0.1, 1, 10], 'degree':[2,3,4]}

]

grid_search = GridSearchCV(clf, parameters, cv=5, scoring='accuracy')

grid_search.fit(x_train, y_train)

print(grid_search.best_params_) # to get the best parameters

print(grid_search.best_estimator_) # to get the best estimator

print(grid_search.cv_results_) # to get all results

cv_res = pd.DataFrame(grid_search.cv_results_) # or use DataFrame

display(cv_res) # to display results as a table

5

PMLDS: Instruction 6

Task 6.7: Implement a random search by following the documentation: https://scikit-
learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html.

Task 6.8: Implement a grid search for the selected classifier, but using pre-processed data.
Perform operations similar to those in Lab 3, such as feature scaling and outlier removal.

Final assessment of the model

After tuning the hyperparameters, the final assessment of the model should be conducted.
Once the model has been trained on the full training set, its performance on the test set is
evaluated. As mentioned earlier, scikit-learn provides various built-in metrics that can be
used directly. However, let’s also explore calculating some metrics from scratch, starting
with predictions and labels. Here's an example of how to calculate true positives, true
negatives, false positives, and false negatives:

Task 6.9: Train the selected model with the tuned hyperparameters using the full training
set. Evaluate its performance.
• For classification, assess: accuracy, recall, precision, and F1 score.
• For regression, assess: R2 and mean absolute error.

Task 6.10: For the selected classifier, calculate the true positive rate, true negative rate,
false positive rate, and false negative rate.

Additionally, here are three examples for classifier assessment: plotting the receiver
operating characteristic (ROC) curve, the precision-recall graph, and the confusion matrix.

The ROC curve is a graphical representation of a classifier's performance at various
threshold settings. It plots the true positive rate (sensitivity) against the false positive rate
(1 - specificity). A model with an area under the ROC curve (AUC) close to 1 indicates a
good classifier. ROC curves are useful for comparing the performance of different classifiers.

tp = ((y_pred == y_test) & y_test).sum() # true positive

tn = ((y_pred == y_test) & ~y_test).sum() # true negative

fp = ((y_pred != y_test) & ~y_test).sum() # false positive

fn = ((y_pred != y_test) & y_test).sum() # false negative

or convenient way using confusion matrix

from sklearn.metrics import confusion_matrix

tn, fp, fn, tp = confusion_matrix(y_test, y_pred).ravel()

from sklearn.metrics import RocCurveDisplay

RocCurveDisplay.from_estimator(clf, x_test, y_test)

from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix

cm = confusion_matrix(y_test, y_pred)

cm_display = ConfusionMatrixDisplay(cm).plot(cmap=plt.cm.Blues)

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html

6

PMLDS: Instruction 6

The precision-recall graph is particularly useful when dealing with imbalanced datasets.
It plots precision (the ratio of true positives to all predicted positives) against recall (the
ratio of true positives to all actual positives). A high area under the precision-recall curve
indicates both high precision and recall, meaning the model makes fewer false positives and
false negatives.

The confusion matrix provides a detailed breakdown of classification performance by
showing the number of true positives, true negatives, false positives, and false negatives. It
allows you to visualize how well the classifier distinguishes between different classes and is
especially useful for multi-class classification problems.

Task 6.11: For the selected classifier, plot the ROC curve.

Task 6.12: For the selected classifier, plot the precision-recall graph.

Task 6.13: For the selected classifier, plot the confusion matrix.

For regressors, there's the prediction error display, which enables a visual comparison
between predicted values and true ones. You can generate this plot either from the
estimator or from predictions. In both cases, you can specify whether to plot actual values
or residuals (the difference between actual and predicted values).

Task 6.14: For the selected regressor, plot the prediction error.

Task 6.15: Repeat Tasks 6.9-6.13 using pre-processed data like in Task 6.8. Compare the
results.

Task 6.16: Repeat Task 6.14 using pre-processed data like in Task 6.8. Compare the results.

Additional tasks

Task 6.17: Implement grid-search for a model selected by the teacher. Consult the
parameter space to be searched.

Task 6.18: Repeat Tasks 6.9-6.13 for model selected by the teacher.

PredictionErrorDisplay.from_estimator(reg, x_test, y_test,

 kind="residual_vs_predicted")

PredictionErrorDisplay.from_predictions(y_true=y_test, y_pred=y_pred,

 kind="actual_vs_predicted")

