

Faculty of Mechanical Engineering
and Robotics

Department of Robotics and

Mechatronics

Python for Machine Learning and Data Science

Course for Mechatronic Engineering

Instruction 4:

Regression

and
classification

 You will learn: basic implementation of the regression and
classification models using scikit-learn.

 Additional materials:

- Course lecture 3&4 [obligatory]

http://galaxy.agh.edu.pl/~zdw/Materials/Python/LectureNote
s/

- Matlab to Python handout
http://galaxy.agh.edu.pl/~zdw/Materials/Python/Matlab%20-
%20python%20handout.pdf

 Learning outcomes supported by this instruction:
IMA1A_W07, IMA1A_U01, IMA1A_U05, IMA1A_U07, IMA1A_U14,
IMA1A_K08

Course supervisor:

Ziemowit Dworakowski, zdw@agh.edu.pl

Instruction author:
Adam Machynia, machynia@agh.edu.pl

http://galaxy.agh.edu.pl/~zdw/Materials/Python/LectureNotes/
http://galaxy.agh.edu.pl/~zdw/Materials/Python/LectureNotes/
http://galaxy.agh.edu.pl/~zdw/Materials/Python/Matlab%20-%20python%20handout.pdf
http://galaxy.agh.edu.pl/~zdw/Materials/Python/Matlab%20-%20python%20handout.pdf
mailto:zdw@agh.edu.pl
mailto:machynia@agh.edu.pl

2

PMLDS: Instruction 4

Introduction

During this laboratory, you will learn the basic implementation and use of regression and
classification models in Python. You will use linear regression and a multi-layer perceptron
(MLP) for regression. For classification purposes, you will use logistic regression, support
vector machines, and again the multi-layer perceptron. You are encouraged to also test
weighted linear regression, polynomial regression, k-nearest neighbors classification, and
decision trees.

At the very beginning, you should load the wine quality dataset and split it into subsets as
you did during the previous laboratory.

Regression

Regression aims to predict the target value based on certain features. We will use several
models for this purpose, all of which are available in the scikit-learn library. To start, let's
use a very simple linear regression. After importing LinearRegression from
sklearn.linear_model, we create a model simply by calling LinearRegression(). To train our
model, we use the fit() function, which takes as arguments the training data and their
corresponding labels. Once the model is trained, we can use the predict() function to make
predictions. Importing, creating, training models, and making predictions for training and
validation sets are shown in the listing below. As you can see, with scikit-learn, it is very
straightforward.

For the evaluation of the obtained predictions, we will use the root mean squared error
(RMSE), calculated according to the following equation:

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(�̂�𝑛 − 𝑦𝑛)2
𝑁

𝑛=1

,

where �̂�𝑛 is the predicted value, 𝑦𝑛 is the real value, and N is the number of samples. RMSE
can be calculated from scratch as follows.

One can also use the mean_squared_error function from sklearn.metrics.

Task 4.1: Split the data into training, validation, and test sets. Use the quality as the target
value – y and remember to drop it from the rest of the data. Implement linear regression
and calculate the RMSE for the training and validation sets.

from sklearn.linear_model import LinearRegression

reg = LinearRegression()

reg.fit(x_train, y_train)

y_pred_train = reg.predict(x_train)

y_pred = reg.predict(x_val)

rmse = np.sqrt(np.mean((y_pred_train - y_train)**2))

3

PMLDS: Instruction 4

Task 4.2: A simple linear model can be easily extended to a weighted linear model by using
an additional parameter, sample_weight. Check how to use this parameter and implement
weighted linear regression.

Now, let’s consider a more sophisticated model: a neural network. To use it, we need to
import MLPRegressor from sklearn.neural_network.

As neural networks are more complex, we should consider some parameters for the
customization of our model.

• hidden_layer_sizes: A tuple where each number denotes the number of neurons in a
specific hidden layer. For example, (15, 10, 5) indicates 15 neurons in the first hid-
den layer, 10 in the second, and 5 in the third.

• random_state: Allows for reproducibility.
• max_iter: The maximum number of epochs if convergence is not achieved before-

hand.
• Solver: Sets the algorithm for weight optimization.

These are just selected parameters; you can find descriptions of all of them in the scikit-
learn documentation.

Task 4.3: Implement neural network regressor. Make predictions and calculate RMSE for
training and validation sets. Repeat this step while experimenting with your ideas for
model parameter setup.

Task 4.4: Compare regression performance (with one selected model) using all features
versus a selected subset of features. Start by choosing two features, then four, and suggest
your concepts. Remember that the correlation matrix is useful for feature selection in
regression.

As you can see, while we have created the model, training and making predictions remain
consistent across different models. This consistency helps in ensuring that the code is
organized and facilitates the examination of various models. However, not all regression
methods have direct implementations. Still, they can often be implemented easily with
scikit-learn. If you would like to learn how to cleverly implement polynomial regression
using a linear regression model, take a look here: https://scikit-
learn.org/stable/modules/linear_model.html#polynomial-regression-extending-linear-
models-with-basis-functions. Generally, handling nonlinear models as linear models
operating on nonlinear functions can be beneficial, as it maintains fast performance while
solving more complex problems.

from sklearn.neural_network import MLPRegressor

simply with almost default parameters

reg = MLPRegressor(random_state=1, max_iter=500)

reg.fit(x_train, y_train)

y_pred_train = reg.predict(x_train)

y_pred = reg.predict(x_val)

and then try some customization, for example:

reg = MLPRegressor(hidden_layer_sizes=(10, 5), random_state=1, max_iter=1000,

solver='lbfgs')

https://scikit-learn.org/stable/modules/linear_model.html#polynomial-regression-extending-linear-models-with-basis-functions
https://scikit-learn.org/stable/modules/linear_model.html#polynomial-regression-extending-linear-models-with-basis-functions
https://scikit-learn.org/stable/modules/linear_model.html#polynomial-regression-extending-linear-models-with-basis-functions

4

PMLDS: Instruction 4

Task 4.5: Based on provided link, implement polynomial regression.

Classification
As classification aims to assign a class label to each sample, we will modify our task.
Suppose we want to predict whether a wine is "good" or not. Let's assume that a wine is
considered good if its quality score is higher than 5. Therefore, we can prepare labels for
training as follows. Don't forget to apply the same process to other subsets or perform
thresholding in advance.

Once the labels are arranged, we can choose our first classification model. Let’s start with
the logistic regression classifier. Similar to the regression case, after creating the model, we
use the fit() function for training and the predict() function for prediction.

For now, we'll use only the accuracy metric to evaluate the performance of the models.
Generally, this is insufficient, and we will discuss this issue in Lab 6.

Task 4.6: Implement the logistic regression model, train it, and make predictions on
training and validation sets. Check its accuracy.

Hint: If an error occurs, read the message carefully; it should indicate possible solutions.

Task 4.7: Use the logistic regression model, but only with selected features. Compare the
accuracy of two scenarios by selecting four different features in each:
1) 'alcohol', 'volatile acidity', 'total sulfur dioxide', 'sulphates',

2) 'pH', 'free sulfur dioxide', 'residual sugar', 'fixed acidity'.

Compare the accuracy between the two cases.

Other models can also be created and used in a similar way. Each model has specific
parameters that should be tuned, such as the kernel for SVM, the number of neighbors for
KNN, or the maximum depth for decision trees.

y_train = data_train['quality'] > 5.5

from sklearn.linear_model import LogisticRegression

clf = LogisticRegression()

clf.fit(x_train, y_train)

y_pred_train = clf.predict(x_train)

y_pred = clf.predict(x_val)

from sklearn.metrics import accuracy_score

acc_train = accuracy_score(y_train, y_pred_train)

acc_val = accuracy_score(y_val, y_pred)

5

PMLDS: Instruction 4

Task 4.8: Implement the SVM model. Try different kernels using the kernel parameter.

Task 4.9: Implement multi-layer perceptron. Set your own configuration for the
parameters. Some of these were described in the section covering regression.

Task 4.10: Implement other classifiers, such as KNN, decision tree, or others.

Task 4.11: You’ve probably achieved around 70-75% accuracy so far. Try improving the
performance of the models by tuning their parameters.

Task 4.12: Select the model (with tuned parameters) that performs best for you. Now, train
it on both the training and validation sets and check its final performance on the test
subset.

Pipelines

The Scikit-learn module implements pipelines, which facilitate creating consistent
processing routines for different datasets, such as training and validation sets. This may
include tasks like outlier removal or feature scaling. The pipeline takes a list of tuples as an
argument, where each tuple consists of a name and a transformer. The name is a string, and
the transformer must implement the fit() and transform() methods. The final step, which
serves as the estimator, only requires the fit() method.

Let's look at an example. Here, we put standardization and the MLP into a single pipeline so
that the data input into the clf.fit() method is first standardized before the neural network
is trained.

Task 4.13: Implement a pipeline with two steps: standardization and a neural network.
Choose a reasonable size for the network and compare its performance with and without
feature scaling, using the stochastic gradient descent ('sgd') algorithm for learning.

from sklearn import svm

from sklearn.neural_network import MLPClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn import tree

clf = svm.SVC(kernel='rbf')

clf = MLPClassifier()

clf = KNeighborsClassifier(n_neighbors=5)

clf = tree.DecisionTreeClassifier(max_depth=3)

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import StandardScaler

clf = Pipeline([("scaler", StandardScaler()),

("mlp", MLPClassifier(max_iter=500))])

clf.fit(x_train, y_train)

6

PMLDS: Instruction 4

Task 4.14: Examine how different solvers and the maximum number of iterations affect the
results. For three solvers ('lbfgs', 'sgd', 'adam'), try at least three different iteration counts
that trigger warnings about failure to converge, as well as one that satisfies the required
number of iterations. Do not change other parameters of the network. Collect the accuracy
score for each case in a table for discussion.

Additional tasks

Task 4.15: Implement linear regression and neural network regressor for pH feature as a
target.

Task 4.16: Implement KNN and decision tree classifiers. Adjust their parameters.

