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Eigenvalue problem

Lecture 4

Eigenvalue problem 

(diagonalization of a matrix)

outline

● eigenvalue problem – general remarks
● similarity transformations:

● symmetric matrices 
● nonsymmetric matrices

● Calculations of eigenvalues and eigenvectors
● General eigenvalue problem
● SVD factorization
● numerical examples
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Eigenvalue problem

Eigenvalue problem (EVP)

We define (ordinary) EVP as follows

our task is to find the eigenvalue spectrum of matrix A 

and corresponding set of eigenvectors

The process of solving EVP is called diagonalization of matrix.

Besides ordinary EVP we will consider so called (general) EVP → GEVP

which mathemathically might be transformed to the ordinary EVP

Solving both EVP & GEVP are common tasks in physics and in engineering 
– simply we need eigenvalues and eigenvectors to solve more complex problems.
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Eigenvalue problem

Left and right eigenvectors

We must keep in mind that EVP can be defined for the right eigenvectors and the left eigenvectors

hermitian conjugation

● left and right eigenvectors are linked their eigenvalue spectra are complex conjugated
(if eigenvalues are complex numbers → nonsymmetric & complex symmetric matrices)

● symmetric/hermitian matrix has real eigenvalues and left and right eigenvectors are the identical

● any left and right eigenvectors are mutually orthogonal if they have different eigenvalues

proof

Remark: matrix is an operator which can act on the right or on the left vector
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Eigenvalue problem

Diagonalization & spectral representation of matrix

We may extend the basic definition so that to involve the whole eigenvalue spectrum and all eigenvectors

From now we use the matrix notation

Lets assume that the left (Y) and the right vectors (X) are bi-normalized   (δkm – Kronecker delta)

then we get:

 spectral representation of matrixdiagonal form of matrix



5

Eigenvalue problem

Spectral representation can be explicitly expressed with set of the eigenvectors

← outer products of two vectors

Difference between inner (scalar) product and the outer (tensor) product

● inner product gives the scalar (number) ● outer product generates matrix (operator)

analogically we can find spectral representation of inverse matrix
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Projectors – projecting (matrix) operators

The outer product can be used as a part of spectial matrix operator called  projector

When projector act on the vector it projects this vector on the direction established 
by the vector used in outer product (below we remove this direction)

Projectors may contain many outer products (many direction), e.g. Gram-Schmidt projector
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Similarity transformation of a matrix

There is no method which could allow us directly diagonalize dense square matrix.
Therefore numerical diagonalization becomes a 3-step process

(i) the matrix is transfomed by similarity to a simpler form
(ii) after that diagonalization is easily conducted for the transformed matrix
(iii)    then eigenvectors are reconstructed (if required)

Generally the process of diagonalization presents as follows

● matrix transformation → columns are transformed sequentially

← i-th similarity transformation step 

● diagonalization of B with specialized methods

● retrieving the eigenvectors of original matrix A

← full similarity matrix
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Similarity transformation method depends on the type of matrix 

● symmetric/hermitian matrix is transformed to tridiagonal matrix 

● nonsymmetric matrix is transformed to Hessenberg matrix 

upper Hessenberg 
matrix
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Example: iterative QR similarity transformation of tridiagonal matrix

● each transformation retains 
tridiagonal form and symmetry
within precision of calculations

● eigenvalues start to localize
at the right bottom of a matrix

● separated diagonal blocks 2x2 
can be diagonalized individually

● explicit form of Q0 & R0 

● eigenvalues of T
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STEP 1 - Hausholder tridiagonalization of hermitian matrix  ( AH=A )

1

2

3
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Eigenvalue problem

STEP 2 - iterative similarity transformation with QR factorization (finding eigenvalues)

QR factorization can be easily used to find similarity transformation (below we assume QTQ=I)

● Tnew – is tridiagonal matrix but with smaller 
 values of off-diagonal elements

● if we perform many such transformation we get matrix ”almost” 
diagonal similar matrix – diagonal elements shall be the eigenvalues

● to prevent stagnation of off-diagonal elements 
the process is accelerated by shifting the matrix 
with already stabilized eigenvales 
(these are localizes at the right bottom part of matrix) 

● degenerated eigenvalues form isolated 2x2 blocks 
which can be diagonalized individually

But does it make sense? 

we know the QR factorization of dense matrix 
requires O(n3)  operations
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QR factorization of tridiagonal matrix

Lets express the QR in the folowing form

● matrices Gk are compounds of Q matrix and each representstransformation of single column in T

● on the right side we have triangular matrix, therefore we need such Gk  which eliminate the subdiagonal elements

● Gk are constructed as Givens rotation matrix or Hausholder projector 

action of Hauseholder operator:

 each requires 2 numbers to remember →  single QR factorization needs only 2(n-1) numbers to be saved !!!
(provided that we wish to retrieve the original eigenvectors)

QR factorization of tridiagonal (and Hessenberg) matrices is very efficient and has small small memory requirements
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STEP 3 – calcultions of eigenvectors 

● from iterative QR factorization we get the matrix B with the eigenvalues on its diagonal
(for tridiagonal matrix get the diagonal B while for Hessenberg we get upper triangle matrix B).

● eigenvectors of B are calculated as follows

● computation of original vectors x(k) is straightforward, but computationally demanding 
(the similarity matrix P has to be reconstructed from Q1,Q2,Q3,...,Qn-1)
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General (symmetric) eigenvalue problem 

As has been mentioned at the beggining of lecture, besides the ordinary EVP we are very often faced to 
more complex task, namely general EVP,  which is defined by matrices A and B≠I

GEVP are routinely constructed in Galerkin/Finite Elements Methods when the PDE solution is 
is approximated with linear combination of smooth basis functions. The entries of B matrix  are then
the overlap integrals of all pairs of the basis functions, if these are non-orthogonal B becomes non-diagonal matrix. 

However, in many cases B, called the mass matrix, is symmetric (hermitian) and positive definite,
hence Cholesky factorization (LLT →LLH for hermitian matrices) can be used in calculations

We utilize LLT decomposition to transform GEVP to ordinary EVP.

● first, let’s substitute LLT product into GEVP
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We get ordinary EVP but may now make a question: does such transformation preserve the symmetry of GEVP?

Let’s assume both A and B are symmetric and both have their Cholesky factorization

Transformation keeps the symmetry of original problem.   How to find G?

In order to find F or G there must be solved n systems of linear equations.
Here is revealed the great advantage of using the matrix decompositon, 
only one factorization is needed for the n right hand sides. 

After solving EVP with G matrix we obtain the eigenvectors for the original GEVP
by transforming the G eigenvectors

← first find matrix F

← then use F as the rhs columns 
     to find columns of G  
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Example: solution of time-independent Schrodinger equation with Finite Difference Method

● theoretical model

energy operator:

eigenproblem of differential operator:

exact solution - eigenvector + eigenvalue:

Sketch of confining potential with two 
lowest energy solutions 
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● numerical model

● mesh of nodes discretizes the space

● finite difference replaces the 2-nd order derivative 

● distance between neighbouring nodes

● we are looking for functions’ values at nodes
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● discretized energy operator acting at i-th node on the wave function

● after writing this expresson for every node in working area we get matrix EVP

● matrix is tridiagonal real-symmetric  → the eigenvalues are real

● diagonalization is performed with LAPACK procedure dstev

lapack_int LAPACKE_dstev (int matrix_layout, char jobz, lapack_int n, 
double* d, double* e, double* z, lapack_int ldz);

← diagonal
     elements

← off-diagonal
     elements
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energies energy error

exact eigenvalues
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wave functions
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Example: quantum well in quantum well – searching long-lifetime resonances

● we may extend the model of single QW by adding the second well surrounding 
by left and right barriers at the center of system

● this will change only the potential V(x) and consequently only the diagonal elements of matrix

Diagonalization was performed for parameters: 
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Expanding box - cont’d
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Example: quantum well in quantum well + Complex Absorbing Potential

We may add imaginary smoothly decreasing potential to Hamiltonian at the left and the right boundaries.
Characteristic feature of complex potential:

● positive imaginary value creates particle

● negative imaginary value absorbs particle (present case) 

→ wave function vanishes at boundaries as if particle escapes the box, 
imitating the open boundary condition i.e. infinite quantum wire
 

● only potential is modified 
(diagonal elements of matrix )

ΔCAP  - range of absorbing potential
      (blue curve in figure)

Because we put the complex numbers on diagonal of matrix it becomes nonsymmetric, 
we must change diagonalization procedure → left and right eigenvectors will be different &

eigenvalues becomes the complex numbers

call zgeev(jobvl, jobvr, n, a, lda, w, vl, ldvl, vr, ldvr, work, lwork, rwork, info)
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quantum well + absorbing potential →  cont’d bound states and resonances are resistant  
to changes in quantum well/wire width
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Singular Value Decomposition (SVD)

Any rectangular matrix can be decomposed into product of three matrices  

● matrices U and V are orthonormal 

● matrix Σ is real with non-negative entries (singular values) on its diagonal
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How to find SVD? 

we get the standard eigenvalue problem for matrix AHA

Having V and Σ finding the first p column (thin SVD) is straightforward

← for dense matrices bidiagonalization methods
     are used while for the sparse ones an iterative 
     Lanczos method is employed (AHA – hermitian)

← only for largest singular values, the smallest 
     ones might vanish after squaring 
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Thin SVD – from the two vector subspaces spanned by the columns of U and the columns of V
 we need only  p = rank(A) linearly independent columns to reconstruct the matrix A
  (in other words – not all U/V columns are always needed)

A is a rank(p) matrix built as a sum of rank(1) matrices (outer product of two vectors).
Each rank(1) matrix is scaled with singular value, hence the largest contributions gives
the pairs of vectors (u,v) belonging to largest sigmas. 
By limiting the summation just to largest k contribution we get rank(k) matrix which approximates matrix A

← rank(p) matrix A

← rank(k) matrix A(k)
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Applications of SVD

● solving systems of linear equations – standard and overdetermined, backsubstitiution is not required,
       for square matrices it is less computationally efficient than other methods

standard SLE:

overdetermined SLE:

pseudoinverse of (rectangular) matrix 
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some advanced applications

● statistics: Principal Component Analysis

● speech recognition

● information transmission in wireless communication

● tensor decomposition → to speed up work of neural networks

● recommendations systems (trading/commerce)

● classifications of handwritten digits for Optical Character Recognition (OCR)

● facial recognition

● in quantum physcis to assess the degree of entanglement 

A survey of SVD applications contains following paper

Carla D. Martin and Mason A. Porter,   „The Extraordinary SVD”,    
   https://arxiv.org/pdf/1103.2338
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● compression of images (data gathered in matrix form)

We may think of an image as a matrix, and each matrix element 
corresponds to distinct pixel. Full matrix represents an original 
image, but if we approximate it with rank(k) matrix by retainig
small number of vector pairs (u,v) we can save then smaller 
amount of data  at the cost of little (?) worse quality 
of reconstructed picture.
 

A(50) A(100) A(200)full rank


