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0. Initial information regarding course laboratories 
 
Laboratory structure 
The laboratories are prepared using a Reversed Classroom method. It means that the 
intended way of doing them is to first do part of them at home and then finalize work 
during classes. The more you do at home, the more knowledge you’ll gain and (hopefully) 
the easier the entire course will be for you. 
 
The general flow of each instruction includes explanation of steps that should be taken to 
solve a problem [in white background] and then a series of tasks to do by you. These tasks 
are divided into three categories: "For 3.0 mark" - marked in red, "For 4.0" marked in 

orange, and "For 5.0" marked in green. Completing a set of tasks during laboratory results 
in a conditional mark (say, you finished all the tasks marked in red and orange - you will 
receive a 4.0 mark provided that during next laboratory you will show and defend complete 
set of exercises including also those for 5.0. So in other words: the more tasks you do 
during classes, the higher your grade will be – but you will have to do all of them either way.  
 
Colors represent also intended level of difficulty of the tasks. The red ones tend to be simple 
and doable by just following initial instructions. Orange ones usually require some coding 
or decision-making while green ones often require solving actual problems and often 
require feedback from teacher. Because of that the recommended approach is to finish red 
ones at home prior to classes and try to solve orange ones, leaving greens for the actual 
laboratory.  
 
Correcting absence and laboratory fails 
The intended way of getting a laboratory pass can be disturbed in three ways: 
 

- You can be absent (then you won’t have a chance to get a ‘conditional grade’) 
- You can fail to do tasks “for 3.0” during the laboratory 
- You can fail to defend the conditional grade during the next laboratory 

 
In all of these cases you will be required to prepare a laboratory report including all the 
necessary tasks (required for 3.0, 4.0 and 5.0) plus an additional one selected by the 
teacher from the  additional tasks  pool available at the end of each laboratory.  You will be 
required to defend this report. In order to make report preparation easier, we’ve prepared a 
set of instructions regarding report requirements which is available here [link] 
 
Note, that you can pass the laboratory in such way only three times during the entire course. 
If you have more laboratories to correct, you will need consultations with the course 
coordinator who will individually assess the situation and will either determine the scope 
of work required to get a pass or direct you for taking the course again. 
 
Tests and test corrections 
 
Some laboratories will start with a lecture test. The schedule for tests is available in notes 
from the first lecture. For each test there will be two correction chances at the end of the 
course. If, however, you fail more than two tests during the course, the correction will 
involve entire lecture material. 
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Introduction to optimization tasks 
 
A starting point for the exercises performed in this set of laboratories is a library of 
functions provided by the teacher: 
 
- op_f_RandomSampling.m (A function that optimizes a 2-parameter function using a 
random algorithm, with visualization of its operation and convergence curve)  
 
- A family of functions located in a FunctionsForOptimization folder that have either one 
local minimum, few local minima or many local minima. 
 
All of the programs during this set of laboratories should be prepared as separate scripts 
and stored for future classes - as often they will be used not only on a particular laboratory 
but also on  future laboratories. 
 
All of the adjustable parameters in all of the codes (e.g. all constants' values, number of 
iterations, step values, number of algorithms' starts, ranges for random number 
generations etc.) should be placed in initial part of a code and provide with clear comments. 
 
Individual function 
 
In most of the exercises you will be asked to solve problem defined by a particular objective 
function (OF) - usually it will be a different than functions used by your colleagues. This 
function will be referred to as Individual function. If LA will not say otherwise, its number 
is calculated as a remainder of a sum of letters in your name and surname divided by 8. For 
instance Jane Doe  will solve task no. 7 and John Smith will solve the task no. 1.  
 

Initial task: running and testing basic code 
 
Let’s run a of_f_randomSampling code available in a course library. This code can be used to 
optimize a two-parameter objective function. This function is named here as  
"of_2D_oneminimum_2'" (objective-function (of), that has two parameters, i.e. is two-
dimensional, (2D), has just one local minimum (oneminimum) and its number is 2.  
 
After running the code we will see a function plot and "test points" in which a function was 
tested by a random algorithm for value.  
 
Please read through the code focusing also on comments and try to understand its principle 
of operation. Right now a crucial issue is to get how coordinates of a test points are 
generated and what and why happens inside a while loop.  
Successful run of the code ends in showing a convergence curve showing a history of search 
for minimum: the curve consists of two components: value obtained in each iteration and 
historical minimum (best value obtained during a whole run of the algorithm) 
 
Lets run and test the code for few chosen functions. Check how do various Manyminima and 
Fewminima functions look. Right now we won't need any funtion that has adaptive or rand 
in its name - let's leave them for later. We also won't need right now any function that has 
more than 2 parameters. 
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Basic optimization algorithms 
 
Let's go back to optimization of a function with one local minimum 
('of_2D_oneminimum_2') and based on that lets build a grid search algorithm.  
 
The algorithm will need to check all the points in nodes of grid defined by values equally 
spaced on both parameter space axes. The best approach to do that would be to replace 
while loop with two nested for loops: 
 

 
Here step_x and step_y are obviously distances between grid nodes, while size of a 
searched space is defined by values in MaxRangeX and MaxRangeY. Of course since we 
generate values of x and y parameter of Point in a for loop, we don't need to randomize 
them later. 
 
If the obtained image looks similar to the one shown in Fig. 1, the algorithm is working well. 
 
 

 
Fig 1 - Example of operation of a Grid Search method 

 
 

Task 1.1: Let's configure and test grid search algorithm to optimize your individual*  2D 
function that has few local minima (2D, fewminima type). Run the method 3 times, filling 
results in Table 1. After doing so please save the code as a separate script.  

 
Next, we will implement a gradient-based optimization. Starting point would again be 
of_f_randomSampling script. This time coordinates of a next test point would not be 
generated randomly but instead will be picked at a direction of steepest gradient descent. 
Let's start optimization with a randomly chosen point, generated before start of a while 
loop, e.g. like this: 

    for NewX = Range(1,1):step_x:Range(1,2) 

        for NewY = Range(2,1):step_y:Range(2,2) 

 

        iter = iter + 1; 

        Point = [NewX,NewY]; 

 

  ... % Here comes the rest of what was previously inside while loop 

    end 

end 
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now we will go to a  while loop and we will calculate gradient of OF around testing point 
and based on that select a new testing point (for next while loop iteration). In order to 
calculate a gradient lets calculate value of a OF in our Point, and in points located at small 
(g_step) distances along all the axes. Note the dimensions metaparameter which governs in 
how many directions we want to calculate our partial derivatives of the OF. In our case 
dimensions should be set to 2. 
 

 
Next we will choose another point for next loop passing by multiplying previous 
coordinates by a normalized gradient and Step constant: 
 

 

 

 

I'd like to draw your attention to metaparameters in this code. We have here  step_g and 
Step. The former defines how closely are located the points for gradient calculations. For 
our tasks usually a 0.001 would be a good choice. The latter defines how far away will each 
testing point be selected from its parent. Please check what would happens if Step has 
some different values from (0.1, 3) range. Note in particular how many steps are required 
to get to a minimum and how wide are the oscillations that can be observed in a minimum. 
 
If a results look as in Fig. 2, the algorithm is working well. 
 

                Point = Range(:,1)' + rand(1,dimensions).*(Range(:,2)-Range(:,1))'; 

        CurrentValue = FunctionForOptimization(Point); 

        for d = 1:dimensions   % “dimensions” says how long is our parameter vector 

            TestPoint = Point; 

            TestPoint(d) = TestPoint(d) + g_step; 

            CV_d(d) = FunctionForOptimization(TestPoint); 

        end 

 

        Grad = CV_d - CurrentValue; 

 

 % If we want to use just direction of the gradient – this is the way to go: 

if(max(abs(Grad))==0) 

  Grad = 0 

else 

        Grad = Grad/max(abs(Grad)); 

end 

 Point = Point - Step*Grad; 
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Fig 2 - Example of gradient algorithm in-operation 

 

Task 1.2: Please prepare, configure (by picking a reasonable Step size) and test gradient 
algorithm to optimize your individual*  2D function that has few local minima (2D, 
fewminima type). Run the method 3 times, filling results in Table 1. After doing so please 
save the code as a separate script.  

 
The last algorithm that we will implement today is a 1+1 method. Again, we will start from 
of_f_randomSampling function solving a 'of_2D_oneminimum_2' task and again before 
start of a while loop we will need a randomly generated solution. We will also need a place 
to store currently best result corrdinates and value. Note, that we already have a suitable 
fragment in the code:  
 

 
And, similarily as in the case of basic random algorithm, we will check a value in a test point  
(CurrentValue = ...) and then check and possibly overwrite a best stored solution (a piece 
of code starting from  if(CurrentValue < CurrentMin)). After that, if current solution was 
either preserved or discarded, we generate new point (to be tested in next iteration of a 
while loop) on a basis of our stored historical best solution, by adding to it a small random 
value: 
 

 

 

 

Currently you have one metaparameter of a method: a Step value. Please check what would 
happen if its value would be changed in range from 0.1 to 4. 
 
If the obtained results look similar to those provided in Fig. 3, the algorithm works OK.  
 
 

    CurrentMin = Inf; 

    Result = [10,10]; 

 Point = Result + Step*randn(size(Point)); 
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Fig 3 - Example of operation of a 1+1 method 

 
 

Task 1.3: Please prepare, configure (by picking a reasonable Step size) and test 1+1 to 
optimize your individual*  2D function that has few local minima (2D, fewminima type). 
Run the method 3 times, filling results in Table 1. After doing so please save the code as a 
separate script.  

 
Multistart gradient algorithm 
 
The algorithms that are sensitive to local minima require often many starts from random 
points, storing results of each run and, finally, picking a value found to be the best after all 
the starts performed. An example of the algorithm that strongly benefits from this approach 
is of course a gradient algorithm. We will include this functionality by storing our previous 
while loop of a gradient algorithm inside a following part of the code: 
 

 
where Starts is a metaparameter defining how many starts will the method have. Note that 
initialization of a historical best solution should be done outside this loop (i.e. Result and 
CurrentMin should not be initialized after each start - after all we want to save a value that 
was best among all tested in all starts). However, generation of a starting point, setting an 
initial step and resetting EndingCondition should be done separately for each start. 
  If a result looks similar to one provided in Fig. 4, the algorithm works correctly.  Note, 
if you have trouble plotting convergence curves or if your algorithm suddenly stops after 
completing first start - before you had just one iter for both saving the convergence curves 
and checking stopping criterion for the method. Here you will need two: One for 
convergence curves (and it should keep track of total count of iterations of the method) and 
separate one (e.g. iter2) for dealing with iterations of one particular start of a method (and 
therefore for checking EndingCondition), and this should be reinitialized for each start. 
 

for starts = 1:Starts 

 

 .... 

 

end 
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Fig 4 - Example of operation of a multistart gradient descent algorithm 

 

Task 1.4: Please prepare, configure (by picking a reasonable Step size) and test a multistart 
gradient algoritm to optimize your individual*  2D function that has few local minima (2D, 
fewminima type). The algorithm should have roughly 400 objective function checks (e.g. 5 
starts x 26 iterations). Run the method 3 times, filling results in Table 1. After doing so 
please save the code as a separate script.  
 
Note: 5 starts x 26 iterations actually makes 390 objective function checks. Can you explain 
why? 

 
Adaptive step size in optimization algorithms 
 
If an optimization step is too large, the algorithm tends to improve very slowly or not 
improve at all. For this reason it is good to reduce the step size if we see no improvement 
over a number of generations. Lets count failed iterations of our gradient solution: 
 

 
We of course need to initialize our NoImprove counter before the start of the loop. But now 
we can also reduce Step value if we see that we failed e.g. 3 times in a row: 
 

 
 
Notice the highlighted values. For now we just leave them in the code like that – but they 

if(CurrentValue < CurrentMin) 

     % ... 

     % Here is our piece of code for storing best results, etc… 

     % ... 

     NoImprove = 0; 

else 

     % FunctionPlot (red, if we don't have a new minimum): 

     if(PointPlot == 1) 

          figure(1);   plot3(Point(1),Point(2), CurrentValue,'.r'); hold on 

     end 

     NoImprove = NoImprove + 1; 

 

end     

        if(NoImprove > 2)  % The ‘2’ is the adaptation trigger here 

            NoImprove = 0; 

            Step = Step * 0.6;  % The ‘6’ is the reduction factor here 

        end 



 

9 

BAIDL: Instruction 1 

are metaparameters and we’ll need to address their values later. It would also be good to 
track what actually happens to our Step value: 
 

 
 
 

And such history we can later display and see how algorithm adapted to the optimized 
function: 
 

 
 
After running this code you should see something like in Fig. 5. Note that by having 
adaptive step we can easily start from a higher initial step than before and we won’t hit 
problem with oscillations close to local minimum! 
 

 
 

Fig 5 – Convergence curve, point plot and history of changes of step size 
 

 

Task 1.5: Please provide your multistart gradient algorithm and vanilla gradient algorithm 
with adaptive step, and test them in optimization of your individual* 2D function that has 
few local minima (2D, fewminima type). Test the solutions 3 times each and fill respective 
rows the Table 1. Please save the code as a separate script. 
 
After that, prepare the adaptive solution for 1+1 method as well – and check its 
performance 
 
Note 1: If you see that your 1+1 solution “stops too early”, don’t panic. It is expected at this 
stage 
 
Note 2: If you see that your gradient solution does not reduce step size as you expected it to, 
don’t panic either – but try to explain why it actually happens and what could be done to 
prevent it? 

 
 
 
 
 

StepHistory(iter) = Step; 

figure(4); 

plot(StepHistory) 

xlabel('iteration'); 

ylabel('step value'); 
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Configuration of metaparameters for adaptation 
 
While doing task 1.5 you probably encountered a significant problems with both methods: 
the optimization of 1+1 stopped too early and in gradient-based solution it did not actually 
reduce step enough.  It is caused by the fact, that “fails” should be treated differently 
depending on what algorithm we are using and what optimization problem it solves. 
Remember the metaparameters highlighted in previous code? We assumed that 3 fails is 
enough to trigger step reduction – but gradient solution is expected to improve in each and 
every iteration while 1+1 solution is expected to have 50% success rate in the best case 
scenario. The more dimensions we have and the closer we are to the minimum, the less 
likely we are to improve from iteration to iteration. For this reason the trigger needs to be 
higher for 1+1 solution and lower for gradient solution. If I set trigger to 9 for 1+1, the 
method is consistently hitting optimum for my function (See Fig 6). If I set trigger to > 0 for 
gradient-based solution, it should also work consistently better. 
 

 
Fig 6 – Results of too small trigger for step reduction (left, NoImprove > 2) and proper setup 

(right, NoImprove > 8) 
 

Another problem, that we need to address is the reduction coefficient. This again will need 
to be setup for particular method and particular problem. The goal is to reduce the step 
slowly enough to allow for gradual transition from exploration to exploitation, but quickly 
enough to allow for good exploitation at the end. Note that we can also work with initial 
step values – determining from what level we start our adaptation. 
 
The goal to which we aim should look as in Fig. 7: Step is large enough to allow for good 
exploration (points initially spread in the whole search range), transition from exploration 
to exploitation is gradual and smooth, step and thus solutions’ variability approaches 0 at 
the end. 
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Fig 7 – Good configuration of a 1+1 solution 
 
Examples of problems we can run into are shown in Figure 8. 
 
 
 

Task 1.6: Please provide your 1+1 algorithm with adaptive step, configure metaparameters  
(Initial Step, Adaptation trigger and Reduction factor) for optimization of your individual* 
2D function that has few local minima (2D, fewminima type). The method should use 400 
objective function checks (i.e. 400 iterations). Consult Fig 8 for common mistakes. Run the 
configured solution 3 times and save the results in Table 1. Please save the code as a 
separate script. 

 
 
 

 
 

(a) – Too small initial step – only a small part of search range is tested. 
 



 

12 

BAIDL: Instruction 1 

 
 

(b) – Too high reduction factor – the transition from exploration to exploitation is too 
sharp, there are ‘dead iterations’ at the end (the algorithm is not doing anything after 
200 iteration)  
 

 
(c) – Too low reduction factor – the transition from exploration to exploitation is too slow, 

there algorithm is not exploiting the minimum well (the variability at the end is too 
high) 

 
Fig 8 – Examples of mistakes in configuration of a 1+1 solution 

 
Fair and unbiased comparison of different methods 
 
Comparison of different methods should always be fair and should not favor any of the 
solutions. For this reason all the optimization methods should always get the same number 
of objective function checks - because this is usually a limiting factor in computational 
terms. This means, that if gradient algorithm have 500 iterations, and multistart gradient 
algorithms starts 10 times, each of its starts should have only 50 iterations to be 
comparable to the former method. If, later, a 1+1 would be added to comparison, it should 
obtain 1500 iterations (provided that comparison is in 2D space: in 2D space for each step 
of a gradient method objective function needs to be calculated three times so for 1 iteration 
of gradient method 1+1 should be allowed three steps).  
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Repeatability check 
 
Optimization algorithms usually work in a non-deterministic fashion: each run may provide 
a slightly different result. For this reason statistical check of method’s repeatability and 
likelihood of hitting a local minima is needed. In order to get statistics from many runs fast, 
it is good to turn-off visualization of points and objective function. It is also good to 
encapsulate the main code with a for loop that runs for however-many repetitions we need 
for statistics. Starting point generation and reinitialization of a best result should be placed 
inside this loop: 

 
 

Task 1.7: Please configure and test your 1+1 algorithm with adaptive step, single-start and 
multistart gradient algorithms with adaptive step for optimization of your individual* 2D 
function that has many local minima (2D, manyminima type). Configure adaptation 
parameters in such a way as to allow the methods to consistently exploit the minimum it 
was attracted to. Use 800 checks of the objective function for both methods. Test the 
methods statistically by averaging 20 runs of each method, store the means in table 1. Save 
all the codes for further use 

 
 
 
 
 
 
 
 
 
 
 
 
 

for repetition = 1:10 

  

%% Reinitialization of a starting point and ending condition 

    CurrentMin = Inf; 

    Result = [0,0]; 

    EndingCondition = 0; 

    iter = 0; 

     

    while(EndingCondition == 0); 

       % Here we have a main optimization loop 

     ... 

        

        

    end 

    % Here we store best result from each run: 

    Results(repetition) = BestHistory(end) 

 

end 

% Here we store statistics from our run:  

mean(Results) 

std(Results) 
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Multidimensional extension 

 
In practical situations we rarely optimize problems that have just 2 parameters to set-up. 
Now it is time to extend our solutions to multidimensional problems. Fortunately, the 
methods are mostly prepared for multidimensional problems already. You just need to turn 
off map visualization (FunctionPlot = 0, PointPlot = 0) as showing just a slice of our 
multidimensional space does not make much sense, adjust dimensions number and Range 

matrix accordingly and generate starting point for your method of a proper size. 
 
 

Task 1.8: Please configure and test your: 
- 1+1 algorithm with adaptive step,  
- single-start gradient algorithm with adaptive step 
- multistart gradient algorithm with adaptive step  
in optimization of your individual* multidimensional function. Use 1200 checks of the 
objective function for all three methods. Test the methods statistically by averaging 20 runs 
of each method, store the means in table 1. Save all the codes for further use. 

 
 
 
 

Table 1: Aggregated numerical results of the instruction 
 

 2D Fewminima 2D Manyminima,  
20 runs statistics 

Multidimensional, 
20 runs statistics 

 Test1 Test2 Test3 mean std mean std 

Grid search 
   - - - - 

1+1    - - - - 

Gradient    - - - - 

Multistart gradient 
   - - - - 

Gradient adaptive        

Multistart gradient 
adaptive 

       

1+1 adaptive 
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Additional tasks: 
 

Task 1.9: Try to optimize metaparameters of the developed solutions in solving your 
individual task of a 2D fewminima type. (Its a second-order optimization task in which 
we optimize parameters of an optimization algorithm) - Can we use here grid search 
method?  
 
A hint: tested algorithms are non-deterministic. It is an important factor here! If you aim to 
use any optimization method that you know now, each “OF check” will give you the value from 
some statistical distribution. You should average many tests to gain better knowledge about 
“quality” that should be attributed to particular values of metaparameters. 

 

Task 1.10: Provide statistical report on results of a well-configured 1+1 algorithm and 
well-configured multistart gradient algorithm in solving your individual task of a 2D 
fewminima type. Please check the distribution of results in both cases and use this data to 
possibly improve metaparameter values. Finally, check whether this improvement is 
statistically significant. 
 

Task 1.11: Implement a gradient descent with momentum algorithm. Please test it in 
solving   your individual task of a 2D fewminima type and also in solving 
of_2D_fewminima_5 function. Does momentum help in terms of convergence speed? Does 
it help in accuracy?  

 

Task 1.12: Please test gradient algorithm and 1+1 algorithm in a task where OF check has a 
noise added (the results of two consecutive tests in the same point can be different). Lets 
use here a  of_2D_oneminimum_1_rand function - Does gradient algorithm work here? 
What should we do to allow it to try to compete with 1+1 method? 
 
A hint: You already have all the metaparameters that should be changed here, you don’t 
actually need to modify the code. Change of one of them should help. 

 
 


