

Faculty of Mechanical Engineering
and Robotics

Department of Robotics and

Mechatronics

Basics of AI and Deep Learning

Course for Mechatronic Engineering with English as instruction language

Instruction 2:

Linear and nonlinear regression, data storage and

display

 You will learn: How to implement from scratch and configure basic
linear and nonlinear regression algorithms. In addition to that you will
also learn how to store and display experimental data efficiently.

 Additional materials:

- Course lectures 1 and 2 [obligatory]

 Learning outcomes supported by this instruction:
[Here a list of learning outcomes’ codes]

Course supervisor:

Ziemowit Dworakowski, zdw@agh.edu.pl

Instruction author:
Ziemowit Dworakowski, zdw@agh.edu.pl

mailto:zdw@agh.edu.pl
mailto:zdw@agh.edu.pl

2

BAIDL: Instruction 2

Linear and polynomial regression

Lets start by loading and showing a dataset for 2-dimensional regression problem. The
datasets on which we’ll be working in this task are in the RegressionData folder. I’ll start
with dataset DataForDemonstration, which after loading and displaying with the following
code looks like in Fig 1:

Figure 1 – Sample dataset

We will treat 3rd data column as a target value which we should learn to predict. Now our
goal is to build a regressor. We need to somehow find the coefficients of the regression
plane – a model that allows for prediction of new samples. We will do it by means of
optimization. Our objective function will be the error between predicted values and actual
values and we will find the solution using algorithms developed last time.

Lets start with this simple model:

Note that this is a function (save it as a separate file) which takes vector of features X =
[x1,x2] and vector of parameters W = [W1, W2, W3] governing how the actual model works.
Lets fix the vector of parameters at any arbitrary values and lets just pass all the training
data through the model to see what happens:

load RegressionTrainingData

figure;
plot3(RegressionTrainingData(:,1), RegressionTrainingData(:,2), RegressionTrainingData(:,3),'.r')
xlabel('x1')
ylabel('x2')
zlabel('value')
grid on

function [PredictedValue] = LinearRegressionModel(X,W)

 PredictedValue = W(1)*X(1) + W(2)*X(2) + W(3);

end

3

BAIDL: Instruction 2

Now we can plot error values themselves or show how far we are from the actual points –
see result in Fig. 2:

Figure 2 – Regression error in feature space (left) and shown for all the samples (right).

It is a good starting point for building an optimizer. We’ll just need to put all the previous
pieces of code in a function which will be our FunctionForOptimization. If
FunctionForOptimization takes a vector as input, it will easily be usable with optimization
algorithms developed within laboratory 1. Note, that if the function is expected to run
quickly, you should probably turn all the visualizations off (that means: no plotting).

Task 2.1: Load your individual* set of training data (RegressionTraining_n where n is your
individual task number). Create a new function, name it e.g. LinearRegressorCheck. Let the
function take a vector of parameters W = [W1,W2,W3] and return MSE value for all the
points in the RegressionTrainingData dataset. Evaluate the function for several different
values of W1, W2 and W3, try to find one that is reasonably good.

Task 2.2: Use your LinearRegressorCheck as function for optimization with your grid search
algorithm developed in scope of laboratory 1. Find the optimum and store it in Table 2.1.

W1 = 1; % Since we don’t know what the model parameters should be – lets start with ones.
W2 = 1;
W3 = 1;

for k = 1:length(RegressionTrainingData)
 PredValue(k) = LinearRegressionModel([RegressionTrainingData(k,1),...
RegressionTrainingData(k,2)],[W1,W2,W3]);
 % The third column of TrainingData is our target
 Error(k) = PredValue(k) - RegressionTrainingData(k,3);

end

MSE = mse(RegressionTrainingData(:,3),PredValue’);

figure;
subplot(1,2,1)
 plot3(RegressionTrainingData(:,1),RegressionTrainingData(:,2),RegressionTrainingData(:,3),'.r'); hold on
 plot3(RegressionTrainingData(:,1),RegressionTrainingData(:,2),PredValue,'.k');
 xlabel('x1'); ylabel('x2')
 zlabel('value')
 grid on
subplot(1,2,2)
 plot(Error)
 xlabel('Sample number'); ylabel('Error value')

4

BAIDL: Instruction 2

Task 2.3: Use your LinearRegressorCheck as function for optimization with your 1+1
algorithm with adaptive step developed in scope of laboratory 1. Find the optimum and
store it in Table 2.1.

Task 2.4: Use your LinearRegressorCheck as function for optimization with your multistart
gradient algorithm with adaptive step developed in scope of laboratory 1. Find the
optimum and store it in Table 2.1.

Task 2.5: Modify your regression model, to allow for more complex geometry. Let it be a
polynomial quadratic model given by equation:

𝑦 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥1𝑥2 + 𝑤4𝑥1
2 + 𝑤5𝑥2

2 + 𝑤6

Optimize this 6-dimensional model using 1+1 algorithm with adaptive step and store the
results in Table 2.1 at the end of the instruction. Try to configure the method in such a way
that they consistently find global minimum. Note that you will probably need to use more
optimization steps to find solution in a 6-dimensional feature space.

 Task 2.6: Repeat task 2.5, this time using a multistart gradient model. Start with picking
the value of objective function checks equal to the one used in task 2.5 and now configure
the number of starts and iterations of your multistart gradient to aim for the most
consistent (and best) result. Then store the result in table 2.1.

 Task 2.7: So far we used only Training datasets. Now time to evaluate our models on data
which were not seen during training. Lets use the learned parameters to check the
performance of your models on the Testing data subset and store the results in table 2.1.

Table 2.1: Regression results

 W1 W2 W3 MSE
MSE

validation

Manual setup 1 -

Manual setup 2 -

Manual setup 3 -

Grid search

1+1 method
Try 1: Try 2: Try 3:

Gradient method
Try 1: Try 2: Try 3:

1+1: polynomial model - - -
Try 1: Try 2: Try 3:

gradient: polynomial model - - -
Try 1: Try 2: Try 3:

5

BAIDL: Instruction 2

Storing and showing statistical data from multiple experiments in a
controlled manner

Up until now we were storing our results in tables (probably handwritten in your notebook
or manually annotated onto a pdf instruction file). This is not the optimal way, though.
From now on, lets use data structures for that. Lets say that we have an experiment in
which we repeat a test of some algorithm’s configuration several times and then we do the
same for a different configuration. We would like to have these results stored in a tree
structure that would look like in Figure 6.

Figure 6 – Data structure for organization of experimental results

For the sake of explanation lets imagine that we are working again on the first instruction
and we are testing optimization algorithms in optimization of our artificial 2D and 4D
functions. Remember how we got a vector of results, mean and standard deviation in task
1.8? Lets now use that to illustrate how we could store these outcomes.

We knew that we had two algorithms to evaluate (multistart gradient and 1+1) and three
functions on which we did our testing (fewminima, manyminima, multidimensional)? We
should also be able to test different configurations of algorithms, that is: different
metaparameter values. The easiest way to define a nested data structure to store these
results is to just throw the data onto the level we want it to be – and the rest of the
structure will be organized accordingly:

Our experiment

Configuration 1

Configuration 2

Configuration description

Aggregated parameters (e.g. mean result)

Actual partial results

We should be able to add more experiments…

more partial results…

and more configurations.

6

BAIDL: Instruction 2

If we then want to test another optimization method, say: to 1+1, we could just change the

relevant structure’s level:

If we decide we want to run the same algorithm for the same problem but for a different

configuration (different values of metaparameters), we can just add another field in a Fewminima

vector:

AggregatedResults.OnePlusOne.Fewminima(2).Results = Results;

AggregatedResults.OnePlusOne.Fewminima(2).Mean = mean(Results);

AggregatedResults.OnePlusOne.Fewminima(2).Std = std(Results);

AggregatedResults.OnePlusOne.Fewminima(2).Config.InitialStep = 4;

AggregatedResults.OnePlusOne.Fewminima(2).Config.ReductionFactor = 0.6;

AggregatedResults.OnePlusOne.Fewminima(2).Config.AdaptationTrigger = 6;

You can also attach structure’s parts together. So the following code is equivalent to the former

one:

Config.InitialStep = 4;

Config.ReductionFactor = 0.6;

Config.AdaptationTrigger = 6;

AggregatedResults.OnePlusOne.Fewminima(2).Results = Results;

AggregatedResults.OnePlusOne.Fewminima(2).Mean = mean(Results);

AggregatedResults.OnePlusOne.Fewminima(2).Std = std(Results);

AggregatedResults.OnePlusOne.Fewminima(2).Config = Config;

The only issue we are missing is the fact that our structure will be forgotten once we close
the code – and we actually want to have just one data structure for all the codes we are
running. For this reason we need a way to load existing data structure and save it
afterwards:

for repetition = 1:20

 %% Here we have a test which end in one Result that is stored in the Results vector:

 %% ...

 Results(repetition) = BestHistory(end)

end

% Here we calculate statistics from our run:

mean(Results)

std(Results)

% Here we store all the necessary information into the data structure:

AggregatedResults.MultistartGradient.Fewminima(1).Results = Results;

AggregatedResults.MultistartGradient.Fewminima(1).Mean = mean(Results);

AggregatedResults.MultistartGradient.Fewminima(1).Std = std(Results);

AggregatedResults.MultistartGradient.Fewminima(1).Config.Starts = 5;

AggregatedResults.MultistartGradient.Fewminima(1).Config.MaxSteps = 100;

...

AggregatedResults.OnePlusOne.Fewminima(1).Results = Results;

AggregatedResults.OnePlusOne.Fewminima(1).Mean = mean(Results);

AggregatedResults.OnePlusOne.Fewminima(1).Std = std(Results);

AggregatedResults.OnePlusOne.Fewminima(1).Config.InitialStep = 7;

AggregatedResults.OnePlusOne.Fewminima(1).Config.ReductionFactor = 0.8;

AggregatedResults.OnePlusOne.Fewminima(1).Config.AdaptationTrigger = 3;

7

BAIDL: Instruction 2

How to show contents of your data structure?

If you have your data already stored in your structure, you can easily show its parts, e.g. like
that:

Or like that:

VectorOfResults = [AggregatedResults.OnePlusOne.Fewminima(1).Mean,…

AggregatedResults.OnePlusOne.Fewminima(2).Mean,…

AggregatedResults.OnePlusOne.Fewminima(3).Mean,…

AggregatedResults.OnePlusOne.Fewminima(4).Mean]

bar(VectorOfResults); hold on

Or just display it in the command window:

if(exist('AggregatedResults'))
 load AggregatedResults
else % If the structure does not exist - it will just be generated and saved at the end of our code
end

%% Here we have an actual method (maybe some tests, repetitions, etc.)
% ...
% ...
% ...

% Here we are storing the results of our code:
Config.InitialStep = 4;
Config.ReductionFactor = 0.6;
Config.AdaptationTrigger = 6;
AggregatedResults.OnePlusOne.Fewminima(2).Results = Results;
AggregatedResults.OnePlusOne.Fewminima(2).Mean = mean(Results);
AggregatedResults.OnePlusOne.Fewminima(2).Std = std(Results);
AggregatedResults.OnePlusOne.Fewminima(2).Config = Config;

% Here we save the data structure with new contents:
save AggregatedResults AggregatedResults

plot(AggregatedResults.OnePlusOne.Fewminima(1).Results,'r'); hold on

plot(AggregatedResults.MultistartGradient.Fewminima(1).Results,'b'); hold on

legend('OnePlusOne','MultistartGradient')

xlabel('Run number')

ylabel('Result')

AggregatedResults.OnePlusOne.Fewminima(1).Mean

AggregatedResults.MultistartGradient.Fewminima(1).Mean

8

BAIDL: Instruction 2

Task 2.8: Go back through the instruction and prepare your way of storing data from multiple

experiments. Then do statistical evaluation of linear and polynomial models for regression (tasks

2.3, 2.4, 2.5 and 2.6). You will need to run each task at least 20 times for that. Your data struc-

ture should contain:

- Information about the solved task type (classification or regression)

- Information about the classifier used

- Information about metaparameters of the classifier used

- Statistical estimates calculated for multiple runs (mean and standard deviation)

- Source results (results of each run)

- Information about validation efficiency calculated in task 2.6 for the regression models

Ways of displaying statistical and comparison data

Once you have your data prepared, it is time to show them in a way which is easy to
comprehend. This time I won’t provide you with exact code to do this task – you will need
to work your way thorough this problem using matlab documentation. Lets start with your
data structure (prepared in scope of task 2.7) and then compare different algorithms and
different setups using plots and bar graphs. A short explanation of function syntax can be
found using matlab help command (e.g. “help bar”). Full documentation including examples
of use is available after using doc command. Here is a list of functions you should consider:

bar allows to build bar graphs (also multicolor and comparing different vectors)

subplot allows to provide many different plots on one figure

plot3 allows to plot 3D scatterplots

line allows for plotting lines in your graphs and plots (e.g. indicating level of something in

comparison to something else)

Task 2.9: Show data from laboratory 2 using visualizations designed by you. Let your figures

have legends, axes labels and different colors for showing different values. Make them as profes-

sional-looking and custom as you can. Include at least:

- Comparison of mean validation and training results from task 2.7 using bar graphs for three

different models – on three subplots in one figure

- Display of a source results for statistics (results of each of the 20 runs for the model) along with

a line indicating mean value

Additional tasks:

Task 2.10: Modify task 2.5 so it would use locally weighted regression instead of a polynomial

model. Then compare the results obtained on validation dataset with ones from relevant ones

from previous tasks. Note that in order to get prediction of points in your validation data you

should use training data (so validation dataset provides only points to check. Points into which

you are fitting your lines should still come from training)

Task 2.11: Modify task 2.6 so it would use a higher order of a polynomial. Configure the train-

ing method, fit this polynomial into your training data and then evaluate the efficiency on a vali-

dation data. Compare 1+1 and gradient solutions as optimization solvers. Is there a similar dif-

ference than before or do we have a change in relative results?

