Some Control Theory Problems in Modern
Energy Systems

Romeo Ortega
LSS-Supelec, France

Contents:
Dynamic Energy Router
Transient Stability of Power Systems Revisited
Wind Speed Estimator for Windmill Systems

Other Control Problems

KTH Stockholm. Mav 23. 2011 — p. 1/3.



Main Message: Paradigm Shift for Controller Design

Classical formulation: Signal-processing viewpoint
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System model and controller are signal processors: G1 : e1 — y1, G2 : e — yo.

Control specifications in terms of signals: tracking, disturbance attenuation, etc.
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Robustness represented via the “> — A paradigm”, very successful for LTI systems:
filtering reduces conservatism and easily computable.

® “Impossible” in nonlinear case:

® nonlinear systems “mix" the frequencies,

& far from obvious computations (NL filtering, Hamilton-Jacobi-Bellman PDE).
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Basis of Passivity—based Control
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View plant as energy—transformation, as opposed to signal-transformation, device
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Consider systems that satisfy (generalized) energy—conservation:
Stored energy = Supplied energy + Dissipation

® Control objective: preserve the energy—conservation property but with desired energy
and dissipation functions

Desired stored energy = New supplied energy + Desired dissipation
In other words
PBC = Energy Shaping + Damping Assignment

® In many applications the natural viewpoint: active filters, FACTS, teleoperators,
coordination/synchronization of large scale systems,...
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Dynamic Energy Router

- ‘k’ CENTRE NATIONAL
DE LA RECHERCHE
3 =4 SCIENTIFIQUE
1Ipeec

KTH Stockholm. Mav 23. 2011 — n. 4/3.



Formulation of the Energy Transfer Problem

Energy management between storing, generating and load units interconnected through
power electronic devices
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Current Practice, Limitations and Objective

Assume that system operates in steady state
Translate power demand into current or voltage references

Track references with Pl controllers in the power converters

o o0 0

Discriminate between fast and slow changing power demand via linear filtering

= Behavior below par during transients and for fast changing demands
Our objective is to propose a >.; that

Does not rely on steady—state considerations

| I

Allows to incorporate dynamic restrictions of the units
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Mathematical Formulation of the Problem

® Units modeled as multiports 3 ; with port variables v, (t), i, (t) € R™
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® They verify the energy conservation law
.
;0= 1,00 = [ o] (3)is(5)ds = d;(0)

H;(t) is the stored energy,

o

The supplied energy is,
t
/ vj—-r (s)ij(s)ds.
0

® 4,(t) > 0is the dissipation.
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Duindam-Stramigioli Dynamic Energy Router

® DS-DER is a power—preserving interconnection X ; that transfer instantaneously the
energy from one unit to the other. (Sanchez, et al., IEEE-CSM’10)

® Assume, for simplicity, two ports

N N

1
Zl Tvl ZI wT Zz
% Ny % o

® >;is power preserving selecting

. .{[il(t)][ 0 F(t)] [vl(t)]
I =
io(t) - () 0 va (t)

T T
11 V1 + 19 v2 = 0,

Indeed,

forany I' € R"*™,
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cont’d

® Now, neglecting dissipation,

Hy = viril :’U;—P’UQ

Hg = U;iz = —v;FTvl.
® How to select I'? Take, for instance
I'(t) = a(t)vi(t)vg (), «ft) €R
then

Hi = alvi|?*|vs)?

Hy = —a|vi)?|val?.

« > 0 transfers all energy from X5 to X1, (o < 0, viceversa).

o

Selecting the “shape” of «(t) we can regulate the energy transfer rate.
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Experimental Results

» >, >, simple RC circuits.

® o (t) controls the direction and rate of change of energy flow.
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® First, a(t) is positive and constant. Then, it decreases at a slow rate, until it achieves
its lower value.

®» Remains constant for some time and then increase at a faster rate.
9

Finally, it reaches its maximum value and remains there until the end.
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Power Electronics Implementation of DER
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® Design a control law for the DER switches, which ensures that the currents track their

desired references
i) | | a@u@dn |
i5(t) —a(t)vz(t)vi(t)

® Fundamental problem: The energy of the DER verifies:

Hi(t) = v1(t)i1(t) +va(t)iz(t) —di (t) <0,

=0

and it becomes non-operational.
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Compensating the Dissipation

® Adding outer—loop PI's to a feedback linearizing control to regulate the voltage v (t):

~ t _ t
w;(£) = —kyis (t) — k/o 7 (8)ds — kpoo(t) — kw/o So(s)ds, j=1,2.
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Currents of >; and their References

Current (A)

Current (A)
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Voltage of DC Link
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Proposed Solution: Abandon Power Preservation

® Define mappings F;(v) for the current references:

i;(t) = Fj(v(t), JjEN,

® Two different objectives:
$ Ensure the desired power dispatch, Pr(¢) = fu.T(t)Fj (v(t)).
#® Compensate dissipation, ZJ 1Y, T F;(v(t) =dg(t).

® Possible choice

N
Fj(v) = 5jH]kV:1,k¢j|Uk|QUja Z 6;(¢) = dr(2).
j=1

O f|v;(t)] > € > 0, fix

P*(t)
By(w3(0)) = 1 2o i ()

with 3520, Px(t) = dy(t).

£ ‘*’ CENTRE NATIONAL
| DE LA RECHERCHE
. 0 SCIENTIFIQUE

Supeke

KTH. Stockholm. Mav 23 2011 — n. 15/3.



Geometric Interpretation of the New DER and the DS-DER

Given v and dj, the set F defines the admissible vectors F'(v), that satisfy
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Simulation Results of the New DER

® A battery is added as a third port, to compensate the losses.

< >
511{%3 521{\%3
il Rt Li n Ly R i2
OT—WWH (% —— C, QMM—TQ
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® Same energy pattern for the supercapacitors as before, i.e. Py (t) = —P;5(t), but

P; (t) = dp(t) = R1if (t) + Rai3(t) + Raiz(t).
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Power of Multiports
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Voltage of DC Link
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Transient Stability of Power Systems
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Model of the Power System

® e consider a large—scale power system consisting of n generators interconnected
through a transmission network which we assume is lossy.

® The dynamics of the i-th machine with excitation is represented by the classical
three—dimensional flux decay model

o = w;

w; = —Dyw;+ P;— GMEE — F; Z EjYij sin(5i — 5j + Oéij)
J=1,j#1

Ez' = —a;F; +b; Z Ej COS((SfL' — 5j + Oéij) + Efi + u;

j=1,ji

® 5, w,,: rotor angle and speed, E(’ﬂ.: the quadrature axis internal voltage, u ¢;: the
field excitation signal, G ari; = G iy Bmij = Barjs and Gy, conductance,
susceptance and self-conductance of the generator ¢, E ;;: constant component of
the field voltage, P,,,;: constant mechanical power, x4, x/,., w;o and Dp;:
direct-axis—synchronous and transient—reactances, synchronous speed and
damping coefficient
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Problem Formulation and Solution

® Assume the model with u; = 0 has a stable equilibrium point at [§;, 0, E;.], with
E;. > 0. Find a control law u; such that in closed—loop

® an operating equilibrium is preserved,
® a Lyapunov function for it is given and,
#® itis asymptotically stable with a well-defined domain of attraction.

® Two additional requirements are that the domain of attraction of the equilibrium is
enlarged by the controller and that the Lyapunov function has an energy-like
interpretation.

® Forlossless lines we can assign
1, 5, 1 T
Hy(d,w, E) =1(0) + Jlw|” + S(E — Ex) I'(E - Ex),
® |[f the lines are lossy we have to introduce a cross-term in the energy function.
1, o, 1 -
Hy(6,w, E) = 1(5) + §|w| + §[E — X)) E«] ' T[E — X()Ex].

® (Ortega, et al., TAC'08)
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Simulations

® Consider the two machines system

. 0.012+j0.20 Fe 5
B s < 0 E/™
- J05 @ 0054010 | jO5 | [ ~
D 0.012+50.10 .005+j0.05 | AN
X’,=0.5 _ Y05
o > $ X,=2.3
M=o - N M,=7s
Dt D.=0.2

® The disturbance is a three-phase fault in the transmission line that connects buses 3
and 5, cleared by isolating the faulted circuit simultaneously at both ends.

® This modifies the topology of the network an consequently induces a change in the
equilibrium point.

® \Without control the system is highly sensitive to the fault and the critical clearing time
is almost zero.
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Load Angle and Internal Voltage, ¢, = 80 m sec
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Other Results and Open Questions

® Considered also actuation via flexible AC transmission systems, (Manjarekar, et al.,
Electrical Power Systems Research’10, EJC’11).
® Structure preserving models

® Cyclo-dissipativity properties have been established and a linear controller
proposed — leads to an LMI test, (Guisto, et al., CDC’08).

® “Full solution" using Lyapunov—based designs (Dib, et al., TAC’10), (Casagrande,
etal.,, CDC'11).
® Alternative formulation as a synchronization, not stabilization, problem, (Dib, et al.,
ACC’'11).
® Immersing a pendular dynamics.
® Existence solution for n machines.
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Wind Speed Estimation in Windmill
Systems
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Model of the Windmill System

® System is a wind turbine and a generator. The mechanical dynamics

Py
(SM) me —_ _Te-

Wm
® The mechanical power at the windmill shaft

rWwm

1
Py, = 5pAq,(/\)fuf;,, A=

Vw

® The power coefficient C, ()
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Wind Speed Estimation Problem

Problem Formulation Given the system, verifying:

® Assumption 1 The power coefficient is a known, smooth, function Cp : [0, \pr] = Ry,
which verifies

(>0 for \e [0, A%)
C,(A) 4 =0 for X\=\*
| <0 for A& (A", A,

where A\* := arg max C)p ().
Assumption 2 The wind speed v,, is an unknown positive constant.

Assumption 3 The electrical torque T, and the motor speed w,, are measurable.

oo o

Assumption 4 For all A € (0, A*), the power coefficient verifies
3 /
ch()\) > CL(N).

Design an on-line estimate of the wind speed, v,,, such that

t— 00
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Some Remarks

® (C,()) can be easily obtained from experimental data, and the algorithm implemented
from a table look—up.

® Constant wind speed assumption only needed for the theory. An on-line estimator is
able to track slowly—varying parameters, assumption justified by the time scale
separation between the wind dynamics and the mechanical and electrical signals.

® On-line estimators average the noise—in contrast with differentiator-based or
extended Kalman filter schemes currently used.

Measuring w,, and T, is standard practice in windmill systems.

L I

Theory applicable also if blade pitch g is included, i.e., C', (A, 3), or for more complete
descriptions of the mechanical dynamics. For instance

P .
Irwr — _w — K90 — BQQ — Brw')"

Wm

. Kog By .
(FM) Igwg = —Te+ W@‘F WQ—BQCUQ
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Main Estimation Result

Proposition (Ortega, et al., IJACSP’11) Consider the system (SM), verifying Assumptions
1-4. The estimator

: A (D1 Wi )3 rw

i = |7 - pA w yem) Cp<AI m )}
2 Wm Vy T YWm

bw = 0L+ ywm,

where v > 0, is an adaptation gain, is asymptotically consistent, that is,

lim Oy (t) = v -
t— o0

Remark Assumption 4 is satisfied in the range where the torque coefficient has negative
slope. Indeed,

Cr(N) = %C’p()\),

satisfies

C/(\) <0 = Assumption 4.
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Simulation Results: Periodic Wind

Done in Vestas professional software, with the full model (FM) and real wind data.
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Simulation Results: Turbulent Wind
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Simulation Results: Gust
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Some Additional Results

®» Energy quality

® Power factor compensation is equivalent to cyclo—dissipasivation: The nonlinear
non-sinusoidal case, (Garcia, et al., IEEE-CSM’07).

® Passivity and robust Pl control of the air supply system of a PEM fuel cell model,
(Talj and Ortega, Automatica’ll).
®» Power converters
® An adaptive PBC for a unity power factor rectifier, (Escobar, et al., IEEE TCST'01).

® Experimental comparison of several PWM controllers for a single-phase ac-dc
converter, (Karagiannis, et al., IEEE-TCST’03).

® An adaptive controller for the shunt active filter considering a dynamic load and
the line impedance, (Valdez, et al., IEEE-TCST’09).

» Drives

#® Sensorless control of PMSM with guaranteed stability properties, (Shah, et al.,
IFAC’11).

® PBC of doubly—fed induction machines, (Battle, et al., EJC’'07).
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