

Faculty of Mechanical Engineering
and Robotics

Department of Robotics and

Mechatronics

Python for Machine Learning and Data Science

Course for Mechatronic Engineering

Additional instruction:

GIT
and

version control and cooperation

 You will learn: How to work with GIT, colab integration, collaboration
in GIT.

Course supervisor:
Ziemowit Dworakowski, zdw@agh.edu.pl

Instruction author:

Mateusz Heesch

mailto:zdw@agh.edu.pl

 2

Introduction

This laboratory class will cover usage of GIT in colab, with a focus on collaboration (hence some tasks

will be performed in groups). Though technically version control, code sharing, and co-development can

be done using other tools, GIT is universally accepted as the “go-to” option for that – getting familiar

with it will be useful not only for streamlining project assignments in this course, but it’s safe to say

you’ll also use it in any programming (or programming-adjacent) jobs you might hold after graduating.

This instruction will mostly cover bare basics, you’re encouraged to refer to extensive documentation

and troubleshooting available online whenever you run into more complex scenarios.

Let’s start with introducing some basic relevant terms:

- Repository itself is sort of a container for code (oversimplified, but let’s stick to that for now) -

the parallel to it that you’re likely the most familiar with is a project folder with code that you

keep locally on your machine. Bear in mind the repository will usually have at least 2 instances –

remote (the one hosted on whatever git service you might be using), and local (data kept locally

on one or more computers)

- Branch is (as intuition might suggest) is a “path” the code is taking, if we were to imagine it as a

road. The main code is kept and updated on “master” branch (also sometimes referred to as

“main”), however the code development might branch out to several features (especially with

multiple people working on it). On creation, new branches will snapshot the state of whatever

branch they’re created from, and can then be updated independently – making it considerably

easier to go back to “last working version” of code

- Commit is bits and pieces of code and files wrapped into a single package, usually accompanied

by a message detailing the purpose of this package

- Push is what we do with a locally created commit, do put it on the remote repository

- Pull is what we do to update local code to latest version on remote repository

- Pull request is a request to merge changes from one branch to another (e.g., after finishing an

experimental feature on a side-branch, you decide to incorporate it in your main code, and re-

quest to merge that branch with master/main). Often accompanied by peer review.

- Peer review is a review process during collaboration, where changes introduced in a pull re-

quest are reviewed by other collaborators to ensure the new additions are of adequate quality

(and don’t break anything)

- Merge conflicts occur when a piece of code that a pull request attempts to change, has already

changed on target branch (as compared to the source branch origin point) - these conflicts need

to be resolved before merge, as it is not obvious which version of this code should be kept

- Clone is what we do to create a local version of target remote repository

 3

Creating git repository on Github
Though Github is not the only option for free repository hosting (besides self-hosting), during this course

we’ll be using it instead of the alternatives due to the in-built integration with google colab, as well as

keeping things simple and consistent between teams.

Task 1: Create a personal git repository following instructions in this section

1) Naturally, first you’ll have to create an account on https://github.com/

2) Then you’ll create a new repository using the website UI in top left corner

Figure 1: Github repositories dashboard

3) Fill in repository name, keep the repository public (overall more convenient to use, the course

projects aren’t exactly top-secret material)

4) Now that your repository is created, it’s time to populate it. Several ways of doing that will get

automatically displayed, however it’ll be slightly more complicated in our case (which is sticking

exclusively to colab, to guarantee that you can actually go through it regardless of what com-

puter you’re on, and what permissions you’ve got). We’ll be utilizing this proposed instruction,

albeit with some changes:

Figure 2: Proposed repository creation from command line

https://github.com/

 4

5) Open a colab notebook and run following cells (replacing the email address with your own)

Figure 3: Creating repository via colab part 1 (some commands might take up to few minutes to execute,

if you’re not getting an error, wait patiently)

To quickly unpack what we just did, we:

- created an empty git repository on the colab runtime

- configured colab runtime git user

- switched the current branch to “master”

- created a README.md file with “# test” as its content

- added the created readme file to next commit

- created the commit with “first commit” message

On an unrelated note – as you may have noticed, you can run bash commands in colab by putting a “!”

in front of them.

Now is the time where normally we’d set the repository target (to our previously created repository on

github) and pushed the commit, however since we’re working in an environment without a terminal, we

need to sort out authentication first. 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

6) Since authentication via account password is no longer an option, we’ll need to use “personal

access token” (refer to https://docs.github.com/en/authentication/keeping-your-account-and-

data-secure/managing-your-personal-access-tokens if you want to learn more about them)

a. On Github, go to profile (top right corner) -> settings -> developer settings -> personal

access tokens -> tokens (classic)

b. Click “generate new token (classic)”

c. Fill in token description, tick “write:packages” (see Figure 4). Lastly, confirm token crea-

tion, and save the created token somewhere discreet

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens

 5

Figure 4: Personal access token permissions

7) Now that we have an authentication method, we can push our first commit, as follows:

Figure 5: Creating repository via colab part 2 – replace “your_username”, “your_repo_name” and

“your_token” with appropriate text, the token being the one we just generated

8) After pushing, navigate to your repository page on github.com, it should look something like

Figure 6

Figure 6: Sample repository dashboard

9) Now that the first commit (and branch) is there, you can use the website GUI to do most things

– create new branches, create and resolve pull requests, review commits, etc.

10) Next, let’s link your colab and github – go to https://colab.research.google.com/ and click

“github” on the initial pop-up (you may need to enable additional pop-ups), and follow instruc-

tions on-screen to link your accounts

https://colab.research.google.com/

 6

Figure 7: Creating new branch – the menu opens after clicking on a triangle in the “master” button.

11) From now on:

a. if you want to commit your colab notebook to your github repository, simply go to File ->

Save copy to Github, select the desired repository, branch, and filename, and commit

b. whenever you start up a new notebook, you’ll have the option of selecting one upload-

ed to your github

Task 2: Working with branches pt.1

1) Open an empty colab notebook, fill the first cell with code which creates a list with

some content

2) Push the notebook to your master branch under “lab2task2.ipynb” name

3) Create two new branches via github GUI (see Figure 7), name them “for_variant”

and “while_variant”

4) Fill the second cell with code that displays the content of the list using a for loop –

push it to the “for_variant” branch

5) Fill the second cell with code that displays the content of the list using a for loop –

push it to the “while_variant” branch

6) Close the notebook, and re-open both versions utilizing the github integration

(start the way you did in point 10 of this section tutorial)

7) Pick one of these branches, and merge it to master via pull request (See section

3.b)

 7

Collaboration with git

a. Adding colaborator
You’re the sole owner of your newly created repository – to allow others to contribute to it, you have to

add them as colaborators in the repository settings tab (see Figure) -> Access -> Collaborators -> Add

people

Figure 8: Repository settings tab location

b. Merging changes
Though solo projects (should) involve merging changes too, it’s certainly more common among projects

where multiple people work on different features in parallel, eventually putting the changes they intro-

duced together to form the final result.

To merge changes you have to create a pull request in the “pull requests” tab (see Figure), which will

summarize the changes between source (what you’re merging) and target (where you’re merging)

branch. If everything is okay, you will get a green-light for merging and closing the pull request, however

sometimes things will not be as simple (see 3.c)

Figure 9: Pull requests tab location

c. Merge conflicts
Merge conflicts occur when some code that was changed on the source branch, has also already

changed on target branch since the source branches creation – in such situation, it is not obvious which

variant should be used, and this piece will be marked as conflicting. You can resolve merge conflicts on

github web GUI editor, for details refer to:

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/addressing-merge-

conflicts/resolving-a-merge-conflict-on-github

d. Reviews
Having more eyes on a pull request before merging it gives better odds at avoiding errors, as well as

keeping the code clean and functional, though it does introduce additional friction to the process. This

process is formalized as pull request reviews. After a pull request is created, but before it’s merged, all

collaborators can view the list of changes introduced by this potential merge, and comment on them –

either giving approval, or requesting changes. To limit haphazard merges that might break more things

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/addressing-merge-conflicts/resolving-a-merge-conflict-on-github
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/addressing-merge-conflicts/resolving-a-merge-conflict-on-github

 8

than they fix, it is possible to set a requirement of having at least one persons approval before having

the ability to merge.

Though it may seem like a waste of time at this stage, code reviews (at least to some degree) bring many

benefits, and beyond the obvious “cleaner/better code”, it also ensures higher familiarity with the

codebase amongst the collaborators. After all, to give your teammates code a thorough review, you first

have to read and understand what changes they’re proposing in the first place.

Task 3: Working with branches pt.2 (team task)

1. Create a team repository in the same manner as the individual ones

2. Give team members read/write access

3. Create a “lab2task3” branch

4. Push a notebook with following cells to task3 branch:

a. Cells 1, 2, 3, 4 containing an empty function definition (function with a given name,

no arguments, and only “return” in body)

b. Cell 5 calling these 4 functions one after another

5. Create an individual branch for each team member from lab2task3 branch

6. Every member should edit one of these empty functions (on their computer, coordinate with

each other on who does which one) to print their name. Note that you’re only defining a

function that will print that, don’t call the function. Push the changes to your personal

branch, make sure the notebook name stays the same.

7. Merge all these individual branches to lab2task3

8. Open the latest notebook from lab2task3 and execute all cells, this should result in 5th cell

printing all team members names

Task 4: Merge conflicts

1. Create a new notebook

2. In first cell define an empty function called “celebrate” that takes no arguments, and an if

block with always – false condition, inside which this empty function is called (e.g. if False)

3. Push the notebook to master branch

4. Create new branch

5. Fix the condition to an always – true one (e.g. if True), push the fixed condition to master

branch

6. Switch to branch created in subtask 4 (Close the notebook, open it through git interface

from a new branch), edit the “celebrate” function to print “woooo!” or another celebratory

message

7. Merge the new branch to master, resolve the conflict in such a way, that after running the

cell the celebratory message is printed

 9

Inclusion of non-notebook files in repository and handling it within

colab.
Naturally, you might want to include non-notebook (.ipynb) files in your repository as well – in particu-

lar .py files where you could put all written convenience functions, and keep them out of notebooks for

easier maintenance. In general – besides the inconvenience of colab, .py files will be much easier to

work with and monitor changes on when it comes to github. To work with repository in this way in colab,

we need to start from loading it differently, as the colab-github integration only allows for loading up

notebooks.

For that purpose, launch a new unrelated notebook, and in the first cell simply clone your repository,

which will download the remote repository to current colab runtime – letting you view and interact with

files via the colab file explorer (see Figure 10). Sadly, the colab-github integration leaves a bit to be de-

sired, so we’ll have to do some extra steps to get things working.

Figure 10: Cloning repository into temp directory, moving its contents into current workdir, removing

temp directory (as before, remember to replace “your_username” and “your_repo_name”)

Now, we’ll create a .py file in this notebook as well, making sure to place it in the actual repository.

Figure 11: Creating and editing files in colab

Next, to edit the .py file, we simply double click the text file, and an edit window will pop out on the

right.

 10

Lastly, after saving the file, we can push it to the repository in the same manner in which we pushed the

README.md file in initial push. Remember to change the current branch if need be (“git branch

branchname”, by default after cloning we start in “master”).

Now that this utils.py file is created, all notebooks in this directory can import its functions, as they

would from a library (see Figure 12)

Figure 12: Using function imported from local .py file

Task 5: Using .py files

1. Create (and push to repository) a .py file with a utility function that checks whether a trian-

gle with side lengths a, b, c (input parameters) can be constructed, returning True / False

based on that condition

2. Import that function in a notebook

3. Create 3 arrays of 100 random numbers (or a 2-dimensional 100x3 matrix), and check how

many of these 3s can be used to construct a valid triangle, using the imported function

4. Push both notebook and .py file to your repository

