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Linear and polynomial regression 
 
Lets start by loading and showing a dataset for 2-dimensional regression problem. The 
datasets on which we’ll be working in this task are in the RegressionData folder. I’ll start 
with dataset DataForDemonstration, which after loading and displaying with the following 
code looks like in Fig 1: 
 

 

 
Figure 1 – Sample dataset 

 
We will treat 3rd data column as a target value which we should learn to predict. Now our 
goal is to build a regressor. We need to somehow find the coefficients of the regression 
plane – a model that allows for prediction of new samples. We will do it by means of 
optimization. Our objective function will be the error between predicted values and actual 
values and we will find the solution using algorithms developed last time. 
 
Lets start with this simple model: 
 

 
Note that this is a function (save it as a separate file) which takes vector of features X = 
[x1,x2] and vector of parameters W = [W1, W2, W3] governing how the actual model works. 
Lets fix the vector of parameters at any arbitrary values and lets just pass all the training 
data through the model to see what happens: 
 
 

load RegressionTrainingData 
 
 
figure; 
plot3(RegressionTrainingData(:,1), RegressionTrainingData(:,2), RegressionTrainingData(:,3),'.r') 
xlabel('x1') 
ylabel('x2') 
zlabel('value') 
grid on 

function [PredictedValue] = LinearRegressionModel(X,W) 

        PredictedValue = W(1)*X(1) + W(2)*X(2) + W(3); 

end 
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Now we can plot error values themselves or show how far we are from the actual points – 
see result in Fig. 2: 
 

 

 
Figure 2 – Regression error in feature space (left) and shown for all the samples (right). 

 
It is a good starting point for building an optimizer. We’ll just need to put all the previous 
pieces of code in a function which will be our FunctionForOptimization. If 
FunctionForOptimization takes a vector as input, it will easily be usable with optimization 
algorithms developed within laboratory 1. Note, that if the function is expected to run 
quickly, you should probably turn all the visualizations off (that means: no plotting). 
 

Task 2.1: Load your individual* set of training data (RegressionTraining_n where n is your 
individual task number). Create a new function, name it e.g. LinearRegressorCheck. Let the 
function take a vector of parameters W = [W1,W2,W3] and return MSE value for all the 
points in the RegressionTrainingData dataset. Evaluate the function for several different 
values of W1, W2 and W3, try to find one that is reasonably good. 

 

Task 2.2: Use your LinearRegressorCheck as function for optimization with your grid search 
algorithm developed in scope of laboratory 1. Find the optimum and store it in Table 2.1. 

 

W1 = 1;   % Since we don’t know what the model parameters should be – lets start with ones. 
W2 = 1; 
W3 = 1; 
 
for k = 1:length(RegressionTrainingData) 
    PredValue(k) = LinearRegressionModel([RegressionTrainingData(k,1),... 
RegressionTrainingData(k,2)],[W1,W2,W3]); 
    % The third column of TrainingData is our target 
    Error(k) = PredValue(k) - RegressionTrainingData(k,3);    
 
end 
 
MSE = mse(RegressionTrainingData(:,3),PredValue’);   

figure; 
subplot(1,2,1) 
  plot3(RegressionTrainingData(:,1),RegressionTrainingData(:,2),RegressionTrainingData(:,3),'.r'); hold on 
  plot3(RegressionTrainingData(:,1),RegressionTrainingData(:,2),PredValue,'.k'); 
  xlabel('x1');  ylabel('x2') 
  zlabel('value') 
  grid on 
subplot(1,2,2) 
  plot(Error) 
  xlabel('Sample number');  ylabel('Error value') 
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Task 2.3: Use your LinearRegressorCheck as function for optimization with your 1+1 
algorithm with adaptive step developed in scope of laboratory 1. Find the optimum and 
store it in Table 2.1. 

 

Task 2.4: Use your LinearRegressorCheck as function for optimization with your multistart 
gradient algorithm with adaptive step developed in scope of laboratory 1. Find the 
optimum and store it in Table 2.1. 

 

Task 2.5: Modify your regression model, to allow for more complex geometry. Let it be a 
polynomial quadratic model given by equation: 
 

𝑦 = 𝑤1𝑥1 +  𝑤2𝑥2 +  𝑤3𝑥1𝑥2 + 𝑤4𝑥1
2 + 𝑤5𝑥2

2 + 𝑤6 
 
Optimize this 6-dimensional model using 1+1 algorithm with adaptive step and store the 
results in Table 2.1 at the end of the instruction. Try to configure the method in such a way 
that they consistently find global minimum. Note that you will probably need to use more 
optimization steps to find solution in a 6-dimensional feature space. 

 

 Task 2.6: Repeat task 2.5, this time using a multistart gradient model. Start with picking 
the value of objective function checks equal to the one used in task 2.5 and now configure 
the number of starts and iterations of your multistart gradient to aim for the most 
consistent (and best) result. Then store the result in table 2.1. 

 

 Task 2.7: So far we used only Training datasets. Now time to evaluate our models on data 
which were not seen during training. Lets use the learned parameters to check the 
performance of your models on the Testing data subset and store the results in table 2.1. 

 
Table 2.1: Regression results 

 

 
 
 

 W1 W2 W3 MSE 
MSE 

validation 

Manual setup 1     - 

Manual setup 2     - 

Manual setup 3     - 

Grid search      

1+1 method    
Try 1: Try 2: Try 3: 

 

Gradient method    
Try 1: Try 2: Try 3: 

 

1+1: polynomial model - - - 
Try 1: Try 2: Try 3: 

 

gradient: polynomial model - - - 
Try 1: Try 2: Try 3: 
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Storing and showing statistical data from multiple experiments in a 
controlled manner 

 
Up until now we were storing our results in tables (probably handwritten in your notebook 
or manually annotated onto a pdf instruction file). This is not the optimal way, though. 
From now on, lets use data structures for that. Lets say that we have an experiment in 
which we repeat a test of some algorithm’s configuration several times and then we do the 
same for a different configuration. We would like to have these results stored in a tree 
structure that would look like in Figure 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 – Data structure for organization of experimental results 

 
 
For the sake of explanation lets imagine that we are working again on the first instruction 
and we are testing optimization algorithms in optimization of our artificial 2D and 4D 
functions. Remember how we got a vector of results, mean and standard deviation in task 
1.8? Lets now use that to illustrate how we could store these outcomes. 
 
 
We knew that we had two algorithms to evaluate (multistart gradient and 1+1) and three 
functions on which we did our testing (fewminima, manyminima, multidimensional)? We 
should also be able to test different configurations of algorithms, that is: different 
metaparameter values. The easiest way to define a nested data structure to store these 
results is to just throw the data onto the level we want it to be – and the rest of the 
structure will be organized accordingly: 
 

Our experiment 

Configuration 1 

Configuration 2 

Configuration description 

Aggregated parameters (e.g. mean result) 

Actual partial results 

We should be able to add more experiments… 

more partial results… 

and more configurations. 
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If we then want to test another optimization method, say: to 1+1, we could just change the 

relevant structure’s level: 

 

 

If we decide we want to run the same algorithm for the same problem but for a different 

configuration (different values of metaparameters), we can just add another field in a Fewminima 

vector: 

 

AggregatedResults.OnePlusOne.Fewminima(2).Results = Results; 

AggregatedResults.OnePlusOne.Fewminima(2).Mean = mean(Results); 

AggregatedResults.OnePlusOne.Fewminima(2).Std = std(Results); 

AggregatedResults.OnePlusOne.Fewminima(2).Config.InitialStep = 4; 

AggregatedResults.OnePlusOne.Fewminima(2).Config.ReductionFactor = 0.6; 

AggregatedResults.OnePlusOne.Fewminima(2).Config.AdaptationTrigger = 6; 

 

You can also attach structure’s parts together. So the following code is equivalent to the former 

one: 

 

Config.InitialStep = 4; 

Config.ReductionFactor = 0.6; 

Config.AdaptationTrigger = 6; 

AggregatedResults.OnePlusOne.Fewminima(2).Results = Results; 

AggregatedResults.OnePlusOne.Fewminima(2).Mean = mean(Results); 

AggregatedResults.OnePlusOne.Fewminima(2).Std = std(Results); 

AggregatedResults.OnePlusOne.Fewminima(2).Config = Config;  

 
The only issue we are missing is the fact that our structure will be forgotten once we close 
the code – and we actually want to have just one data structure for all the codes we are 
running. For this reason we need a way to load existing data structure and save it 
afterwards: 
 

for repetition = 1:20 

  

   %% Here we have a test which end in one Result that is stored in the Results vector: 

   %% ... 

   Results(repetition) = BestHistory(end) 

 

end 

% Here we calculate statistics from our run:  

mean(Results) 

std(Results) 

 

% Here we store all the necessary information into the data structure: 

 

AggregatedResults.MultistartGradient.Fewminima(1).Results = Results; 

AggregatedResults.MultistartGradient.Fewminima(1).Mean = mean(Results); 

AggregatedResults.MultistartGradient.Fewminima(1).Std = std(Results); 

AggregatedResults.MultistartGradient.Fewminima(1).Config.Starts = 5; 

AggregatedResults.MultistartGradient.Fewminima(1).Config.MaxSteps = 100; 

... 

AggregatedResults.OnePlusOne.Fewminima(1).Results = Results; 

AggregatedResults.OnePlusOne.Fewminima(1).Mean = mean(Results); 

AggregatedResults.OnePlusOne.Fewminima(1).Std = std(Results); 

AggregatedResults.OnePlusOne.Fewminima(1).Config.InitialStep = 7; 

AggregatedResults.OnePlusOne.Fewminima(1).Config.ReductionFactor = 0.8; 

AggregatedResults.OnePlusOne.Fewminima(1).Config.AdaptationTrigger = 3; 
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How to show contents of your data structure? 
 
If you have your data already stored in your structure, you can easily show its parts, e.g. like 
that: 
 

 
Or like that: 
 

VectorOfResults = [AggregatedResults.OnePlusOne.Fewminima(1).Mean,… 

AggregatedResults.OnePlusOne.Fewminima(2).Mean,… 

AggregatedResults.OnePlusOne.Fewminima(3).Mean,… 

AggregatedResults.OnePlusOne.Fewminima(4).Mean] 

bar(VectorOfResults); hold on  

 
Or just display it in the command window: 
 

 
 
 
 
 
 
 

if(exist('AggregatedResults')) 
    load AggregatedResults 
else  % If the structure does not exist - it will just be generated and saved at the end of our code 
end 
 
 
%% Here we have an actual method (maybe some tests, repetitions, etc.) 
% ... 
% ... 
% ... 
 
 
 
% Here we are storing the results of our code: 
Config.InitialStep = 4; 
Config.ReductionFactor = 0.6; 
Config.AdaptationTrigger = 6; 
AggregatedResults.OnePlusOne.Fewminima(2).Results = Results; 
AggregatedResults.OnePlusOne.Fewminima(2).Mean = mean(Results); 
AggregatedResults.OnePlusOne.Fewminima(2).Std = std(Results); 
AggregatedResults.OnePlusOne.Fewminima(2).Config = Config; 
 
% Here we save the data structure with new contents: 
save AggregatedResults AggregatedResults 

plot(AggregatedResults.OnePlusOne.Fewminima(1).Results,'r'); hold on  

plot(AggregatedResults.MultistartGradient.Fewminima(1).Results,'b'); hold on  

legend('OnePlusOne','MultistartGradient') 

xlabel('Run number') 

ylabel('Result') 

AggregatedResults.OnePlusOne.Fewminima(1).Mean 

AggregatedResults.MultistartGradient.Fewminima(1).Mean 
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Task 2.8: Go back through the instruction and prepare your way of storing data from multiple 

experiments. Then do statistical evaluation of linear and polynomial models for regression (tasks 

2.3, 2.4, 2.5 and 2.6). You will need to run each task at least 20 times for that. Your data struc-

ture should contain: 

- Information about the solved task type (classification or regression) 

- Information about the classifier used 

- Information about metaparameters of the classifier used 

- Statistical estimates calculated for multiple runs (mean and standard deviation)  

- Source results (results of each run) 

- Information about validation efficiency calculated in task 2.6 for the regression models 

 
Ways of displaying statistical and comparison data 
 
Once you have your data prepared, it is time to show them in a way which is easy to 
comprehend. This time I won’t provide you with exact code to do this task – you will need 
to work your way thorough this problem using matlab documentation. Lets start with your 
data structure (prepared in scope of task 2.7) and then compare different algorithms and 
different setups using plots and bar graphs. A short explanation of function syntax can be 
found using matlab help command (e.g. “help bar”). Full documentation including examples 
of use is available after using doc command. Here is a list of functions you should consider: 
 
bar allows to build bar graphs (also multicolor and comparing different vectors) 

subplot allows to provide many different plots on one figure 

plot3 allows to plot 3D scatterplots 

line allows for plotting lines in your graphs and plots (e.g. indicating level of something in 

comparison to something else) 

Task 2.9: Show data from laboratory 2 using visualizations designed by you. Let your figures 

have legends, axes labels and different colors for showing different values. Make them as profes-

sional-looking and custom as you can. Include at least: 

- Comparison of mean validation and training results from task 2.7 using bar graphs for three 

different models – on three subplots in one figure 

- Display of a source results for statistics (results of each of the 20 runs for the model) along with 

a line indicating mean value 

 
Additional tasks: 

Task 2.10: Modify task 2.5 so it would use locally weighted regression instead of a polynomial 

model. Then compare the results obtained on validation dataset with ones from relevant ones 

from previous tasks. Note that in order to get prediction of points in your validation data you 

should use training data (so validation dataset provides only points to check. Points into which 

you are fitting your lines should still come from training) 

 

Task 2.11: Modify task 2.6 so it would use a higher order of a polynomial. Configure the train-

ing method, fit this polynomial into your training data and then evaluate the efficiency on a vali-

dation data. Compare 1+1 and gradient solutions as optimization solvers. Is there a similar dif-

ference than before or do we have a change in relative results? 


