M. Filipowicz, V.M. Bystritsky, J. Woźniak

Monte Carlo fitting of data from Muon Catalyzed Fusion experiments in solid hydrogen

Main processes of MCF

Investigations of scattering of muonic atoms

Nuclear fusion in pdµ molecule

MC simulation

J. Woźniak et al. "Study of muonic hydrogen transport in TRIUMF experiment 742 by the Monte Carlo method", Hyperfine Interactions 101/102(1996)573-582

Fitting procedure

M. Filipowicz et al. "Method of Monte-Carlo grid for data analysis", Nuclear Instruments and Methods A547(2005)652-662

Scattering: R-T effect investigation

Variation of the cross-section

Generated time spectra of the X-ray

Fit results

F. Mulhauser et al.,"Ramsauer-Townsend effect in muonic atom scattering", Phys. Rev. A73(2006)034501

Fusion in $pd\mu$

Most rates are function of energy, In some transition energy is released (or absorbed)

MC output:

- muon (μ) and gamma (γ) spectra
- $\bullet\,pd\mu$ formation in J-state
- pµ and dµ escape

M. Filipowicz et al.,"Kinetics of muon catalyzed fusion in solid H/D mixture", European Physical J. D (2008) DOI: 10.1140/epjd/e2008-00021-7

Grid of gamma spectra

The fits results

The best fit is for scale parameter equal 1.19, it corresponds to $pd\mu$ formation rate: 6.7 10^6 s⁻¹

Simulated time distribution of the monemt of $pd\mu$ formation for J– states Q^J functions 05 c_d = 0.05% 10 c_d = 2% 0^4 events 10 All 0³ 10³ 0² 10² 500 1000 500 1500 1000 1500 ò ò time (ns) time (ns) 10⁵ c_d = 15% c_d = 75% 05 10⁴ All events 04 0 2 10³ 0^3 2 0^2 10² ò 500 1000 1500 ò 500 1000 1500 time (ns) time (ns)

Determination of nuclear fusion rates

$$\begin{aligned} \frac{dN_{\mu}}{dt} &= \lambda_{f,\mu}^{1/2} \cdot \left(cN_{pd\mu}^{J=0} + dN_{pd\mu}^{J=1} + eN_{pd\mu}^{J=1'} \right) \\ \frac{dN_{\gamma}}{dt} &= \lambda_{f,\gamma}^{1/2} \cdot \left(cN_{pd\mu}^{J=0} + dN_{pd\mu}^{J=1} + eN_{pd\mu}^{J=1'} \right) + \lambda_{f,\gamma}^{3/2} \cdot \left(fN_{pd\mu}^{J=1} + gN_{pd\mu}^{J=1'} + eN_{pd\mu}^{J=2} \right) \end{aligned}$$

The following rates were obtained:

$$\begin{split} \lambda_f^{1/2} &= (0.42 \pm 0.01) \cdot 10^6 \, s^{-1} \\ \lambda_{f,\mu}^{1/2} &= (0.12 \pm 0.02) \cdot 10^6 \, s^{-1} \\ \lambda_{f,\gamma}^{1/2} &= (0.30 \pm 0.02) \cdot 10^6 \, s^{-1} \\ \lambda_{f,\gamma}^{3/2} &= (0.09 \pm 0.02) \cdot 10^6 \, s^{-1} \end{split}$$