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Outline

@ Overview of power system electromechanical mode damping
controllers

©

Synchrophasor data as inputs to damping controllers
@ Synchrophasor data latency
@ Geographical coverage
@ Data loss

An adaptive damping controller

@ Latency-based controller switching
@ Phase compensation design

©

@ A design example of a Thyristor-Controlled Series Compensator

(TCSC)
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Power System Electromechanical Mode Oscillations

@ Electromechanical modes are the oscillations of the multiple

generator inertias against each other through the electrical network

@ Three types of electromechanical modes
@ Intraplant modes: 2-3 Hz
® Local mode: 1-2 Hz
@ Interarea modes: 0.2-0.6 Hz

A simple power system showing a local mode and an
intraplant mode

Generators Transformers Transmission line
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Intraplant EHD
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Local mode
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Interarea mode: Klein-Rogers-Kundur 2-area, 4-machine system

Interarea mode
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US Western System Breakout - August 10, 1996
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Nordic System

Power flow on lines monitored by PMUs
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Nature of Network Oscillations
The 2008 Florida Disturbance
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US Eastern Interconnection, Florida event, February 26, 2008
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Electromechanical Model Damping Controllers
Power system stabilizers (PSS): provides damping signal via the
voltage regulator summing junction; mostly for local mode damping,
but also beneficial to interarea modes; PSS design focuses on
phase-lead compensation; US WECC requires PSS on every generating
unit/cluster greater than 30/70 MVA.

Speed-input PSS
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Flexible AC Transmission Systems (FACTS) Controllers

High-voltage, high-power power-electronic switches to provide reactive

power support and provide interarea damping control.

(a) Shunt controllers: static var compensator (SVC), static
synchronous compensator (STATCOM)

(b) Series controllers: thyristor-controlled series compensator (TCSC),
static synchronous series compensator (SSSC)

(c¢) Coupled controllers: unified power flow controller (UPFC),
interline power flow controller (IPFC), back-to-back (B2B)
STATCOM

1 Vela) Ip(@) =1 +1I,(a)
Thyristor ’ + 1| — ’
switches C"
I e
L Thyristor
switches
(a) SVC schematic (b) TCSC schematic
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Interarea Mode Damping using Shunt and Series FACTS
Controllers

@ As FACTS controllers are located in power transfer paths between
two areas, supplementary signals Vi can be used in FACTS
Controllers to enhance interarea damping.

© Machine speeds are normally not available to FACTS controllers,
because they are not located next to generator buses. Thus a
FACTS controller would need to use other signals that are
available locally, or sometimes, remotely.

Anti-windup limits Anti-windup limits
1 Vi K Xpesc
— > » L A > Ot
T, o f » By 1+ 5T, f
K, <
(a) SVC control loop (b) TCSC control loop
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Synthesized angle difference between two areas

@ Use local voltage and current measurements to extrapolate to the
“center-of-angle” of remote coherent areas.

© With the availability of synchrophasor measurements, the
“center-of-angle” can be directly measured and communicated to
the controller.
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Candidate Damping Control Input Signals for SVC/TCSC

@ Local bus voltage magnitude V/

© Local bus frequency f

@ Active power transfer P

@ Active component of line current I,

@ Line current magnitude I,,

@ Synthesized angular difference between two areas

@ Remote bus voltage or machine angles as measured by phasor
measurement units

Selection criteria

@ The observability of the interarea mode in the signal should be high (the
interarea mode should be clearly visible or no zeros near the interarea
mode).

@ The damping controller should be robust with respect to changes in
power transfer direction and line impedance.
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PMU Data Communication Path

: GPS Signal
PMU data

Phasor Local Internet Central
Measurement | Phasor Data —»@9 ———————————— »e%—» Phasor Data
Unit Concentrator Concentrator

A 3-phase currents

PMU data

and voltages

High-voltage v GPS Signal
Substation Damping o

Controller

o PMU data are time stamped with GPS clock signal

@ A typical architecture with local PDCs sending PMU data to a
central /regional PDC

@ Latency due to PMU signal processing, data transmission (UDP
or TCP/IP), and data concentration
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Latency Estimate of Hydro Quebec WACS
From Charles Cyr and Innocent Kamwa (HQ)

PMU filter delay 73 ms
Local data concentration 16 ms
2,000 km in optical fiber 10 ms
Central data concentration 10 ms
Total estimated latency 109 ms

@ Longest delay is PMU data processing of current and voltage
phasors - to reduce noise, magnitude and phase of a single phase
are estimated over a 1-2 cycles (sometimes even longer) data
window.

o Transmission propagation time - 1,000 km of dedicated optical
fiber: UDP 5 ms; TCP/IP 15 ms

o Impact of latency for interarea mode damping - a 150 ms latency
for an oscillation of period 2 sec is like a phase lag of

0.150/2 x 360° = 27°
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Geographical Coverage of PMU Data

@ PMUs are mostly located on high-voltage transmission buses, not
at generator terminals, although neighboring PMUs can estimate
generator terminal quantities

@ Generator rotor angles and speeds not included in PMU data - the
aggregate machine rotor angle §, and speed w, can be calculated
using the Interarea Model Estimation method.

@ Beneficial to use a weighted sum of PMU variables, such as the
weighted average of the bus voltage angles in a coherent area

Na
Ha = Zalﬁz (1)
=1

where N, is the number of buses, and the «;’s are selected to
eliminate the local mode components in 6,.
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PMU Data Loss
o PMU data loss

@ a PMU not in service
o loss of GPS signal reception
@ communication network congestion

@ A phasor data concentrator (PDC) assembles PMU data from
time stamps.

o Time-out function - PMU data not arriving within a specified time
will be dropped

@ Two prototype PMU systems in Brazil reported 0.01% to 14%
data loss during peak internet traffic periods.

o If an input signal consists of several PMU measurements, like 0,, it
can still be constructed if one of the component PMU data is lost.
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Control Schemes Accounting for Input Signal Latency

o Control of delayed system has been studied by control community
for many years.

@ Recent interests in power system community, typically related to
use of remote signals requiring data transmission

@ Sometimes remote signals are used to complement local signals to
remove unfavorable zeros.

@ Stahlhut et al. studied the impact of latency on electromechanical
mode damping.

@ Chaudhuri, Ray, Majumder, and Chaudhuri proposed a forward

phase rotation in the time domain to compensate for latency,
following the work of Angquist and Gama.
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Adaptive Control Scheme

pul

new PMU data U y
—> —» G (s, 1) —»

PMU data queue
with delay T}, —

2 main components

@ Latency monitoring: continuously monitor the latency Ty of
arriving PMU data by comparing the time stamp with the GPS
clock signal.

@ Use Ty to determine the controller G.(s,Ty), which is a set of
controllers to provide phase compensation for T; = Ty, Tys, ...

Steady-state operation when communication delay is minimum:
© The data queue is mostly empty with at most 1 data value
Q G.(s,Ty) is fixed at Ty = Ty;.
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Adaptive Control Algorithm
At time t = t;,
where t is the time at the controller
Ge(s,Ty;) is used
fort =t + At,
where At is the sampling period of the PMU data if data is
already in buffer, or the incremental time of arrival of the
next data point for empty buffer
if Ty > Ty;, switch to a new controller with the lowest
latency Ty > Ty
elseif the maximum latency of all the data in the last 7T, sec is less
than Ty < Ty, switch to Ge(s, Tg;)
else continue with the same controller
end
End algorithm
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Illustration of the Delay Selection Algorithm

350
+  Signal delay

Controller delay
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o Latency level starts at 150 ms, in increments of 50 ms

o PMU data arrival (i.e., latency) is modeled as a Poisson process
with a minimum total latency of 100 ms

o Latency increase is on fast time-scale; latency decrease is on slow
time-scale to avoid controller transients and potential instability.
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Phase Compensation Design
Classical 2-stage lead-lag compensators: gain K and time constants
T;,i =1,...,4, can be made dependent on T}

14+ T (Tg)s 1+ T5(Ty)s Tys
1+ T2(Td)5 1+ T4(Td)5 1+ Tys

Ge(s, Ty) = K(Ty) (2)

@ Let phase compensation at the interarea mode without input
signal latency be 8comp
@ For input signal with latency Ty, the new phase compensation is
Hcomp + H(Td)
o For PSS, fcomp is a lead compensation. Thus 8eomp + 0(T) means
more lead compensation.
o For FACTS controllers, f¢omp is a lag compensation. Thus
Ocomp + 0(T;) means less lag compensation, at least for small Tj.
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Design Illustration
2-area, 4-machine system, adapted from Klein, Rogers, and Kundur

Area 1 Area 2

10 20 | JI/(I 120 110 11

1
Gen 1 @I 101 I ") Gen 11

Gen 2 @ | ") Gen 12

]
2 4 §\999 14 12
Load 4 Load 14

o At 400 MW of power transfer, the interarea mode at
0.0230 £ 54.119 is unstable.

o Local modes: —0.6327 £ j7.0378 and —0.5698 + ;57.2802.

@ The TCSC is used to damp the interarea oscillations between the
2 areas.
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TCSC Input Signals and Effectiveness

Input signal Zeros close to the interarea
mode

Vm201 (1oca1) 0.379 £+ j2.19

Vm101 none

Vs 0.126 + 55.09

I (201—202) (local) 0.0311 + 53.80

03 — 613 —0.0786 £ 75.63

0.5(61 + 02) — 0.5(011 + 612) none (used as input signal)

0.5(8, + d2) — 0.5(811 + 612) —0.125 + j1.99

0.5(w1 + wa) — 0.5(w11 + wi2) none

V. denotes the bus voltage magnitude, I,,, the line current magnitude,
f the bus voltage angle, § the machine angle, and w the machine speed.
The number in the subscript of these variables denotes either the bus
number or the machine number.
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Root-Locus Analysis - Without Latency

Root Locus
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compensation

JHC (RPI)

4

(a)

S -
Real Axis

KTH Smart Grid Workshop

-4

! 0
Real Axis.

(b)

May 24, 2011

24 /30



Damping Controller Performance

TCSC damping control performance with no data latency, a
three-phase short circuit fault on Bus 999 at t = 0.1 sec, cleared in 3
cycles by removing Line 4-999
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Root-Locus Analysis - With Latency

Imaginary Axis
Imaginary Axis

Root-locus plots: (a) phase compensation for latency, (b) no phase
compensation for latency

Phase compensation 6(Ty) for T = 150 ms:

0.150/(2/4.119) x 360° = 35.4° (3)
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TCSC Damping Controller with Latency Compensation

14+ T (Tg)s Tys

G.(s,Ty) = K(1, 4
where T,, = 10 sec
Table: Adaptive phase compensation (preliminary)
Latency Controller T, (Ty) To(Ty)
ms ms ms compensation
Tur = 150 Gor50(5) 0.1085 0.5425 —42°
Ty = 200 Ge200(8) 0.1401 0.4202 —30°
Td3 = 250 G525()(S) 01716 03431 *19.50
Tas = 300 Ge300(8) 0.2050 0.2871 —9.6°

K (Ty) has to be set accordingly to achieve the appropriate damping.
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TCSC Controller Response with Latency Compensation
(a) controller performance
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TCSC Controller Response with Latency Compensation
(b) control action
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Conclusions

o An adaptive control scheme for an interarea damping controller to
counter the variable PMU data latency

@ a controller switching algorithm based on the latency of PMU data
o a phase compensation design of the controller for a given set of
latency

o Algorithm illustrated for a TCSC
o Future work — apply the adaptive control algorithm to PSSs.
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