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Find signal x value that minimizes y distance in t seconds
given current position of joints j
Assume we always start from the same j and v
Now we can try hundreds of different x prescriptions until we hit the ,optimal” one...

Now assume we always start from the same j but v changes...

Set of possible vs is potentially infinite, so we need to learn a mapping from v to good x.
It would be a regression task — if we had enough examples (we don’t!).

So we need to - at the same time — optimize gradually x and learn relationship between x and v ...

(And then if j changes as well or there are any additional uncertainties — the procedure is the same...)
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in t seconds given current position of joints j
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Find signal x value that minimizes y distance
in t seconds given current position of joints j
and speed v

(For now we start from the same j)
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Find signal x value that minimizes y distance
in t seconds given current position of joints j
and speed v

(For now we start from the same j)
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Supervised learning

Pre-acquired data samples
Labels assigned

Good for typical classification
and regression tasks

Unsupervised learning

Pre-acquired data samples
Labels unknown

Good if labeling of data is difficult
(e.g. only some of labels can be
assigned manually)

Reinforcement learning

Data acquired in response to
model actions

Model assigns labels itself
Good for finding new solutions if

we don’t have examples of ,,good
behavior”

But it is so much more than that...




General representation of RL

Agent updates policy to

L . L maximize reward over time
This is the main decision

mechanism Advanced agents can learn to model

Policy 7(s)

State s, Reward So these can bejcumulated

..... [ Action a . .
ction a, If given action often

State s,,; Reward ry,, precedes reward - it
will be reinforced

Envi «
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environment and expected rewards...

Reinforcement through competition

Environment 2

Policy (s)

States; Reward r; .
--r=4-4----- Action a,
State s4 4,1 Reward ry 4,y
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Compete with other agents

IEERERRE!

,Learn to mimic a human player”



https://deepmind.google/discover/blog/alphastar-mastering-the-real-time-strategy-game-starcraft-ii/
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ResNet Stack
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Source: https://paperswithcode.com/method/alphastar
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L Previously Trained Agents AlphaStar Training League
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Source: https://deepmind.google/discover/blog/alphastar-mastering-the-real-time-strategy-game-starcraft-ii
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What if we force agents to fight over image?

Generative-Adversarial mechanism
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Generative Adversarial Network (GAN, 2014)

Real images database

M- ..
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2
€
gH = g Discriminator:
3 A DCNN network
2 Generator: Fake images
2 A ,Reversed”

DCNN network

Maximize T Minimize
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GAN problems

We have a nice tool that generates
images from given distribution, but:

- We can observe mode collapse

Generator Learns a good prescription to fool a
discriminator and , decides” to use it always

- We can’t control the output at all

- We can only generate very small images or
training gets too hard

(4) 100 Epoch (8) 199 Epoch (C)300 Epoch
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Real images of zebras CyC I eGAN

I/I/l/ (2017)
A pia:ai;:hr .
(e.g. a horse)

el

Train to minimize
Reconstruction error

=P Error

Real images of horses
Zebras
discriminator
-
= Error
% ->‘ >

Generator Fake horses

Generator  Eake zebras

~
Horses
discriminator
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Unpaired Image-to-Image Translation
using Cycle-Consistent Adversarial Networks

Jun-Yan Zhu* Taesung Park* Phillip Isola Alexei A. Efros
Berkeley Al Research (BAIR) laboratory, UC Berkeley
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Ukiyo-e

Conditional GAN + Stack GAN (2014-2017)

Real images + Labels (or text)

/

Labels (or text) \
e = Error
s
g
S
€
8 Discriminator:
é A DCNN network
2 Generator: Fake images + labels
K] A ,Reversed” (o text)
DCNN network
Maximize T Minimize

Its a huge simplification!
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Stack GAN (2017)
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Stage-l| Generator G for refinement results Stage-ll Discriminator D
Source: https://arxiv.org/pdf/1612.03242
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Conditional GAN (2014)
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Source: https://arxiv.org/pdf/1411.1784
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Stack GAN (2017)

The bird is Abdirdwitha  This small withvarying  bird with 8 has a white
Thisbird isred  short and medium orange  black bird has  shades of blackcrown  breast,light

desmimion | WAbrownin  stubby with bill white zm\ ashort slightly  brown with and a short gxcy bead. and
v color.witha  yellowonits  gray wines corved billand  white under the m».x pointed wings
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Source: https://arxiv.org/pdf/1612.03242
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Progressive GAN

Real images database
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3
2
E ” Discriminator:
3 A DCNN network
k- Generator: Fake images
2 A ,Reversed”
DCNN network
Maximize Mlnlmlle]
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Progressive GAN — trains layers gradually

Real images database

M-

S
k4 el
S
§ Discriminator:
;.“' A DCNN network
k3 Generator: Fake images
2 A ,Reversed”
DCNN network
Maximize Minimize
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StyleGAN (2018)

Real images database

‘ \
P> Error

H
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H — Discriminator:
K A DCNN network
]
E Generator: Fake images
s A, Reversed”
DCNN network
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GAN vs StyleGAN (2018) 2
Latent z € £ <— Noise source ~m

Synthesis network g
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StyleGAN

les from source B

§

Every point in this space represents a potential
image. Here, we have all the information, including
context. We just need to unpack it.

So we could also store (encode) in this space
potential context — e.g., image description...
Error

Discriminator:
A DCNN network

Latent Vector

Generator:
A, Reversed”
DCNN network

Fake images

Maximize Minimize
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Real images + Labels (or text)
i

\
Latent Vector
¥

1) We learn latent autoencoder representation
(Image to latent vector, latent vector to image, no labels used).
Decoder able to ,,unpack” image is stored for future use

*I
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Real images + Labels (or text)
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2) We learn how we can guide denoising process by
the embedding of the image
(by train a CLIP Label encoder and denoising ,,U-net”)

Denoising

N -

Embedding

Latent Vector

[——— ]
+
Added noise
n
Noisy latent vector
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Real images + Labels (or text)
A
I

3) We unpack denoised latent vector through
previously trained decoder

Denoising
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Embedding

Latent Vector
+
Added noise
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Noisy Iatent ve:mv
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Latent Space

Diffusion Process

Denaising U-Net €g

Stable Diffusion (2022)
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Cycle GAN (2017)
Allows for consistent cross-domain mapping
(and back)

Conditional GAN (2017)
Allows contextual input
(i.e., generation consistent withh image label)

Progressive GAN (2017)
Allows gradual training from small to high
resolution

Style GAN (2018)
Allows controlled generation
at different ,image layers”

—

—

Stable Diffusion (2022)
Allows controlled and layered
image generation without
unstable adversarial loss

I may have simplified a bit and ommitted a few steps along the way though...
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What do we do at AGH?

n sensors mMoPI

Diagnostic-Quality Guided Wave Signals Synthesized Using
Generative Adversarial Neural Networks

Mateusz Hoesch *0, Michat Dieadeikowski 22, Kezysziof Mendrok 'O and Ziemanit Dworakawshi *

Past stage 2

¥ Target
ot stage 2 Founertranstomn
g
St
B == o s
What do we do at AGH?
Style GAN

Ultrasonic (o)

guided-wave data Cycle GAN Plausible data
(or) B for decision system training

Context - Stable-diffusion-
(specimen shape, based model
damage locations)

Style GAN

L (or)

monitoring data Cycle GAN Plausible data
(or) ) for decision system training
Context q Stable-diffusion-
(machine description, based model
damage type)
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What do we do at AGH?

We see this:

Imagine a dark red and green
robot with KRiM text, Midjourney [
photorealistic, steampunk, {...)"

We want this:

g
Imagine a machine with %
[this specification] running in Midjourney for ¥
[this conditions]. What would the ~ EEEp -
signals look like? o

36
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Things to remember:

Explain Reinforcement Learning scheme

Compare reinforcement learning with basic optimization and regression
Show a scheme of a GAN network

Explain drawbacks of basic GAN architecture

Explain how CycleGAN, StyleGAN, ConditionalGAN and ProgressiveGAN
contribute to GAN-based image generation

Explain what is Latent Space and what is a Latent Vector

7. Explain the idea behind Stable Diffusion model

urwNE

o
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