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Power System Electromechanical Mode Oscillations

1 Electromechanical modes are the oscillations of the multiple
generator inertias against each other through the electrical network

2 Three types of electromechanical modes
1 Intraplant modes: 2-3 Hz
2 Local mode: 1-2 Hz
3 Interarea modes: 0.2-0.6 Hz

A simple power system showing a local mode and an
intraplant mode
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Interarea mode: Klein-Rogers-Kundur 2-area, 4-machine system
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US Western System Breakout - August 10, 1996

John Hauer
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Nordic System

Kjetil Ulhen
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Nature of Network Oscillations

The 2008 Florida Disturbance
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f propagation:
Duval → Volunteer → Cordova → Dorsey → Orrington
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US Eastern Interconnection, Florida event, February 26, 2008

Luigi Vanfretti
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Electromechanical Model Damping Controllers
Power system stabilizers (PSS): provides damping signal via the
voltage regulator summing junction; mostly for local mode damping,
but also beneficial to interarea modes; PSS design focuses on
phase-lead compensation; US WECC requires PSS on every generating
unit/cluster greater than 30/70 MVA.
Speed-input PSS
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Flexible AC Transmission Systems (FACTS) Controllers
High-voltage, high-power power-electronic switches to provide reactive
power support and provide interarea damping control.

(a) Shunt controllers: static var compensator (SVC), static
synchronous compensator (STATCOM)

(b) Series controllers: thyristor-controlled series compensator (TCSC),
static synchronous series compensator (SSSC)

(c) Coupled controllers: unified power flow controller (UPFC),
interline power flow controller (IPFC), back-to-back (B2B)
STATCOM
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(a) SVC schematic (b) TCSC schematic
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Interarea Mode Damping using Shunt and Series FACTS
Controllers

1 As FACTS controllers are located in power transfer paths between
two areas, supplementary signals Vs can be used in FACTS
Controllers to enhance interarea damping.

2 Machine speeds are normally not available to FACTS controllers,
because they are not located next to generator buses. Thus a
FACTS controller would need to use other signals that are
available locally, or sometimes, remotely.

(b) TCSC control loop 

refV

V
  

!
"

A
K

1

A
T SVCB

Anti-windup limits
s
V

!
"1

A

A

K

sT!

TCSCX

Anti-windup limits

s
V

(a) SVC control loop 

JHC (RPI) KTH Smart Grid Workshop May 24, 2011 10 / 30



Synthesized angle difference between two areas

1 Use local voltage and current measurements to extrapolate to the
“center-of-angle” of remote coherent areas.
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2 With the availability of synchrophasor measurements, the
“center-of-angle” can be directly measured and communicated to
the controller.
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Candidate Damping Control Input Signals for SVC/TCSC

1 Local bus voltage magnitude V

2 Local bus frequency f

3 Active power transfer P

4 Active component of line current Ia

5 Line current magnitude Im

6 Synthesized angular difference between two areas

7 Remote bus voltage or machine angles as measured by phasor
measurement units

Selection criteria

The observability of the interarea mode in the signal should be high (the
interarea mode should be clearly visible or no zeros near the interarea
mode).

The damping controller should be robust with respect to changes in
power transfer direction and line impedance.
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PMU Data Communication Path

High-voltage 

Substation 

3-phase currents 

and voltages
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Local
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Damping 

Controller
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PMU data

PMU data

Internet

PMU data are time stamped with GPS clock signal

A typical architecture with local PDCs sending PMU data to a
central/regional PDC

Latency due to PMU signal processing, data transmission (UDP
or TCP/IP), and data concentration
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Latency Estimate of Hydro Quebec WACS
From Charles Cyr and Innocent Kamwa (HQ)

PMU filter delay 73 ms
Local data concentration 16 ms
2,000 km in optical fiber 10 ms
Central data concentration 10 ms

Total estimated latency 109 ms

Longest delay is PMU data processing of current and voltage
phasors - to reduce noise, magnitude and phase of a single phase
are estimated over a 1-2 cycles (sometimes even longer) data
window.
Transmission propagation time - 1,000 km of dedicated optical
fiber: UDP 5 ms; TCP/IP 15 ms
Impact of latency for interarea mode damping - a 150 ms latency
for an oscillation of period 2 sec is like a phase lag of

0.150/2 × 360◦ = 27◦
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Geographical Coverage of PMU Data

PMUs are mostly located on high-voltage transmission buses, not
at generator terminals, although neighboring PMUs can estimate
generator terminal quantities

Generator rotor angles and speeds not included in PMU data - the
aggregate machine rotor angle δa and speed ωa can be calculated
using the Interarea Model Estimation method.

Beneficial to use a weighted sum of PMU variables, such as the
weighted average of the bus voltage angles in a coherent area

θa =

Na∑

i=1

αiθi (1)

where Na is the number of buses, and the αi’s are selected to
eliminate the local mode components in θa.

JHC (RPI) KTH Smart Grid Workshop May 24, 2011 15 / 30



PMU Data Loss

PMU data loss

a PMU not in service
loss of GPS signal reception
communication network congestion

A phasor data concentrator (PDC) assembles PMU data from
time stamps.

Time-out function - PMU data not arriving within a specified time
will be dropped

Two prototype PMU systems in Brazil reported 0.01% to 14%
data loss during peak internet traffic periods.

If an input signal consists of several PMU measurements, like θa, it
can still be constructed if one of the component PMU data is lost.
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Control Schemes Accounting for Input Signal Latency

Control of delayed system has been studied by control community
for many years.

Recent interests in power system community, typically related to
use of remote signals requiring data transmission

Sometimes remote signals are used to complement local signals to
remove unfavorable zeros.

Stahlhut et al. studied the impact of latency on electromechanical
mode damping.

Chaudhuri, Ray, Majumder, and Chaudhuri proposed a forward
phase rotation in the time domain to compensate for latency,
following the work of Angquist and Gama.
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Adaptive Control Scheme

( , )c dG s T
u y

PMU data queue

new PMU data

with delay dT

2 main components

1 Latency monitoring: continuously monitor the latency Td of
arriving PMU data by comparing the time stamp with the GPS
clock signal.

2 Use Td to determine the controller Gc(s, Td), which is a set of
controllers to provide phase compensation for Td = Td1, Td2, ....

Steady-state operation when communication delay is minimum:

1 The data queue is mostly empty with at most 1 data value

2 Gc(s, Td) is fixed at Td = Td1.
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Adaptive Control Algorithm
At time t = tk,

where t is the time at the controller
Gc(s, Tdi) is used

for t = tk + ∆t,
where ∆t is the sampling period of the PMU data if data is
already in buffer, or the incremental time of arrival of the
next data point for empty buffer
if Td > Tdi, switch to a new controller with the lowest

latency Tdj > Td

elseif the maximum latency of all the data in the last Tr sec is less
than Tdj < Tdi, switch to Gc(s, Tdj)

else continue with the same controller
end

End algorithm
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Illustration of the Delay Selection Algorithm
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Latency level starts at 150 ms, in increments of 50 ms
PMU data arrival (i.e., latency) is modeled as a Poisson process
with a minimum total latency of 100 ms
Latency increase is on fast time-scale; latency decrease is on slow
time-scale to avoid controller transients and potential instability.
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Phase Compensation Design
Classical 2-stage lead-lag compensators: gain K and time constants
Ti, i = 1, ..., 4, can be made dependent on Td

Gc(s, Td) = K(Td)
1 + T1(Td)s

1 + T2(Td)s

1 + T3(Td)s

1 + T4(Td)s

Tws

1 + Tws
(2)

Let phase compensation at the interarea mode without input
signal latency be θcomp

For input signal with latency Td, the new phase compensation is
θcomp + θ(Td)

For PSS, θcomp is a lead compensation. Thus θcomp + θ(Td) means
more lead compensation.
For FACTS controllers, θcomp is a lag compensation. Thus
θcomp + θ(Td) means less lag compensation, at least for small Td.
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Design Illustration
2-area, 4-machine system, adapted from Klein, Rogers, and Kundur
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At 400 MW of power transfer, the interarea mode at
0.0230 ± j4.119 is unstable.

Local modes: −0.6327 ± j7.0378 and −0.5698 ± j7.2802.

The TCSC is used to damp the interarea oscillations between the
2 areas.
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TCSC Input Signals and Effectiveness

Input signal Zeros close to the interarea
mode

Vm201 (local) 0.379 ± j2.19
Vm101 none
Vm13 0.126 ± j5.09
Im(201−202) (local) 0.0311 ± j3.80

θ3 − θ13 −0.0786 ± j5.63
0.5(θ1 + θ2) − 0.5(θ11 + θ12) none (used as input signal)
0.5(δ1 + δ2) − 0.5(δ11 + δ12) −0.125 + j1.99
0.5(ω1 + ω2) − 0.5(ω11 + ω12) none

Vm denotes the bus voltage magnitude, Im the line current magnitude,
θ the bus voltage angle, δ the machine angle, and ω the machine speed.
The number in the subscript of these variables denotes either the bus
number or the machine number.
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Root-Locus Analysis - Without Latency
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(a) (b)
Root-locus plots: (a) no phase compensation, (b) with phase-lag
compensation
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Damping Controller Performance
TCSC damping control performance with no data latency, a
three-phase short circuit fault on Bus 999 at t = 0.1 sec, cleared in 3
cycles by removing Line 4-999
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Root-Locus Analysis - With Latency

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2

0

2

4

6

8

10

Root Locus

Real Axis

Im
ag

in
ar

y 
A

xi
s

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2

0

2

4

6

8

10

Root Locus

Real Axis

Im
ag

in
ar

y 
A

xi
s

(a) (b)
Root-locus plots: (a) phase compensation for latency, (b) no phase
compensation for latency
Phase compensation θ(Td) for Td = 150 ms:

0.150/(2π/4.119) × 360◦ = 35.4◦ (3)
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TCSC Damping Controller with Latency Compensation

Gc(s, Td) = K(Td)
1 + T1(Td)s

1 + T2(Td)s

Tws

1 + Tws
(4)

where Tw = 10 sec

Table: Adaptive phase compensation (preliminary)

Latency Controller T1(Td) T2(Td)
ms ms ms compensation

Td1 = 150 Gc150(s) 0.1085 0.5425 −42◦

Td2 = 200 Gc200(s) 0.1401 0.4202 −30◦

Td3 = 250 Gc250(s) 0.1716 0.3431 −19.5◦

Td4 = 300 Gc300(s) 0.2050 0.2871 −9.6◦

K(Td) has to be set accordingly to achieve the appropriate damping.
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TCSC Controller Response with Latency Compensation
(a) controller performance
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TCSC Controller Response with Latency Compensation
(b) control action
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Conclusions

An adaptive control scheme for an interarea damping controller to
counter the variable PMU data latency

a controller switching algorithm based on the latency of PMU data
a phase compensation design of the controller for a given set of
latency

Algorithm illustrated for a TCSC

Future work – apply the adaptive control algorithm to PSSs.
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