

Faculty of Mechanical Engineering
and Robotics

Department of Robotics and

Mechatronics

Python for Machine Learning and Data Science

Course for Mechatronic Engineering

Instruction 3:

Feature selection and extraction

and
Feature transformation

 You will learn: which features can be useful, how to select and
transform them, what feature scaling is, how PCA works, and how to
remove statistical outliers.

 Additional materials:

- Course lecture 2 [obligatory]

http://galaxy.agh.edu.pl/~zdw/Materials/Python/LectureNote
s/

- Matlab to Python handout
http://galaxy.agh.edu.pl/~zdw/Materials/Python/Matlab%20-
%20python%20handout.pdf

 Learning outcomes supported by this instruction:
IMA1A_W07, IMA1A_U01, IMA1A_U05, IMA1A_U07, IMA1A_U14,
IMA1A_K08

Course supervisor:

Ziemowit Dworakowski, zdw@agh.edu.pl

Instruction author:
Adam Machynia, machynia@agh.edu.pl

http://galaxy.agh.edu.pl/~zdw/Materials/Python/LectureNotes/
http://galaxy.agh.edu.pl/~zdw/Materials/Python/LectureNotes/
http://galaxy.agh.edu.pl/~zdw/Materials/Python/Matlab%20-%20python%20handout.pdf
http://galaxy.agh.edu.pl/~zdw/Materials/Python/Matlab%20-%20python%20handout.pdf
mailto:zdw@agh.edu.pl
mailto:machynia@agh.edu.pl

2

PMLDS: Instruction 3

Introduction

This instruction will briefly introduce you to the topic of feature selection and
transformation. You will learn how to scale features and why this is important. Finally, you
will become familiar with PCA.

During this laboratory, we still use the wine quality dataset. Use the red part unless stated
otherwise.

Correlation for feature selection

Correlation can be used to identify features suitable for making predictions. In the case of
regression, we want to find features that are highly correlated with the target but not
correlated with each other. An example of a correlation matrix is shown in Figure 1.
Starting from Task 3.1, work only on the training subset!

Task 3.1: Load the dataset. Split it for train, validation, and test sets with a ratio of
0.6:0.2:0.2. Set the random_state parameter to 1. Plot the correlation matrix. Enable
annotations, and choose a suitable colormap. In pairs, discuss which features would be
useful for predicting the levels of density and pH. Justify your choices.

Hint: You do not need to split the target from the data:
data_train, data_test = train_test_split(data, …).

Fig 1 – Correlation matrix for red wine dataset.

3

PMLDS: Instruction 3

Task 3.2: Repeat task 3.1 for the white wine dataset. Consider differences.

Statistical outliers removal

Sometimes we may want to exclude certain parts of the data based on statistical measures,
for example, to remove outliers. Let's assume we want to exclude from our analysis 1% of
observations with the lowest and highest pH. Here’s how we can approach this task:

Task 3.3: Exclude 1% of observations with the lowest and highest pH. Compare the
distribution of this feature before and after this operation.

Task 3.4: Implement the exclusion of specific parts of data based on other selected
features. Consider which features might be reasonable and explore other statistical
measures.

Feature scaling

Many machine learning models require standardization or scaling of the data, or at least
perform better with these techniques. Generally, different ranges of feature values can
cause significant issues if not handled properly. Consider gradient-based optimization
algorithms dealing with two features: one varying slightly within a range from 0 to 1, and
the other jumping from -1000 to 1000. This is where feature scaling becomes important.

Let's take a look at the distribution of sulphates relative to total sulfur dioxide in Figure 2.
Notice the ranges of these two variables.

q_low = data_train['pH'].quantile(0.1) # get 1st percentile

q_hi = data_train['pH'].quantile(0.99) # get 99th percentile

data_filtered = data_train[(data_train['pH'] < q_hi) & (data_train['pH'] > q_low)] #

filter data by percentiles

4

PMLDS: Instruction 3

Fig 2 – Sulphates versus total sulfur dioxide.

Task 3.5: Check the feature value ranges and their distributions. Determine which features’
distributions are similar and which differ. Consider the possible sources of similarities and
differences in feature distributions.

Hint: check what happens when you type:
data.hist() or data.boxplot().

The most common feature scaling approaches are standardization and Min-Max scaling.
Standardization, also known as Z-score normalization, scales features to a standard normal
distribution with a mean of zero and a standard deviation of one. In other words, it
removes the mean and scales to unit variance, as shown in the equation:

𝑧 =
𝑥 − μ

σ

where x is the original value, z is the rescaled value, μ is the mean, and σ is the standard
deviation.
Min-Max scaling, also called normalization, scales all values to a specific range, which is
commonly from 0 to 1. This is done according to the following equation:

𝑥𝑚𝑖𝑛𝑚𝑎𝑥 =
𝑥 − x𝑚𝑖𝑛

x𝑚𝑎𝑥 − x𝑚𝑖𝑛

where 𝑥 is the original value, 𝑥𝑚𝑖𝑛𝑚𝑎𝑥 is the rescaled value, x𝑚𝑖𝑛 is the minimum in the set,
x𝑚𝑎𝑥 is the maximum in the set. These two operations can be easily applied using the scikit-
learn library. You can see the results of these transformations in Figure 3.

5

PMLDS: Instruction 3

Generally, we do not scale target variables alongside other features, so don’t forget to drop
the quality column before scaling.

Fig 3 – Sulphates versus total sulfur dioxide: original, standardized, and Min-Max scaled data.

Task 3.6: Perform standardization and Min-Max scaling on the training data. Compare
feature distributions as in the previous task. Consider in which cases standardization
should be used and when Min-Max scaling is more appropriate.

Task 3.7: Consider the impact of the outliers on feature scaling. Repeat Task 3.6 after
removing statistical outliers. You may drop 1 or 2 percentiles from the top and bottom of
the selected features.

Principal component analysis (PCA)

Principal Component Analysis (PCA) is used to reduce the dimensionality of the data (have
you ever heard of the curse of dimensionality?). However, it not only limits the number of
features but also transforms them into another space. This new coordinate system is
defined by the so-called principal components, which form the axes of this coordinate
system. Principal components are determined to maximize variance, ensuring that the first
few components are the most informative. By retaining only the first few components, we
obtain a projection into a lower-dimensional space. PCA can be easily performed with
scikit-learn.

quality = data['quality']

data = data.drop(columns = ['quality'])

from sklearn.preprocessing import (

 MinMaxScaler,

 StandardScaler,

)

standard_scaler = StandardScaler().set_output(transform="pandas")

data_standardized = standard_scaler.fit_transform(data)

minmax_scaler = MinMaxScaler().set_output(transform="pandas")

data_normalized = minmax_scaler.fit_transform(data)

6

PMLDS: Instruction 3

The results may look like in Figure 4.

Figure 4 – Example of PCA results.

Task 3.8: Perform PCA. Plot the first two principal components , and then plot the last two
components. Explore other combinations as well.

Task 3.9: Apply PCA to the data after feature scaling. How does this impact the PCA results?

Task 3.10: First, use the data with outliers removed. Apply standardization or
normalization, and then use PCA. Are there any differences in the results? Did you filter
only the selected features or all of them?

Target preparation and encoding

Sometimes, we need to perform additional operations on data before processing it further.
Let’s assume we want to classify red and white wines. In this case, we should add a type
label to the datasets and merge the datasets for red and white wines.

Task 3.11: You have already loaded the red wine dataset. Now, load the white wine data.
Prompt the built-in Colab AI generator to add type labels to the datasets and merge them.
You should obtain an additional column in your data with labels: red or white. Ensure the
task is completed correctly and save the prompts used.

from sklearn.decomposition import PCA

pca = PCA().set_output(transform="pandas").fit(data)

data_pca = pca.transform(data)

7

PMLDS: Instruction 3

Task 3.12: Let’s further assume we want the dataset to be well-balanced regarding the type
of wine. Repeat Task 3.11, ensuring the same number of observations for each wine type in
the final dataset. Make sure the task is completed correctly and save the prompts used.

The AI generator probably works well and is easy to use. Your entire Colab notebook and the
previously written code provide the context, so the generator’s answers can be precise.

If the dataset contains categorical variables, we can use them to analyze the dataset
regarding these categories or map them to numerical values. Encoding can be easily done
using OrdinalEncoder or OneHotEncoder from sklearn.preprocessing.

Task 3.13: Encode label type to numerical values.

Since it contains only two values, you can use OrdinalEncoder to obtain a binary variable.
But what if there were more than two possible types?

Additional tasks

Task 3.14: Create a scatter plot to compare the distribution of unscaled, standardized, and
Min-Max scaled data. You may take inspiration from Figure 3.

Task 3.15: Complete all tasks for the white wine dataset.

from sklearn.preprocessing import OrdinalEncoder

ordinal_encoder = OrdinalEncoder()

data['type'] = ordinal_encoder.fit_transform(data[['type']])

