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Abstract

We address the problem of task planning on multiple clouds formulated as a mixed integer nonlinear programming
problem (MINLP). Its specification with AMPL modeling language allows us to apply solvers such as Bonmin and
Cbc. Our model assumes multiple heterogeneous compute and storage cloud providers, such as Amazon, Rackspace,
GoGrid, ElasticHosts and a private cloud, parameterized by costs and performance, including constraints on maximum
number of resources at each cloud. The optimization objective is the total cost, under deadline constraint. We
compute the relation between deadline and cost for a sample set of data- and compute-intensive tasks, representing
bioinformatics experiments. Our results illustrate typical problems when making decisions on deployment planning
on clouds and how they can be addressed using optimization techniques.
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1. Introduction

In contrast to already well established comput-
ing and storage resources (clusters, grids) for
the research community, clouds in the form of
infrastructure-as-a-service (IaaS) platforms (pio-
neered by Amazon EC2) provide on-demand re-
source provisioning with a pay-per-use model. These
capabilities together with the benefits introduced
by virtualization, make clouds attractive to the sci-
entific community [1]. In addition to public clouds
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such as Amazon EC2 or Rackspace, private and
community cloud installations have been deployed
for the purpose of scientific projects, e.g. Future-
Grid 1 or campus-based private cloud at Notre
Dame 2 . As a result, multiple deployment scenarios
differing in costs and performance, coupled together
with new provisioning models offered by clouds
make the problem of resource allocation and capac-
ity planning for scientific applications a challenge.

The motivation for this research comes from our pre-
vious work [2,3], in which we run experiments with

1 http://futuregrid.org
2 http://www.cse.nd.edu/~ccl/operations/opennebula/
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compute-intensive bioinformatics application on a
hybrid cloud consisting of Amazon EC2 and a pri-
vate cloud. The application is composed of a set
of components (deployed as virtual machines) that
communicate using a queue (Amazon SQS) and pro-
cess data that is stored on a cloud storage (Amazon
S3). The results of these experiments indicate that
clouds do not introduce significant delays in terms of
virtualization overhead and deployment times. How-
ever, multiple options for placement of application
components and input/output data, which differ in
their performance and costs, lead to non-trivial re-
source allocation decisions. For example, when data
is stored on the public cloud, the data transfer costs
between storage and a private cloud may become
large enough to make it more economical to pay for
compute resources from the public cloud than to
transfer the data to a private cloud where comput-
ing is cheaper.

In this paper, we address the resource allocation
problem by applying the optimization techniques
using AMPL modeling language [4], which pro-
vides access to a wide range of ready to use solvers.
Our model assumes multiple heterogeneous com-
pute and storage cloud providers, such as Amazon,
Rackspace, ElasticHosts and a private cloud, pa-
rameterized by costs and performance. We also
assume that the number of resources of a given
type in each cloud may be limited, which is often
the case not only for private clouds, but also for
larger commercial ones. The optimization objec-
tive is the total cost, under deadline constraint. To
illustrate how these optimization tools can be use-
ful for planning decisions, we analyze the relations
between deadline and cost for different task and
data sizes, which are close to our experiments with
bioinformatics applications.

The main contributions of the paper are the follow-
ing:

– We formulate the problem of minimization of cost
of running computational application on hybrid
cloud infrastructure as a mixed integer nonlinear
programming problem and its specification with
AMPL modeling language.

– We evaluate the model on scenarios involving lim-
ited and unlimited public and private cloud re-
sources, for compute-intensive and data-intensive
tasks, and for a wide range of deadline parame-
ters.

– We discuss the results and lessons learned from
the model and its evaluation.

The paper is organized as follows: after discussing
the related work in Section 2, we introduce the de-
tails and assumptions of our application and infras-
tructure model in Section 3. Then, in Section 4 we
formulate the problem using AMPL by specifying
the variables, parameters, constraints and optimiza-
tion goals. Section 5 presents the results we obtained
by applying the model to the scenarios involving
multiple public and private clouds, overlapping com-
putation and data transfers, and identifying special
cases. In section 6 we provide a sensitivity analysis
of our model and show how such analysis can be use-
ful for potential users or computing service resellers.
In section 7 we estimate how our model behaves if
the task sizes are not uniform and change dynami-
cally. The conclusions and future work are given in
Section 8.

2. Related work

The problem of resource provisioning in IaaS clouds
has been recently addressed in [5] and [6]. They typi-
cally consider unpredictable dynamic workloads and
optimize the objectives such as cost, runtime or util-
ity function by autoscaling the resource pool at run-
time. These approaches, however, do not address the
problem of data transfer time and cost, which we
consider an important factor.

Integer programming approach has been applied to
the optimization of service selection for activities of
QoS aware grid workflows [7]. On the other hand,
in our model we assume the IaaS cloud infrastruc-
ture, while the objective function takes into account
costs and delays of data transfers associated with
the tasks.

The cost minimization problem on clouds addressed
in [8] uses a different model from ours. We impose
a deadline constraint and assume that the number
of instances available from providers may be lim-
ited. To satisfy these constraints, the planner has to
choose resources from multiple providers. Our model
also assumes that VM instances are billed per hour
of usage.
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3. Model

3.1. Application model

The goal of this research is to minimize the cost
of processing a given number of tasks on a hybrid
cloud platform, as illustrated in Fig. 1. We assume
that tasks are independent from each other, but they
have identical computational cost and require a con-
stant amount of data transfer.

The assumption of homegeneous tasks can be jus-
tified by the reason that there are many examples
of scientific applications (e.g. scientific workflows
or large parameter sweeps) that include a stage of
a high number of parallel nearly identical tasks.
Such examples can be found e.g. in typical scientific
workflows executed using Pegasus Workflow Man-
agement system, where e.g. CyberShake or LIGO
workflows have a parallel stage of nearly homoge-
neous tasks [9]. Other examples are Wien2K and AS-
TRO workflows that consist of iteratively executed
parallel stages comprising homogeneous tasks[10].
Due to the high number of parallel branches, these
stages accumulate the most significant computing
time of the whole application, so optimization of the
execution of this stage is crucial. Moreover, if the
tasks are not ideally homogeneous, it is possible to
approximate them using a uniform set of tasks with
the mean computational cost and data sizes of the
application tasks. Of course, in real execution the ac-
tual task performance may vary, so the solution ob-
tained using our optimization method becomes only
approximate of the best allocation, and the actual
cost may be higher and deadline may be exceeded.
In order to estimate the quality of this approxima-
tion, we evaluate the impact of dynamic task run-
time and non-uniform tasks in section 7.

We assume that for each task a certain amount of
input data needs to be downloaded, and after it fin-
ishes, the output results need to be stored. In the
case of data-intensive tasks, the transfers may con-
tribute a significant amount of total task run time.

Figure 1. The model of application and infrastructure

3.2. Infrastructure model

Two types of cloud services are required to com-
plete tasks: storage and virtual machines. Amazon
S3 and Rackspace Cloud Files are considered as ex-
amples of storage providers, while Amazon EC2,
Rackspace, GoGrid and ElasticHosts represent com-
putational services. In addition, the model includes a
private cloud running on own hardware. Each cloud
provider offers multiple types of virtual machine in-
stances with different performance and price.

For each provider the number of running virtual ma-
chines may be limited. This is mainly the case for
private clouds that have a limited capacity, but also
the public clouds often impose limits on the num-
ber of virtual machines. E.g. Amazon EC2 allows
maximum of 20 instances and requires to request a
special permission to increase that limit.

Cloud providers charge their users for each running
virtual machine on an hourly basis. Additionally,
users are charged for remote data transfer while local
transfer inside provider’s cloud is usually free. These
two aspects of pricing policies may have a significant
impact on the cost of completing a computational
task.

Cloud services are characterized by their pricing
and performance. Instance types are described
by price per hour, relative performance and data
transfer cost. To assess the relative performance
of clouds it is possible to run application-specific
benchmarks on all of them, or to use publicly avail-
able cloud benchmarking services, such as Cloud-

3



Harmony 3 . CloudHarmony defines performance of
cloud instances in the units named CloudHarmony
Compute Units (CCU) as similar to Amazon EC2
Compute Unit (ECU), which are approximately
equivalent to CPU capacity of a 1.0-1.2 GHz 2007
Opteron or 2007 Xeon processor. Storage platforms
include fees for data transfer. Additionally, a con-
stant fee per task may be present, e.g. price per
request for a queuing service 4 .

Our model includes all the restrictions that were
mentioned above.

4. Problem formulation using AMPL

To perform optimization of the total cost, Mixed
Integer Non-Linear Problem (MINLP) is formulated
and implemented in A Mathematical Programming
Language (AMPL) [4]. AMPL requires to specify
input data sets and variables to define the search
space, as well as constraints and objective function
to be optimized.

4.1. Input data

The formulation requires the following input sets,
which represent the cloud infrastructure model:

– S = {s3, cloudfiles} – defines available cloud
storage sites,

– P = {amazon, rackspace, . . . } – defines possible
computing cloud providers,

– I = {m1.small, . . . , gg.1gb, . . . } – defines in-
stance types,

– PIp ⊂ I – instances that belong to provider Pp,
– LSs ⊂ P – compute cloud providers that are local

to storage platform Ss.

Each instance type Ii is described by the following
parameters:

– pIi – fee in $ for running instance Ii for one hour,
– ccui – performance of instance in CloudHarmony

Compute Units (CCU),

3 http://blog.cloudharmony.com/2010/05/

what-is-ecu-cpu-benchmarking-in-cloud.html
4 e.g. Amazon SQS

– pIouti and pIini – price for non-local data transfer
to and from the instance, in $ per MiB.

Storage sites are characterized by:

– pSout
s and pSin

s characterize price in $ per MiB for
non local data transfer.

Additionally we need to provide data transfer rates
in MiB per second between storage and instances by
defining function ri,s > 0 .

We assume that the computation time of a task is
known and constant, this also applies to input and
output data size. We also assume that tasks are
atomic (non divisible). Computation is character-
ized by the following parameters:

– Atot – count of tasks,
– tx – execution time in hours of one task on 1 CCU

machine,
– din and dout – data size for input and output of

one task in MiB,
– pR – price per request for queuing service,
– tD – total time for completing all tasks in hours

(deadline).

4.2. Auxiliary parameters

The formulation of the problem requires a set of
precomputed parameters which are derived from the
main input parameters of the model. The relevant
parameters include:

tneti,s =
din + dout

ri,s · 3600
(1)

tui,s =
tx

ccui
+ tneti,s (2)

cti,s = (dout · (pIouti + pSin
s )

+ din · (pSout
s + pIini ))

(3)

adi,s = b t
D

tui,s
c (4)

tqi,s = dtui,se (5)

aqi,s = b
tqi,s
tui,s
c (6)

tdi,s = db t
D

tui,s
c · tui,se (7)

4

http://blog.cloudharmony.com/2010/05/what-is-ecu-cpu-benchmarking-in-cloud.html
http://blog.cloudharmony.com/2010/05/what-is-ecu-cpu-benchmarking-in-cloud.html


– tneti,s – transfer time: time for data transfer between
Ii and Ss,

– tui,s – unit time: time for processing a task on in-
stance Ii using storage Ss that includes comput-
ing and data transfer time (in hours),

– cti,s – cost of data transfer between instance Ii and
storage Ss,

– adi,s – number of tasks that can be done on one

instance Ii when using storage Ss running for tD

hours,
– tqi,s – time quantum: minimal increase of instance

running time that is sufficient to increase the num-
ber of processed tasks, rounded up to full hour,

– aqi,s – number of tasks that can be done in tqi,s
hours,

– tdi,s – instance deadline: number of hours that can
be effectively used for computation.

4.3. Variables

Variables that will be optimized and define the so-
lution space are listed below:

– Ni – number of instances of type Ii to be deployed,
– Ai – number of tasks to be processed on instances

of type Ii,
– Ds – 1 iif Ss is used, otherwise 0; only one storage

may be used,
– Ri – number of remainder (tail) hours for instance
Ii,

– Hi – 1 iif Ri 6= 0, otherwise 0.

Fig. 2 illustrates how the tasks are assigned to
multiple running instances. The tasks are atomic
and there is no checkpointing or preemption. Even
though all the tasks have the same computational
cost, their total processing time depends on per-
formance of the VM type and data transfer rate.
Moreover, the users are charged for the runtime of
each VM rounded up to full hours. In our model the
tasks are assigned to the instances in the following
way. First, in the process of optimization Ai tasks
are assigned to the instance Ii. This gives Ni in-
stances of type Ii running for tdi,s hours. Remaining
tasks are assigned to an additional instance running
for Ri hours. We will refer to them as tail hours.

In order to enforce provider’s instance limit, Hi is
introduced which indicates if Ii has any tail hours.
E.g. in Fig. 2 instances of type 1 have 3 tail hours,
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Figure 2. Task scheduling policy

and instances of type 2 have no tail hours.

4.4. Formulation of objectives

Cost of running a single task which includes the cost
of VM instance time required for data transfer and
task computing time, together with data transfer
costs and request cost, can be described as:

(
tnet + tu

)
· pI+

din ·
(
pSout + pIin

)
+

dout ·
(
pIout + pSin

)
+

pR.

The objective function represents the total cost of
running multiple tasks of the application on the
cloud infrastructure and it is defined as:

minimize
total cost

∑
i∈I

((
∑
s∈S

Ds · tdi,s ·Ni + Ri) · pIi

+ Ai · (pR +
∑
s∈S

Ds · cti,s))
(8)

subject to the constraints:
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∀
i∈I

Ai ∈ Z ∧ 0 ≤ Ai ≤ Atot (9)

∀
s∈S

Ds ∈ {0, 1} (10)

∀
i∈I

Ni ∈ Z ∧ 0 ≤ Ni ≤ nImax
i (11)

∀
i∈I

Ri ∈ Z ∧ 0 ≤ Ri ≤ tD − 1 (12)

∀
i∈I

Hi ∈ {0, 1} (13)

∀
i∈I

Ai ≥
∑
s∈S

(Ni · adi,s) ·Ds (14)

∀
i∈I

Ai ≤
∑
s∈S

(Ni · adi,s + max(adi,s − 1, 0)) ·Ds

(15)

∀
i∈I

Ri ≥
∑
s∈S

(Ai −Ni · adi,s) · tui,s ·Ds (16)

∀
i∈I

Ri ≤
∑
s∈S

(Ai −Ni · adi,s + aqi,s) · t
u
i,s ·Ds (17)∑

i∈I

Ai = Atot (18)∑
s∈S

Ds = 1 (19)

∀
i∈I

Hi ≤ Ri ≤ max(tD − 1, 0) ·Hi (20)

∀
p∈P

∑
i∈PIp

(Hi + Ni) ≤ nPmax
p (21)

Interpretation of the constraints is the following:

– (9) to (13) define weak constraints for a solution,
i.e. they are to ensure that the required variables
have the appropriate integer or binary values,

– (14) and (15) ensure that number of instances is
adequate to number of assigned tasks; for chosen
storage Ds

Ni · adi,s ≤ Ai ≤ Ni · adi,s + max
(
adi,s − 1, 0

)
where the lower bound is given by full allocation
of Ni machines and the upper bound includes a
fully allocated tail machine,

– (16) and (17) ensure that number of tail hours
is adequate to number of remaining tasks, imple-
ment Ri =

⌈(
Ai −Ni · adi,s

)
· tuis
⌉
,

– (18) ensures that all tasks are processed,
– (19) ensures that only one storage site is selected,
– (20) ensures that Ri has proper value, implements

Hi =

 1 Ri > 0

0 Ri = 0
.

– (21) enforces providers’ instance limits.

Defining the problem in AMPL enables to choose
among a wide range of solvers that can be used as
backend. The problem itself is MINLP, but can be
reduced to Integer Linear Programming (ILP) prob-
lem. The nonlinear part of problem comes from stor-
age choice, so by fixing storage provider and running
optmization procedure for each storage separately
the optimal solution is found.

Initially we used Bonmin [11] solver, but after the
model was fully implemented and subject to more
tests, it appeared that CBC [12] solver performs bet-
ter with default options. This results from the fact
that Bonmin is a solver designed to solve MINLP
problems and uses various heuristics, while CBC
uses a branch and bound algorithm tuned for ILP. As
the problem is linear and convex, CBC finds global
optimum.

The model was optimized so that it should give ac-
ceptable results in ∼0.10 seconds 5 .

5. Results

To evaluate our model, we first run the optimiza-
tion process for two scenarios with a private cloud
and (1) infinite public clouds (Section 5.1) and (2)
finite public clouds (Section 5.2). We also evaluated
the effect of possible overlapping of computations
and data transfers (Section 5.3). When testing the
model under various input parameters, we identified
interesting special cases, which are described in Sec-
tion 5.4. Finally, we performed a sensitivity analysis
and discussed its implications and potential usage
in Section 6.

We evaluated the model for two types of tasks – data
intensive tasks that require relatively large amount
of data for short computing time (we assumed 512
MiB of input and 512 MiB of output) and compute
intensive tasks that require relatively small amount
of data (we assumed 0.25 MiB of input and 0.25
MiB of output). Each case consists of 20,000 tasks,
each of them requires 0.1 hour of computing time on
a VM with performance of 1 CCU. Two scenarios
with infinite and finite public clouds were consid-
ered, where as the costs and performance of public
clouds we used the data from CloudHarmony bench-

5 As measured on quad-core Intel i5 machine.
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marks. This dataset gives the data of 4 compute
cloud providers (Amazon EC2, Rackspace, Elasti-
cHosts and GoGrid) and 2 storage providers (Ama-
zon S3 and Rackspace Cloud Files), giving the in-
stance prices between $0.06 and $2.40 per hour and
performance between 0.92 and 27.4 CCU. We as-
sumed that the private cloud instances have the
performance of 1 CCU and $0 cost. For each sce-
nario we varied the deadline parameter between 5
and 100 hours. Since we considered only two storage
providers (S3 and Cloud Files), we run the solver
separately for these two parameters.

5.1. Private + infinite public clouds

In this scenario we assumed that the private cloud
can run a maximum of 10 instances, while the pub-
lic clouds have unlimited capacity. The results for
tasks that require small amount of data are shown
in Fig. 3. As the deadline is extended, the total cost
linearly drops as expected. As many tasks as possi-
ble are run on the private cloud, and for all the re-
maining tasks the instance type with best price to
performance ratio is selected.

This situation changes as data size grows (Fig. 4)
– for data intensive tasks the total cost is nearly
constant as all the work is done on a public cloud.
This results from the fact that data transfer cost to
and from the private cloud is higher than the cost
of running instances on public cloud. In our case it
turns out that the lowest cost can be achieved when
using Cloud Files storage from Rackspace, since in
our dataset the best instance type in terms of price
to performance was available at Rackspace.
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Figure 4. Large data processed on infinite public cloud
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5.2. Private + finite public clouds

If assumption that public clouds are limited is made,
situation is not so straightforward (See Fig. 5 and 6).
For relatively long deadlines, a single cloud platform
for both VMs and storage can be used, which means
that the data transfer is free. As the deadline short-
ens we first observe a linear cost increase. At the
point when the selected cloud platform reaches its
VM limit, additional clouds need to be used, so we
need to begin paying for the data transfer. There-
fore the cost begins to increase more rapidly.

This effect is very significant in the case of data in-
tensive tasks (Fig. 6) as the cost growth may become
very steep. For example, in our tests the task pro-
cessing cost in 28 hours was $157.39, in 30 hours it
was $131.14 and in 34 hours it was only $30.26. For
longer deadlines there was no further decrease. We
can also observe that for longer deadlines the Cloud
Files storage provider is less expensive for the same
reason as it was in Fig. 4. Shorter deadlines, how-
ever, require to run more powerful instances from
other clouds (Amazon EC2), thus it becomes more

7



 0

 500

 1000

 1500

 2000

 2500

 3000

 0  10  20  30  40  50  60  70  80  90  100

C
os

t (
$)

Time limit (hours)

Rackspace instances
Rackspace and private instances

Amazon's and private instances

Multiple providers

Amazon S3
Rackspace Cloud Files

Optimal

Figure 6. Large data processed on finite public cloud

economical to use its local S3 storage.

5.3. Overlapping computation and data transfers

In our model we assume that computation and data
transfers are not overlapping. To achieve parallelism
of these two processes, the model needs to be modi-
fied in the following way. We assumed that the total
task computation time is maximum of task execu-
tion and data transfer time. Additionally, input for
the first task and output of the last task must be
transferred sequentially. Equations 2, 4 and 7 are
updated for this case as follows:

tui,s = max(
tx

ccui
, tneti,s ) (22)

adi,s = b
(tD − tneti,s )

tui,s
c (23)

tdi,s = db
(tD − tneti,s )

tui,s
c · tui,se (24)

Fig. 7 shows results for the same experiment as in
Section 5.2 and Fig. 6, but with computing and
transfers overlapping. Overlapping reduces total
cost as time required for task processing is signif-
icantly lower. This is especially true for shorter
deadlines when multiple clouds are used, as transfer
rates are lower between different clouds comparing
to one provider infrastructure.
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Figure 7. Large data processed on finite public cloud with
overlapping computation and data transfer

5.4. Identifying special cases

Running a test case with very large tasks which
cannot be completed within one hour on largest
available instance revealed an interesting model be-
haviour. Results are shown on Fig. 8. Local minima
may occur for certain deadlines thus cost does not
increase monotonically with decrease of deadline.
This is a consequence of our task scheduling pol-
icy, as explained in Section 4.3. In the case of large
tasks, the schedule for deadline of 9 hours as seen in
Fig. 9a costs less than for deadline of 10 hours as in
Fig. 9b. In the first case the total number of VM-
hours of the gg-8mb instance is equal to 56, but in
the case of deadline = 10 hours the total number is
58, which results in higher cost. This is the result
of the policy, which tries to keep VMs running time
as close to the deadline as possible. Such policy is
based on general observation, that for a given bud-
get it is usually more economical to start less VMs
for longer time than to start more VMs for shorter
time. However, there are rare cases when such pol-
icy may lead to non-optimal solutions. It should be
noted, that the solution of the model returned by
the solver in this case is optimal, but it is the model
itself that does not allow to find the minimum cost.

Moreover, for longer deadlines the cost is a step func-
tion – e.g. the cost for deadline = 18 hours is the
same as for 14 hours. These two observations sug-
gest that the model could be modified in such a way
that the deadline is also a variable with upper bound
constraint. Similar result can be achieved in a sim-
ple way by solving the current model for multiple
deadlines in the neigborhood of the desired deadline
and by selecting the best solution.
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Figure 10. Optimal cost for a wide range of deadline constraints and data sizes.
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6. Sensitivity analysis

In order to better assess how our model behaves in
response to the changing constraints and for varying
input parameters, we performed a sensitivity anal-
ysis by sampling a large parameter space. Fig.10
shows the solutions obtained for deadlines ranging
from 2 to 40 hours and for input and output data
sizes ranging from 0 to 256 MiB. As it can be seen in
the plot, for all data sizes the cost increases mono-
tonically with the decrease of the deadline, which
confirms that no anomalies are observed. The same
data can be also observed as animated plot available
as on-line supplement 6 .

6 See also http://youtu.be/FWjgMwLdZW4
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Figure 9. Task schedule for the identified special case

Fig. 11 presents these results from a perspective
where each curve shows how the cost depends on
data size for varying deadlines.

One of the questions that our model can help answer
is how the changes in cost are sensitive to the changes
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of deadline. Fig.12 shows the cost function as well
as corresponding elasticity, which is computed as:
Ef(x) = x

f(x)f
′(x), where in this case f is cost and

x is deadline. Elasticity gives the information on
what is the percentage change of cost in response to
the percentage change of deadline. The function has
negative values, since the cost decreases with the
increase of deadline. It is interesting to see in which
ranges the elasticity has larger absolute value, which

corresponds to more steep cost function. Here we can
see that the elasticity grows for short deadlines and
close to the deadline of 25 hours, which is the point
where the solution cannot use only the VM instances
from most cost-effective clouds and requires more
expensive ones to meet the deadline.

Identifying such ranges with high absolute value of
elasticity is important for potential users of the cloud
system, including researchers (end users) or resellers
(brokers). The end user can for example observe that
changing the deadline from 40 to 30 hours or even
from 20 to 10 hours will not incur much additional
cost. However, changing the deadline from 30 to 20
hours is very costly, so it should be avoided. On the
other hand, the situation looks different from the
perspective of a reseller, who buys cloud resources
from providers and offers them to end-users in order
to make profit. The reseller can for example offer to
compute the given set of tasks in 20 hours for $150
with minimal profit, but it can also offer to complete
the same set of tasks in 30 hours for $50. Such price
can seem attractive to the end user who pays 1/3 of
the price for increasing the deadline by 50%, but it
is in fact very beneficial for the reseller, whose profit
reaches 100%. Such cost analysis is an important
aspect of planning large computing experiments on
cloud infrastructures.

7. Impact of dynamic environment

As stated in section 3, we assume that execution
time, transfer rate and data access time for all the
tasks are constant. However, in real environments
the actual runtime of tasks will vary. The goal of
the following simulation experiment was to estimate
the impact of this runtime variation on the quality
of results obtained using our optimization model.

For all the task assignment solutions presented
in Fig. 10 we add runtime variations to the task
runtimes in the following way. For each task we
generate a random error in the range from −v
to v using uniform distribution, where v is the
runtime variation range. We tested values of v =
10%, 20%, 30%, 40%, 50%. Such modified task run-
times are then used to calculate the actual runtime
and cost of VM. Due to variation of task runtimes,
it is possible that some computations may not fin-
ish before the deadline (time overrun) and that the
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Figure 13. Impact of runtime variation on cost overrun as a

function of deadline. Results obtained for random variation
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cost of additional VM-hours may need to be paid
(cost overrun).

We assume that task size variations include also
variations of data transfer time. We don’t take into
account variations of data transfer costs, since the
transfer costs for each task depend linearly on data
size, so the aggregated impact of positive and nega-
tive variations cancels to nearly 0.

Fig.13 shows the cost overrun with 10% and 50%
of runtime variation range. The boxplots for each
deadline represent averaged results for the data sizes
from 0 to 256 MiB as in Fig. 10, with box boundaries
at quartiles and whiskers at maximum and minimum
values. We observe that the highest overruns are for
the shortest deadlines, which results from the fact
that when each VM instance runs only for a few
hours, then the additional hour will incur relatively
high additional cost. On the other hand, for longer
deadlines the cost of additional VM-hour becomes
less significant. We also observe that the aggregated
impact of positive and negative variations in task
execution time may cancel to nearly 0 and in some
cases the cost overrun may be negative.

In a similar way Fig. 14 shows the deadline overrun
in the presence of runtime variations. We can ob-
serve that the deadline overrun is much smaller than
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Figure 14. Impact of runtime variation on deadline overrun as
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cost overrun. This means that the actual finish time
of all tasks is not significantly affected by the run-
time variation, due to the cancellation effect. We ob-
serve that even for high variations in the range from
−50% to 50% the actual runtime rarely exceeds the
deadline by more than 10%. This overrun can be
thus easily compensated by solving the optimization
problem with a respectively shorter deadline giving
a safety margin in the case of expected high varia-
tions of actual task runtimes. Similar estimation is
also possible in the case when the application con-
sists of many tasks of similar size which distribution
in known in advance.

8. Conclusions and Future Work

The results presented in this paper illustrate typi-
cal problems when making decisions on deployment
planning on clouds and how they can be addressed
using optimization techniques. We have shown how
the mixed integer nonlinear programming can be
applied to model and solve the problem of resource
allocation on multiple heterogeneous clouds, includ-
ing private and public ones, and taking into account
the cost of compute instances and data transfers.
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Our results show that the total cost grows slowly
for long deadlines, since it is possible to use free re-
sources from a private cloud. However, for shor dead-
lines it is necessary to use the instances from public
clouds, starting from the ones with best price/per-
formance ratio. The shorter the deadlines, the more
costly instance types have to be added, thus the cost
grows more rapidly. Moreover, our results can be
also useful for multi-objective optimization. In such
a case, it would be possible to run the optimization
algorithm in a certain neighbourhood of the desired
deadline and select the best solution using a speci-
fied cost/time trade-off. Alternatively, multiple so-
lutions as in Fig. 6, 10 or 11 may be presented to
the users allowing them to select the most accept-
able solution. Our model can be also used as an ap-
proximate method to solve the problems where tasks
sizes are not ideally uniform, but can differ within a
limited range.

Optimal task allocation in hybrid cloud environment
is not a trivial problem as one needs to know the es-
timates of computational cost of tasks in advance.
If such data are available, it is possible to use tools
such as AMPL. This approach may be successful
as long as one is able to formulate the optimiza-
tion model and select a suitable solver. These tasks
are not straightforward though, since small change
in model may move problem from one class to an-
other (e.g. from mixed integer to MINLP) requiring
to find another solver. Optimal specification of the
model is also important as the same problem may
be formulated in various ways, each of which which
may differ considerably in performance.

In future work we plan to experiment with varia-
tions of the model to represent other classes of ap-
plications, such as scientific workflows [1] that often
consist of multiple stages, each characterized by dif-
ferent data and compute requirements.
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