Pomiary i przyrządy cyfrowe

Przyrządy analogowe – trochę historii

Ustrój magnetoelektryczny

$$M_{I} = B \cdot I \cdot z \cdot d \cdot I$$
$$M_{S} = k \cdot \alpha$$
$$M_{I} = M_{S} \Longrightarrow \alpha = \frac{B \cdot z \cdot d \cdot I}{k} I = c \cdot I$$

$$1+\frac{r}{R}$$

 $1+\frac{R}{r}$

Rodzaje cyfrowych przyrządów pomiarowych

1. Przyrządy "tradycyjne"

multimetry przenośne i laboratoryjne mierniki parametrów: R, L, C, Z, Q

2. Komputerowe karty pomiarowe systemy sterowania

pomiar sygnałów elektrycznych czas, częstotliwość wielkości nieelektryczne

3. Przyrządy "wirtualne" (Virtual Instruments) komputer przetwarza i obrazuje dane pomiarowe

Multimetr cyfrowy (DMM)

Cyfrowy tor pomiarowy

Idealny przetwornik A/C

Podstawowe kody cyfrowe

Kod naturalny (binarny)				
$a_{N-1}a_{N-2}\ldots a_1a_0 \in \{0,1\}: \mathcal{L} = \sum_{i=0}^{N-1} a_i \cdot 2^i$				
	$\begin{array}{c} 000000 \rightarrow 0 \\ 11111111 \rightarrow 2^{N}1 \end{array}$	(np. 0) (np. 255)		
Kod uzupełnień do 2				
$a_{N-1}a_{N-2}\ldots a_1a_0 \in \{0,1\}: \mathcal{L} = -a_{N-1}\cdot 2^{N-1} + \sum_{i=0}^{N-2}a_i\cdot 2^i$				
	$\begin{array}{c} 100000 \to \text{-2}^{\text{N-1}} \\ 01111111 \to \text{2}^{\text{N-1}}\text{-1} \end{array}$	(np128) (np. 127)		
Kod BCD (binary coded decimal)				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
3.5 cyfry: 3≩ cyfry: 4.5 cyfry: 5.5 cyfry:	±1999 (0.05%); ±3999 (0 ±8999 (0.01%; 100 ppm) ±51000 (0.002%; 20 ppm) ±119999 (0.0008%; 8 ppm)	0.025%)		

Kod Gray'a			
0	00000		
1	00001		
2	00011		
3	00010		
4	00110		
5	00111		
6	00101		
7	00100		
8	01100		
9	01101		
10	01111		
11	01110		
12	01010		
13	01011		
14	01001		
15	01000		
16	11000		

q/2

Przetwornik z podwójnym całkowaniem

Wrażliwość na zakłócenia

Zakłócenia – c.d.

współczynnik transmisji [dB]

Przetwornik Σ - δ (sigma-delta)

Przetwarzanie C/A

Przetworniki C/A

Binarne przetworniki wagowe

R
UREF/2
R
UREF/4
R
UREF/8

R
R
R
R
R
R

R
R
R
R
R

R
R
R
R
R

R
R
R
R
R

R
R
R
R
R

R
R
R
R
R

R
R
R
R
R

R
R
R
R
R

R
R
R
R
R

R
R
R
R
R

R
R
R
R
R

R
R
R
R
R

R
R
R
R
R

R
R
R
R
R

R
R
R
R
R

R
R
R
R
R

R
R
R
R
R

R
R
R
R
R

R
R
R
R
R

R
R
R
R
R

R
R
R
R
R

R</t

Przetwornik z odwrotną drabinką R-2R

Nieidealność przetwarzania-szum kwantyzacji

Błędy przetworników

Błąd przesunięcia (błąd zera, offset)

Nieliniowość przetwarzania

Drastyczne przykłady

Twierdzenie o próbkowaniu

Shannona-Kotielnikowa, Nyquista-Shannona, ...

Sygnał może być jednoznacznie odtworzony z próbek pobranych ze stałą częstotliwością $f_{\rm S}$ jeżeli żadna ze składowych tego sygnału nie ma częstotliwości większej niż $f_{\rm S}/2$.

*f*_s – częstotliwość próbkowania *f*_s/2 – częstotliwość Nyquista

albo bardziej wprost:

Próbkowanie sygnału musi się odbywać z częstotliwością co najmniej dwukrotnie większą od pasma zajmowanego przez ten sygnał.

Aliasing

X(f) - widmo sygnału (obustronne)

widmo sygnału spróbkowanego:

Aliasing bardziej przystępnie...

Aliasing w praktyce można go spotkać w DSO

Twierdzenie o próbkowaniu (w uproszczeniu)

Szybkość próbkowania musi być co najmniej dwukrotnie większa od najwyższej częstotliwości zawartej w sygnale.

Czy można próbkować wolniej niż 2×f_{max} ???

Liczba bitów przetwornika

??? przecież to wynika z konstrukcji...

$$SNR = 20\log \frac{S_{RMS}}{\varepsilon_{RMS}} = 6.02 \cdot N + 1.76 \text{ [dB]}$$
$$N = \frac{SNR \text{ [dB]} - 1.76 \text{ [dB]}}{6.02[dB]}$$

SINAD Signal-to-Noise-and-Distortion

ENOB Effective Number of Bits

$$ENOB = \frac{SINAD [dB] - 1.76 [dB]}{6.02[dB]}$$

Błędy dynamiczne przy przetwarzaniu

Niestałość apertury próbkowania (Aperture Jitter)

Oszacowanie dozwolonego jitteru (konserwatywne)

$$U = A \cdot \sin(\omega t)$$

$$\frac{dU}{dt} = \mathbf{A} \cdot \boldsymbol{\omega} \cdot \cos(\boldsymbol{\omega} t) \Rightarrow \frac{dU}{dt} \Big|_{MAX} = \mathbf{A} \cdot \boldsymbol{\omega}$$

$$\Delta U \approx \frac{dU}{dt}\Big|_{MAX} \cdot \Delta t_{S} = A_{MAX} \cdot \omega_{MAX} \cdot \Delta t_{S}$$

$$\Delta U < q(LSB) \Rightarrow \Delta t_{S} < \frac{q}{\omega_{MAX} \cdot FS/2}$$

N	f _{MAX}	Δt_{S}
8	10 MHz	125 ps
8	100 MHz	12.5 ps
8	1 GHz	1.25 ps
12	10 MHz	3.9 ps
16	10 MHz	490 fs