

Faculty of Mechanical Engineering
and Robotics

Department of Robotics and

Mechatronics

Python for Machine Learning and Data Science

Course for Mechatronic Engineering

Instruction 1:

Introduction to Python

and
Transformation and visualization of datasets

 You will learn: How to work with Google Colab and the basics of
Python. How to load, transform, visualize data and finally how to split
data into train, test, and validation sets. These will be used extensively
throughout this course.

 Additional materials:

- Course lecture 1 [obligatory]

http://galaxy.agh.edu.pl/~zdw/Materials/Python/LectureNote
s/

- Matlab to Python handout
http://galaxy.agh.edu.pl/~zdw/Materials/Python/Matlab%20-
%20python%20handout.pdf

 Learning outcomes supported by this instruction:
IMA1A_W07, IMA1A_W12, IMA1A_U05, IMA1A_U07, IMA1A_U14

Course supervisor:

Ziemowit Dworakowski, zdw@agh.edu.pl

Instruction author:
Adam Machynia, Mateusz Heesch, machynia@agh.edu.pl

http://galaxy.agh.edu.pl/~zdw/Materials/Python/LectureNotes/
http://galaxy.agh.edu.pl/~zdw/Materials/Python/LectureNotes/
http://galaxy.agh.edu.pl/~zdw/Materials/Python/Matlab%20-%20python%20handout.pdf
http://galaxy.agh.edu.pl/~zdw/Materials/Python/Matlab%20-%20python%20handout.pdf
mailto:zdw@agh.edu.pl
mailto:machynia@agh.edu.pl

2

PMLDS: Instruction 1

Initial information regarding course laboratories

Laboratory structure

The laboratories are prepared using a Reversed Classroom method. It means that the
intended way of doing them is to first do part of them at home and then finalize work
during classes. The more you do at home, the more knowledge you’ll gain and (hopefully)
the easier the entire course will be for you.

The general flow of each instruction includes an explanation of the steps that should be
taken to solve a problem [in a white background], followed by a series of tasks for you to
complete. These tasks are divided into three categories: "For 3.0 mark" (marked in red),

"For 4.0" (marked in orange), and "For 5.0" (marked in green). Completing a set of tasks
during the laboratory results in a conditional mark. For the next laboratory, you should
finish all exercises for 3.0 and 4.0 marks, which are always mandatory. After you show and
defend the complete set of exercises for 3.0 and 4.0 marks during the next classes, you will
receive a final mark. Tasks for 5.0 are not obligatory. In other words, the more tasks you
complete during classes, the higher your grade will be – but you will need to complete most
of them either way.

Correcting absence and laboratory fails

The intended way of getting a laboratory pass can be disturbed in three ways:

- You can be absent (then you won’t have a chance to get a ‘conditional grade’)
- You can fail to do tasks “for 3.0” during the laboratory
- You can fail to defend the conditional grade during the next laboratory

In all of these cases you will be required to prepare a laboratory report including all the
necessary tasks (required for 3.0 and 4.0 to get 4.0 mark and also 5.0 tasks to get 5.0) plus
an additional one selected by the teacher from the additional tasks pool available at the
end of each laboratory. You will be required to defend this report.

Note, that you can pass the laboratory in such way only two times during the entire course.
If you have more laboratories to correct, you will need consultations with the course
coordinator who will individually assess the situation and will either determine the scope
of work required to get a pass or direct you for taking the course again.

Tests and test corrections

Some laboratories will start with a lecture test. The schedule for tests is available in notes
from the first lecture. For each test there will be two correction chances at the end of the
course. If, however, you fail more than two tests during the course, the correction chance
will involve entire lecture material.

3

PMLDS: Instruction 1

Introduction

Throughout the course you will be using the google Colab environment for writing and
running your python codes – this decision was grounded mostly in ease of set-up and use,
as well as holding some similarity with operating in Matlab, which you are all familiar with.

Further, you will get familiar with some Python libraries: Pandas, Matplotlib, and Seaborn.
Data visualization using different types of plots will be introduced. You will work with bar
graphs, histograms, scatterplots, and boxplots.

Getting started with google Colab

First of all – what is google Colab? It’s a cloud-based jupyter notebook environment that
requires no set-up, making it a perfect candidate for starting work with python.

To start working with Colab go to the link below (note – requires a google account, it also
has payment plans for higher performance/functionality packages, none of which will be
required by this course)

https://colab.research.google.com

If you do not have a google account, create one here:

https://accounts.google.com/signup

After getting to the landing page, you can familiarize yourself with the introduction and
basic functionality tutorials on the page. To open your own “notebook” go to top left corner
and click File -> New notebook.

If you want to switch the display language from whichever language your google account is
set to, to english, go to “Help -> Display in english”

Your first notebook will start empty, with a single code cell present on top, like in Figure 1.
New code cells will be added automatically as you run cells, or can alternatively be added
ahead of time by hovering mouse around the center point of the cell, on either lower or
upper edge.

Running these cells (either by pressing the run icon on the left side of the cell, or
shift+enter shortcut while in the cell) will execute the code inside, and at the end of the
execution also print the output of the last line if it returns a value(see Figure 2). The values
assigned to variables are kept in memory and are preserved between cells (see last cell in
Figure 2).

Task 1.1: Perform 2 simple arithmetic operations in Colab – display the result of one of
them via print() function, and the other via in-built display – See Figure 2

https://colab.research.google.com/
https://accounts.google.com/signup

4

PMLDS: Instruction 1

Figure 1 – Empty notebook

Figure 2 – example of cell outputs

5

PMLDS: Instruction 1

Basic python syntax

Feel encouraged to put these codes, as well as codes from your matlab->python handout
into your Colab notebook and run them, especially if you’re not sure how exactly they work
and want to examine their behavior.

As you could see in the example in Figure 2, defining numerical variables and performing
arithmetical operations on them functions identically to matlab, printing in this example
was done with an f-string, which allows us to inject values from variables mid-string
conveniently. It’s syntax is straightforward and looks as follows:

Where {variable_name} evaluates the value in that variable and converts it to string.

Besides playing around with variables and printing their values, we may also want to use
conditional statements, like in following example:

The above code demonstrates a simple if-elseif-else switch based on the value of
a randomly generated number.

We’ll also be using while loops:

Note that no brackets or keywords are used to control what’s inside the loop. Instead, code
structure/hierarchy in python is controlled via indentations (indentation level being a
quadruple space, usually done by pressing tab). In this case, the first 2 prints are on the
same indentation level, corresponding to that inside the defined while loop.

f'some text {variable_name}, some more text'

import random #importing library for random number generation

num = random.random() #creating a random number, should be in <0, 1> range

num2 = random.random()

if (num < 0) or (num > 1): # example conditional with "or"

 print('that shouldnt happen')

elif num == 0.5: # example equality conditional on "else if" block

 print('exact half, lucky')

elif (num > 0.5) and (num2 > 0.5): # example conditional with "and"

 print('yes, num2 was defined only to have a case for "and"')

else:

print('no lucky half, and either num or num1 (or both) are lower than 0.5')

import random #importing library for random number generation

while random.random() < 0.9: # will be evaluated at start of every loop

 print('rolling for value greater or equal to 0.9 failed, rerolling')

 print('this will also be executed in each loop iteration')

print('finally out of the loop!') # will happen after loop is done

6

PMLDS: Instruction 1

And lastly, for loops:

In general, similarly to matlab, the for loop iterates over a collection of data, assigning new
piece of this data to a specified variable at each loop iteration. In the “usual syntax” example,
the range() function is used, which creates a collection of integers in ascending order,
starting at 0 and ending at specified value (non-inclusive, e.g. range(3) will have [0, 1, 2]).

Task 1. 2: Similarly to the “while” loop in section 3, write a “while” loop based on the value
of randomly generated number being higher than 0.8, add following functionality:
1) After the loop ends, print how many iterations it went through
2) Based on naive expected number of iterations (e.g. for 0.5 we “expect” 1 pass for every 2
numbers, so needing more than 2 would be “unlucky”), after the loop ends print “lucky” or
“unlucky” message.

Functions and classes

Function syntax starts with “def”, followed by function name, function arguments in
brackets, and then lastly a colon. The function *usually* ends with the “return” line, which
decides what value is returned when this function is called in code, however not all
functions need to return something.

You can assign a default value to an argument, allowing further uses of the function to omit
it if changing it is not necessary, such as the “b” in example above.

Task 1.3: Put the loop from task 2 inside a function, where the threshold for random
number will be an input argument to the function. Run the function with different
argument values.

Task 1.4: Write a program that solves the following equation (the solution can be
approximate):
3x2 – 4x - 2 = 0.

Task 1.5: Write a function for solving quadratic equations, use it to solve task 1.4.

usual syntax

for i in range(10):

 print(i)

iterating over list

days = ['monday', 'tuesday', 'wednesday', 'thursday',

 'friday', 'saturday', 'sunday']

for day in days:

 print(day)

def sum_values(a, b=0):

 c = a + b

 return c

7

PMLDS: Instruction 1

Creating a class

Classes are “template” definitions which contain some data (parameters) and are able to do
some things (methods). Class should always have the “__init__(self)” function which is the
constructor – the function called when the class is instantiated (see next section). Besides
the constructor, a class can have any number of methods depending on the needs. In
general all methods should have “self” as the first argument (not entirely true, but for
simplicity’s sake let’s stick to that), which denotes the object itself, and is used to access its
parameters and methods.

creating a class instance (object)

interacting with an object

from math import sqrt

class TwoDCar:

 def __init__(self, color='red'):

 self.position = [0, 0]

 self.distance_traveled = 0

 self.color = color

 def move2D(self, move_vector):

 self.position[0] = self.position[0] + move_vector[0]

 self.position[1] = self.position[1] + move_vector[1]

 dist = sqrt(move_vector[0]**2 + move_vector[1]**2)

 self.distance_traveled = self.distance_traveled + dist

car_default = TwoDCar()

car_blue = TwoDCar(color='blue') # overwrites default value of 'color' with 'blue'

car_blue.move2D([10, 0]) # will call the move2D method of the object

car_blue.move2D([5, 5])

print(car_blue.position) # will access the position parameter, with expected value of

[15, 5]

print(car_blue.distance_traveled) # will access distance_traveled parameter, with

expected value of ~17.07

car_blue.distance_traveled = 0 # will reset the value of distance_traveled parameter

8

PMLDS: Instruction 1

Longer code examples

Use this for reference on how various things work and might be used – feel encouraged to
paste this code into Colab and examine what it does.

import numpy as np

import matplotlib.pyplot as plt

def rectangle_circumference(a, b):

 return 2*a + 2*b

def rectangle_area(a, b):

 return a*b

value_count = 20

initializing vectors of 20 random values scaled from 0 to 1

random_sides_a = np.random.rand(value_count)

random_sides_b = np.random.rand(value_count)

scaling and shifting the vectors to range from 1 to 10

random_sides_a = (random_sides_a * 9) + 1

random_sides_b = (random_sides_b * 9) + 1

initializing empty lists

circumferences = []

areas = []

for i in range(value_count):

 # appending values to lists

 circumferences.append(rectangle_circumference(random_sides_a[i],

 random_sides_b[i]))

 areas.append(rectangle_area(random_sides_a[i], random_sides_b[i]))

utilizing zip to iterate over several collections at the same time

for a, b, circ, area in zip(random_sides_a, random_sides_b,

circumferences, areas):

 print(f'sides {a} and {b}, circumference {circ}, area {area}')

printing newline to separate output logs

print('\n')

obtaining order of indices by ascending value

order = np.argsort(areas)

utilizing enumerate() to get a helper variable for iteration number

for iteration_no, index in enumerate(order):

 print(f'{iteration_no} place, rectangle #{index}, area {areas[index]}')

plt.plot(sorted(areas))

plt.title('distribution of areas of rectangles')

plt.xlabel('sample #')

plt.ylabel('area [units^2]')

plt.grid()

plt.show()

plt.plot(sorted(circumferences))

plt.title('distribution of circumferences of rectangles')

plt.xlabel('sample #')

plt.ylabel('circumference [units^2]')

plt.grid()

plt.show()

9

PMLDS: Instruction 1

Task 1. 6: Given following “input” code (paste it into first cell and execute it):

import numpy as np

values1 = np.random.rand(20)

values2 = np.random.rand(20)

Write code that separates the values in both values1 and values2 arrays into two lists (for
information on how to use lists, refer to Example code in section Longer code examples,
both “circumferences” and “areas” are lists), one containing values lower than 0.5, the other
containing remaining values, and:

1) Display the contents of these lists (you can print an entire list - print(list_name))

2) Display the number of elements in these lists (you can use len() function).

Dataset loading

We will use the following dataset from UCI Machine Learning Repository.

https://archive.ics.uci.edu/dataset/186/wine+quality

In Colab there is a simple "Files" window (Figure 3) where you can manage files. Simple
drag and drop will work, however, in this case, the file will be stored only for a current
session. So, next time you will need to reload it. Another possibility is to connect Colab with
Google Drive.

Figure 3 – Files in Colab, “Mount Drive” button marked.

Task 1.7: Go to the UCI MLR website and download the CSV files containing the dataset.
Then, place the files in your Google Drive and connect Colab with it.

Simple way to read CSV files into Python is using Pandas library and its function read_csv.
Note that if in the CSV file the semicolon is used instead of a comma, you will have to specify
the proper data separator while loading the dataset.

https://archive.ics.uci.edu/dataset/186/wine+quality

10

PMLDS: Instruction 1

This will result in creating a data structure called DataFrame. It is a two-dimensional data
structure similar to spreadsheets. It consists of columns and rows, see Figure 2. Generally,
columns match features in the dataset and rows are particular observations. What is
important, DataFrame can store not only numerical data.

Figure 4 – Pandas DataFrame (source).

The following methods give a brief description of the dataset.

data.head()- prints five first rows of a DataFrame.

data.describe()- prints some basic statistics describing numerical data: number of
observations, mean, standard deviation, minimum, maximum, and percentiles.

Task 1.8: Load the dataset from a CSV file using Pandas, and examine its contents using the
head and describe functions. Start with the red part of the dataset.

Hint: right-click on a selected file and copy the path. This will show you how to reference files
stored in Google Drive.

Take a quick look here.
https://pandas.pydata.org/docs/getting_started/intro_tutorials/01_table_oriented.html
This will help you understand what's going on with your data.

import pandas as pd

data = pd.read_csv('path/file.csv')

data = pd.read_csv('path/file.csv', sep = ';') # When data separator needed

https://pandas.pydata.org/docs/getting_started/intro_tutorials/01_table_oriented.html
https://pandas.pydata.org/docs/getting_started/intro_tutorials/01_table_oriented.html

11

PMLDS: Instruction 1

Data visualization

Having loaded the dataset we want to prepare some charts to get an insight into our data. It
is possible to create some graphs directly from DataFrame using method plot() or
plot.name(), where name stands for specific plots’ type: 'area', 'bar', 'barh',
'box', 'density', 'hexbin', hist', kde', 'line', 'pie', 'scatter'. For
example, to create a simple histogram we might use the following code.

Figure 5 – Example of a histogram.

This simple plotting style sometimes might get doubtful as it works only for numerical data.
What if we want to plot the histogram showing the number of observations regarding a
specific variable or check if any categorical variable is well-balanced? DataFrame columns
can be indexed as Python's dictionaries, thus returning so-called Series, which are one-
dimensional ndarrays with labels (see more:
https://pandas.pydata.org/docs/reference/api/pandas.Series.html). The following
example will create a histogram that is the same as previously (Figure 5) but notice that
now we use only direct matplotlib methods for plotting.

data['quality'].plot.hist()

plt.title('Quality distribution')

plt.xlabel('Quality')

plt.ylabel('Count')

quality = data['quality']

plt.hist(quality)

plt.title('Quality distribution')

plt.xlabel('Quality')

plt.ylabel('Count')

https://pandas.pydata.org/docs/reference/api/pandas.Series.html

12

PMLDS: Instruction 1

Task 1.9: Create the following plots.
1) A histogram showing the number of instances of a specific quality.
2) Scatterplot showing the citric acid vs fixed acidity.
3) Any boxplot.
Please remember to label axes, print titles, and so on.

To save a figure, the method savefig can be used. Most conveniently use it on the figure
object (example below: f1). You can specify easily the file format by adding a proper suffix
to the name which is the first parameter e.g. ‘name.png’. Proper file formats are png, pdf, svg,
and eps. To specify image resolution use parameter dpi, otherwise, it will be saved in a
resolution of a plotted figure.

Task 1.10: Save the selected plot as a PNG file using the savefig method.

Task 1.11: Not all created plots look pretty. Try using customization in matplotlib.pyplot to
make them eye-catching albeit still clear.

Let’s use Seaborn. It will be helpful for us mostly for two purposes: it strictly cooperates
with DataFrames and makes plots look a bit nicer.

Generally, using Seaborn is similar to using matplotlib. You can create a scatterplot (and any
other type of plot) in two ways.

And here is a hint for simple figure size management.

f1 = plt.figure()

plt.hist(quality)

f1.savefig('name.png', dpi=600)

Import seaborn

import seaborn as sns

Apply the default theme

sns.set_theme()

sns.scatterplot(x=data['pH'], y=data['density'])

sns.scatterplot(data = data, x='pH', y='density')

plt.figure(figsize=(10, 5))

13

PMLDS: Instruction 1

Figure 6 – Example of a scatterplot.

The simple scatterplot as in Figure 6 might be very informative, however, we can add some
more details. Let’s add information about the quality to this visualization, so it would look
like in Figure 7.

Figure 7 – Second example of a scatterplot.

14

PMLDS: Instruction 1

Task 1.12: Having code to create a simple scatterplot (Figure 6), improve it to have a
categorical scatterplot (Figure 7).

Task 1.13:

1) Check how your plots look after applying Seaborn’s default theme.

2) Create a boxplot showing density for each particular quality score.

Hint: sns.boxplot(x=?, y=?)

Task 1.14: Correlation heatmap.

You can calculate correlation simply by:

corr = data.corr().

This method will automatically handle nonnumerical data. Then, to plot it use:

sns.heatmap(corr).

This visualization will not be perfect. Choose a proper colormap and turn on annotations.

Data split: training, validation, test

An important issue that we will have to handle before creating machine learning models is
splitting data into subsets. This step aims to ensure that models and their parameters will
be properly verified. Thus, we will split the data into three subsets.

1. Training set. The model will be trained on this part of the data.
2. Validation set. The model’s parameters will be verified on this set.
3. Test set. This part is used for final verification and comparing different models.

Commonly the split is 60-80% training data, 10-20% validation data, and 10-20% test data.

To address this task we will use the scikit-learn library and function train_test_split.

Parameters are X – features on which predictions will be based, y – target, and test_size –
the ratio of test set size. So before using this method, we need to point target in our dataset.
Let's assume that we want to predict the quality based on all other features.

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

X = data.drop('quality', axis = 1)

y = data['quality']

15

PMLDS: Instruction 1

Task 1.15: Split the dataset into the train, validation, and test sets with a ratio of
0.6:0.2:0.2. Find out how to obtain the reproducibility of this split.

Task 1.16: Think which features would be reasonable to choose for the target. Also,
consider if any features should be excluded when building the prediction model. Be ready
to discuss your ideas with the teacher.

Additional tasks and challenges:

Classes

Though using objects is not something you can avoid during this course (e.g. numpy array,
or pandas DataFrame), writing your own ones is not necessary – it may however lead to
more compact and readable code.

Task 1.17: Classes Create a “sorting” class that would solve Task 6a and 6b. Its parameters
should include the two empty sorting lists, and it should have a one method taking in a one-
dimensional collection of values as input, sorting them into the two internal buckets, and
another method for displaying contents and lengths of these buckets. Try instantiating
(creating an object instance) and using it.

Optimizing via matrix operations.

Overall python is not known for it’s speed – quite to the contrary, it’s a rather slow language.
However, there are ways to make it run much faster than it has any right to. One of the more
relevant ones that you’ll run into during this course is utilizing matrix operations. Numpy
library is based around C-bindings, meaning any operation done with it should be fairly
close in speed to a pure C implementation – meaning that even more so than in matlab, we
want to utilize matrix operations as much as possible.

E.g, adding noise to an arbitrary signal:

We could do it as follows:

OR we could do it like that:

import random

signal_vector = get_signal() # creating signal in some arbitrary way

for i in range(signal_vector.shape[0]):

 signal_vector[i] = signal_vector[i] + random.random()

import numpy as np

signal_vector = np.array(get_signal()) # creating signal in some arbitrary way

noise_vector = np.random.rand(signal_vector.shape[0])

signal_vector = signal_vector + noise_vector

16

PMLDS: Instruction 1

Where instead of adding values one by one in a loop, we simply add two entire vectors at
once.

Task 1.18: Matrix operations. Have a look at the code example in section Longer code
examples, try to rewrite it (up until the printing) in such a way that no loops are utilized

List / dictionary comprehensions

Python has an in-built mechanism for optimized construction of lists and dictionaries – it will be

in no way necessary to use it during the course, it’s simply a convenience tool for slightly faster

list construction, and more compact (albeit less readable) code.

For instance, let’s take grabbing a list of files with png extension from a directory:

Alternatively we could use list comprehension:

Or cut it down to 1 line if we’re at it anyway:

The first version is by far the most readable, but it’s marginally slower and takes far more
typing – whether you want to use this tool or not is entirely up to you, as it’s mostly a
convenience vs readability tradeoff.

We can also make arithmetic operations in list comprehension, as such:

Which will iterate over the “range” collection, with values from 0 to 9, and multiply each of
them by two.

Task 1.19: List comprehension. Simplify the code below to a single line (paste the original
code into Colab to compare results)

import os

path_of_interest = get_path() # getting some arbitrary path

all_files = os.listdir(path_of_interest)

filtered_files = []

for file in all_files:

 if 'png' in file:

 filtered_files.append(file)

import os

path_of_interest = get_path() # getting some arbitrary path

filtered_files = [file for file in os.listdir(path_of_interest) if 'png' in file]

import os

filtered_files = [file for file in os.listdir(get_path()) if 'png' in file]

double_sequence = [index * 2 for index in range(10)]

17

PMLDS: Instruction 1

Task 1.20: Create a violin plot showing density for each particular quality score.

Task 1.21: Using seaborn create a line plot showing wine quality against pH. Be ready to
discuss what is on the plot.

Task 1.22: Prepare similar visualizations as in the previous tasks for the white wine set.

newlist = []

for i in range(10):

 value = i

 value = value * value

 value = value - 4

 newlist.append(value)

