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Abstract. Function-as-a-Service is a novel type of cloud service used
for creating distributed applications and utilizing computing resources.
Application developer supplies source code of cloud functions, which are
small applications or application components, while the service provider
is responsible for provisioning the infrastructure, scaling and exposing
a REST style API. This environment seems to be adequate for running
scientific workflows, which in recent years, have become an established
paradigm for implementing and preserving complex scientific processes.
In this paper, we present work done on adaptation of a scheduling algo-
rithm to FaaS infrastructure. The result of this work is a static heuristic
capable of planning workflow execution based on defined function pric-
ing, deadline and budget. The SDBCS algorithm is designed to determine
the quality of assignment of particular task to specific function configu-
ration. Each task is analyzed for execution time and cost characteristics,
while keeping track of parameters of complete workflow execution. The
algorithm is validated through means of experiment with a set of syn-
thetic workflows and a real life infrastructure case study performed on
AWS Lambda. The results confirm the utility of the algorithm and lead
us to propose areas of further study, which include more detailed analysis
of infrastructure features affecting scheduling.

Keywords: Serverless - Cloud Functions - Workflow scheduling - Infras-
tructure testing.

1 Introduction

Scientific workflows are an established paradigm of implementing and preserving
a scientific process. Workflows allow for modeling complex scientific procedures
with help of abstractions over infrastructure or implementation details. Work-
flows are usually represented by an Directed Acyclic Graph (DAG) which enables
to analyze them and determine the relations and dependencies between individ-
ual tasks. This allows for parallelization and execution planning.

In most cases, scientific workflows are executed by a Scientific Workflow Man-
agement System [5], which provides features required to execute the process. Ad-
ditionally, management systems usually provide features aimed at automating
and streamlining the process, like basic infrastructure management and some
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fault tolerance. In order to execute the workflow we need two additional compo-
nents, data to operate on and a computing infrastructure. The data is usually
provided by the scientist or is an artifact produced by or directly included in
the workflow. The infrastructure can be a personal computer, a HPC computing
cluster or the cloud. Due to the features like: availability, pricing models and
possibility to dynamically adapt to the workloads, cloud infrastructure seems
to be a natural choice. One of the newest additions in cloud service provider’s
portfolios is the Function-as-a-Service. FaaS infrastructures provide computing
power while taking the responsibility for on-demand provisioning of execution
environments. Additionally FaaS offers an attractive pricing model where user
is billed only for the actual time spent on computing, usually with 100 ms granu-
larity. In case of such infrastructure, a developer is responsible only for supplying
the application code and declaring memory requirements. Applications destined
to run of FaaS are called Serverless Applications in order to emphasize the lack
of operating on traditional servers or virtual machines, during the deployment
and operation of the application. In contrast to Platform-as-a-Service a server-
less application doesn’t directly manage scaling and provides a limited run time
for individual tasks. While those characteristics are a limitation, they allow the
provider to supply a significantly greater scaling potential and speed of infras-
tructure provisioning.

Due to the unique features of FaaS we need to revisit some of the aspects
of workflow execution and scheduling, as explained in [11]. One of such topics
is the preparation of an execution plan. FaaS provides a highly elastic infras-
tructure, with unique performance characteristics, where CPU cycles are tied
to the declared amount of memory and user is billed per 100ms of execution
time. Furthermore functions don’t have a persistent local storage, so each task
needs to explicitly manage its inputs and outputs. This combination of features
justifies the need for a dedicated scheduling algorithm. In this paper, we pro-
pose a Serverless Deadline-Budget Constrained Scheduling (SDBCS) algorithm,
a heuristic which aims to prepare an execution plan satisfying budget and time
constraints, while not introducing a high cost of plan preparation. SDBCS was
implemented with help of HyperFlow [3], a proven and extensible workflow ex-
ecution engine, written in JavaScript.

This paper is structured as follows. Sec. 2 elaborates on current body of
knowledge related to scheduling workflow applications in FaaS infrastructures.
Described references include analysis of the infrastructure, applications and pos-
sible scheduling algorithms. Sec. 3 describes in detail the used procedure of
scheduling a workflow for FaaS. The environment, tooling and solution archi-
tecture is presented. The proposed scheduling algorithm is shown in Sec. 4.
Scheduling problem is formally stated and methods for obtaining a plan are
described in detail. Sec. 5 contains experiment results based on synthetic test
package and a real life experiment involving usage of AWS Lambda functions.
The paper concludes with Sec. 6 which give a summary of the paper and provide
outlook for future work.
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2 Related work

FaaS was originally designed to host event-based asynchronous applications,
coming from Web or mobile usage scenarios. However, there is an ongoing work
on finding other alternative use cases for FaaS, as shown in [2], which include
event processing, API composition and various flow control schemes.

There are efforts which aim to implement frameworks, like pywren [7], which
allow performing general purpose computing on FaaS clouds. One of the main
features would be to enable dynamic transformation of applications to FaaS
model while simultaneously providing deployment services, which would allow
for seamless migration to cloud functions. The result would be a workflow ap-
plication consisting of tasks which represent parts of the original application.

FaaS infrastructures, as a novelty, are subject to rapid changes. Work done
in [10] describes the current details of FaaS provider offerings, service types, lim-
itations and costs. The performance of cloud functions was further studied in [6]
and [13]. Included results allow to construct the model the available performance
and infrastructure provisioning characteristics like efficiency and limits.

In our earlier work [12] we proposed means to adapt scientific workflows
to FaaS, using HyperFlow!. In [9] we proposed and validated a FaaS specific
scheduling algorithm, which is used as a reference point for validating algorithm
presented in this paper.

There is a plethora of workflow scheduling algorithms available for clouds
based on virtual machines. Those algorithms can be adapted to FaaS, which
would allow to benefit from the available body of knowledge. We chose the
Deadline-Budget Constrained Scheduling algorithm [1] as a suitable for adapta-
tion, due to its low complexity and good performance.

Workflow applications are a well studied field. In the case of this paper we
evaluated the proposed algorithm with the help of available workflow test data
set for Pegasus system, which is described in more detail in [8].

3 Serverless workflow execution

3.1 Scheduling the workflow

As presented in [9], executing workflows on FaaS is significantly different from
execution on virtual machines. From the application’s point of view, we need
to distribute individual tasks across functions, so that the whole process can
be executed with the imposed per task time limit. While the cloud provider is
responsible for provisioning of the infrastructure, we need to declare suitable
function configurations, so that the deadline and budget requirements are met.
In case of the proposed algorithm, the output of the planning process is the as-
signment of tasks to function configurations. Each configuration is characterized
by an amount of memory, which is proportional to available computing cycles
per second, which in turn determines the execution time of tasks. If the cost of

! HyperFlow repository: https://github.com /hyperflow-wms/hyperflow
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running the application is lower than the budget, and the makespan is shorter
than the deadline, the scheduling is considered successful.

3.2 The environment, tools and solution architecture

In the course of our studies of FaaS infrastructures, we tested and evaluated mul-
tiple FaaS providers [6]. For the scope of this work we chose to work on Amazon
infrastructure. We used AWS Lambda for running cloud functions and AWS S3
for cloud storage. The tight integration of both services, namely support for cre-
dential delegation greatly simplifies the deployment process, as cloud functions
can hold delegated credentials required to access storage. At the time of writing
this paper AWS Lambda imposes several limits on cloud functions. Functions are
limited by time to 900 seconds, the amount of declared and used memory must
be in the range of 128MB to 3008MB, which translates to available computing
performance. Local storage available within a function environment is limited to
512MB, and deployment package (function code and auxiliary applications) need
to fit in a 250MB package. Concurrent function executions are limited to 1000
instances. Table 1 includes function configurations used during the evaluation
of the proposed algorithm. For the sake of simplicity of the application model
some features of FaaS, like cold starts, are not directly addressed.

Table 1. Function configurations and prices. Note that memory size affects available
CPU time (computing performance).

Memory size|Cost per 100ms of execution
256MB $0.000000417
512MB $0.000000834
1024MB $0.000001667
1536MB $0.000002501
2048MB $0.000003334
2560MB $0.000004168
3008MB $0.000004897

HyperFlow served as a workflow execution engine. Workflows are represented
as JSON structures containing a DAG. HyperFlow keeps track of the state of the
application and is responsible for transforming tasks to function calls. Function
calls are implemented as simple REST Calls, where REST APIs are exposed by
the FaaS deployment. The deployment consists of prepared functions (part of
HyperFlow package) which handle incoming calls and execute bundled compo-
nents of the application.

The scheduler was implemented as a set of components, which include tools
used to perform application test runs to gather performance characteristics of the
tasks and the main scheduler module. The scheduler parses performance data,
pricing, user defined constrains: deadline and budget, the output is an execution
plan in form of a decorated workflow. The output workflow is a HyperFlow
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compatible DAG, which includes mapping of each task to a target function type.
Scheduler module is open source and its repository is publicly available?.

Figure 1 presents the architecture used during the development and eval-
uation of the proposed algorithm. The whole process can be described as fol-
lows. Workflow application, in form of a JSON DAG, is supplied to the sched-
uler, which is responsible for producing an execution plan. The plan, a deco-
rated DAG, is supplied to HyperFlow, which executes the application according
to plan. Workflow manipulation, planning and execution management are per-
formed outside of FaaS, on a dedicated machine. The execution of application’s
tasks is performed by calling a function with proper arguments. Each task is
executed inside of individual function instance. Tasks share a common storage,
which is available remotely, through a S3 protocol.

Decorated
Schedder

HyperFlow engine

Fig. 1. Deployment diagram of workflow execution system

4 The scheduling algorithm

As mentioned in Sec. 1, there is a variety of available scheduling algorithms for
workflow applications. We chose the Deadline-Budget Constrained Scheduling al-
gorithm [1] as suitable for adapting to serverless infrastructures. The algorithm
is a list scheduling algorithm applicable to cloud environments and operates on
heterogeneous resources. The adaptation consisted of reimplementing the algo-
rithm with the notion of functions instead of virtual machine oriented processors.
This removed the need for part of algorithm responsible for selecting an available
processor. Required functions are supplied by the FaaS provider in an on demand
manner. Additionally calculation of storage and transfer costs were removed, as
those basic functions are supplied and not directly contributing to costs.

2 https://github.com/PawelBanach/CloudFunctionOptimizer
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4.1 Serverless Deadline-Budget Constrained Scheduling algorithm
(SDBCS)

The problem of scheduling can be defined as assigning individual tasks of work-
flow application to resources available from a heterogeneous environment. In
this case resources are represented by cloud functions, available function con-
figurations are listed in Table 1, where the number of functions in limited only
by concurrency constraint. User supplies the application in form of a Directed
Acyclic Graph (DAG), which can be represented by a tuple G = (T, E, Data)
where T' = t1,to,...,t, represents a set of tasks of workflow, and F represents
edges connecting tasks, which model dependencies and control flow between
tasks. Data represents input and intermediate information needed to run the
application. Scheduling problem becomes a matter of finding a map G : T — F,
where F' denotes the mentioned set of functions. The algorithm is a single step
heuristic which meets the budget constrain and may or may not achieve the re-
quired deadline. Successful scheduling is achieved when all constraints are meet.
The core functionality of the algorithm is based on sorting tasks according to
upward rank, calculating sub-deadlines and quality score for each task on each
resource. Sub deadline is inferred from user supplied makespan deadline. Quality
is calculated based on task execution time on a given resource. Description of
the algorithm uses notation presented in Table 2.

Table 2. Symbols and notation used for algorithm description.

Symbol Description

teurr currently scheduled task
rank.(t) rank of task ¢

ET(t) execution time of task ¢
succ(t) successors of task ¢
FT(t,r) finish time of task t on resource r

FTrin(t,r) | minimum finish time of task ¢ on resource r
FTaz(t,r) |maximum finish time of task ¢ on resource r

Cost(t,r) cost of executing task ¢ on resource r
C08tmin(t) minimum cost of executing task ¢
Costmaz(t) maximum cost of executing task ¢
Costpest(t) cost of fastest execution of task ¢
Costeheapest minimum cost of executing all tasks

AC(t) assigned cost of running task t
Acost spare budget

Specific elements of the algorithm operate base on the following rules. The
spare budget is calculated with the formula:

ACost = ACost - [AC(tCuTT) - COStmin (tcurr)] (1)
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where the spare budget is the difference between available budget and the
cheapest assignment for unscheduled tasks. The initial spare budget is expressed
as:

ACost = BUDGETuser - COStcheapest (2)
and
COStcheapest - Z COStmln(tz) (3)
t; €T

Task selection and priority is based on a computed rank of tasks. The rank
represents the length of longest path from task to the exit node with addition
of average execution time of task:

ranky (tl) = ﬁ(tl) + maxtumzdésucc(ti){ranku (tchild)} (4)

Where ET(t;) represents the average execution time of task over available
resources and the latter part of equation represents the maximum of ranks of all
immediate successors of task t;.

The budget available for task execution is expressed as:

CL(tcurr) = Costin (tcurr) + Acost (5)

which represents the minimum execution cost with addition of spare budget.
The sub-deadline is defined for each task as:

DL(tcurr) = mintchildesucc(tcurr)[DL(tChild) — ETin(tehita)] (6)

where tasks’ individual deadline is calculated as the minimum of difference
between subsequent tasks’ deadline and minimum execution time of current task.

The Timeg and Costg represent time and cost quality of assigning task to
resource, quality measures are expressed as:

_ Q * DL(tcurr) - FT(tcurrv T)
B FTmam(tcu'rr) - FTmin(tcur'r)

_ COStbest(tcurr) - COSt(tcur'm ’f’)
Costmax (tcu'r') - COStmin(tcur)

(7)

Timeq(teyrr,T)

Costg(teurr,T) * (2 (8)

and:

(9)

it FT(teyrr,r) < DL(tcyrr)
] 0 otherwise

Time and Cost qualities aim to represent the distance of studied solution in
the range between best and worst case scenarios. In case of time, the range of
values spans between the sub-deadline and minimum execution time, while in
case of cost boundaries are set at the minimum and maximum execution costs.
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The {2 parameter is responsible for complying with the deadline set for current
task.

The final quality measure is expressed as:

COStcheapest

tewrr,T) = Timeq (teurr, ™) + Costg(teurr, T) *
Q( curr ) Q( curr ) Q( eurr ) Budgetunconsumed

(10)

the equation combines both quality measures with addition of weighting the
Costg with the ratio of cheapest execution cost to unconsumed budget.

SDBCS is presented as Algorithm 1. The process included in algorithm can
be described as follows. Initialization of the algorithm requires user to supply
a workflow graph, a deadline and available budget. If the budget is less than
the lowest possible cost of executing the workflow the algorithm indicates it is
impossible to create an appropriate plan. Next step (lines 3-4) determines if the
supplied budget is more than the highest possible cost of execution, in that case
each task is scheduled to execute on the fastest resource. Line 6. is responsible
for assigning the initial value of spare budget, next step is to calculate ranks and
task priority. Lines 8-15 contain the main scheduling loop, which iterates over
task in order of priority. Quality measure is computed for currently scheduled
task against all available resources, based on that the best resource is selected.
The final part of the loop is the update of spare budget which is calculated
according to equation 1.

Algorithm 1 Serverless Deadline-Budget Constrained Scheduling algorithm
Require: DAG, time (Duyser), budget (Buser)

1: if Byser < Costmin(DAG) then

return no possible schedule

: else if Byser > CoStmas(DAG) then

»

3
4:  return schedule map on the most expensive resource

5: end if

6: Acost <= BUDGET ser — CoStcheapest

7: Compute upward rank (rank,) and sub-deadline for each task
8: while there is unscheduled task do

9: teurr < t next ready task with highest rank

10: for r € resources do

11: Calculate quality measure Q(tcurr, )
12: end for

13: Tselected <= T With highest quality value
14: assign teurr tO Tselected

15: ACost ~ ACost - [Ac(tcu'r'r) - COSt'min (tcurr)]
16: end while
17: return schedule map
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5 Evaluation and results

5.1 Scheduling performance

The proposed algorithm was evaluated in a series of experiments. Experiments
are meant to test the scheduling success rate for a set of test workflow applica-
tions in multiple input parameters. Tests were designed with the use of Montage,
which in recent years became an established benchmark application for workflow
scheduling systems. Montage is a astronomical mosaic application, which com-
bines an array of smaller images into larger mosaics. The application is composed
of several steps and contains many tasks executed in parallel, thus it is suitable
to validate scheduling performance. Testing workflows were obtained from the
workflow repository available at Pegasus system homepage?, described in more
detail in [4] and [8]. It is important to note that Montage was chosen as a util-
ity to verify algorithm’s performance and not as an ideal application to run in
FaaS environment. Test package contains 220 workflows, with task counts rang-
ing from 50 to 1000. Workflows were converted to HyperFlow format and task
run time for each resource was estimated. The estimation was made based on
package-supplied synthetic run time and function performance metrics from our
earlier work [6]. Synthetic run time was treated as time taken by task execution
on slowest cloud function. Other run times, for faster function configurations,
were obtained by simply scaling it by expected function performance. In a real
world use case, one would be required to supply run time of each task on each
function configuration.

The experiments were conducted for Serverless Deadline-Budget Constrained
Scheduling (SDBCS) and Serverless Deadline-Budget Workflow Scheduling
(SDBWS) algorithm. SDBWS is described in more detail in [9]. The main differ-
ence of SDBWS is that it operates on tasks grouped in levels, which are assigned
a global sub-deadline, whereas SDBCS treats each task as a separate entity. Ad-
ditionally SDBWS utilizes different formulas to calculate quality. SDBCS can
be treated as a more general derivative of SDBWS and is expected to provide
better performance. Due to the focus of this paper, experiments were narrowed
to test only two mentioned algorithms.

The set of deadline and budget parameters were generated based on minimal
and maximal possible values. Specific values at 0.3,0.5 and 0.7 points of range
were chosen. The final values of deadline and budget were calculated for each
workflow with the following equations:

Deadline,ser = Deadlinen,, + ap * (Deadlineq, — Deadline,;,,) (11)

Budgetyser = Budgetpin + ap * (Budget o, — Budgetmin) (12)

The results of scheduling experiments are presented in Figures 2, 3 and 4.
Each figure contains results for a specified value of budget parameter, whereas

3 https://download.pegasus.isi.edu/misc/SyntheticWorkflows.tar.gz
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the X axis spans across multiple values of ap parameter. Results show that
SDBCS overall performance is better than SDBWS, with exception of smaller
value of deadline, where both algorithms presented low success rate. In case of
ap = 0.5 SDBCS clearly delivers better performance and for ap = 0.7 SDBCS
advantage over SDBWS is present but not as significant. The case of ap =
0.7 and ap = 0.7 results in both algorithms succeeding at scheduling all test
workflows.
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Fig. 4. Scheduling success rate with budget ag = 0.7 and deadline ap € {0.3,0.5,07}

5.2 Tests on physical infrastructure

As part of validation of the proposed algorithm, we performed a real life exper-
iment. The test used physical infrastructure in order to prove the applicability
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of the solution. Procedure included scheduling a sample workflow, namely Mon-
tage application containing 43 tasks. The next step was to run the application
on setup described in Sec. 3.2, where tasks were executed on AWS Lambda. Fig-
ure 5 contains a Gantt chart depicting the trace of execution, X axis represents
time, each bar represents run time of a single task. Task types are distinguished
by color, distinction between types allows to determine dependencies between
tasks. Transparent bars represent planned execution while opaque are execu-
tions measured in real life. The chart allows to visually inspect the accuracy of
planning. In the presented case, plan closely matched the real life execution, and
only with 4 tasks, the execution was started slightly after the planed time.

Task

task

mAdd
mBackground
mBgModel
mcConcatFit
mDiffFit
mimagtbl

mJPEG
mProjectPP
mShrink

10 20
Time in seconds

Fig. 5. Gantt chart depicting a trace of Montage execution. Execution of each task is
represented by a opaque bar, while a transparent bar represents scheduled execution.

6 Conclusions and future work

Presented adaptation of scheduling algorithm was made after careful analy-
sis of target infrastructure and provided insight into characteristics of running
workflows on FaaS infrastructures. Obtained results confirm, that the presented
Serverless Deadline-Budget Constrained Scheduling algorithm is capable of pro-
ducing valid execution plans according to supplied parameters. Experiments with
scheduling a Montage workflow proven that SDBCS achieves better results than
the previously studied SDBWS algorithm. Real life infrastructure tests also il-
lustrate, that the generated execution plan is valid in practical applications.

Future work includes further study of workflow scheduling algorithms and
exploring new methods of adapting them to FaaS infrastructures. Additionally,
our work on studying commercially available infrastructures, led us to conclusion
that the behaviour of FaaS is still not completely explored. Functions tend to
experience phenomena like execution throttling or delays, which have an impact
on workflow execution and could be accounted for in scheduling algorithms.
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