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Eigenvalue problem

Eigenvalue problem (EVP)

We define (ordinary) EVP as follows

neZt, FeC" AeC™" N, €C

AT = \uZh

our task is to find the eigenvalue spectrum of matrix A

Sp(A) — {)\17 )\27 )\37 S )\n}

and corresponding set of eigenvectors

The process of solving EVP is called diagonalization of matrix.

Besides ordinary EVP we will consider so called (general) EVP - GEVP

Ax) = )\kak, BeCc™"
which mathemathically might be transformed to the ordinary EVP

B_lAfk = ATk, - CTr = A\ T,

Solving both EVP & GEVP are common tasks in physics and in engineering
— simply we need eigenvalues and eigenvectors to solve more complex problems.



Eigenvalue problem

Left and right eigenvectors

We must keep in mind that EVP can be defined for the right eigenvectors and the left eigfgnvectors

%, - right eigenvector (i - left eigenvecto
k - right eig Yk lgenvector aecC
AT =NE il A= gt
A = Neii

L

(

/ hermitian conjugation

(@A) = o (AT)*

gT)”

* left and right eigenvectors are linked their eigenvalue spectra are complex conjugated
(if eigenvalues are complex numbers — nonsymmetric & complex symmetric matrices)

e symmetric/hermitian matrix has real eigenvalues and left and right eigenvectors are the identical

AH:A — M =XM€R & gjk:fk

* any left and right eigenvectors are mutually orthogonal if they have different eigenvalues

ATy, = M\ T, LH
GHA=Apgll [ = TN = Umd=
proof

(GH A&, = Ny 2,
= ()\m — )\k;) ymf =0 =
U (AZL) = MG T >

Remark: matrix is an operator which can act on the right or on the left vector

\\\

///




Eigenvalue problem

Diagonalization & spectral representation of matrix

We may extend the basic definition so that to involve the whole eigenvalue spectrum and all eigenvectors

Afk = )\ksz

From now we use the matrix notation

X = [517527537"'7fn]

AX = XA
A:diag{)\l,)\g,)\g,...,)\n}

,/

Lets assume that the left (Y) and the right vectors (X) are bi-normalized (0w — Kronecker delta)

TnZe =0mp = Y X=1 = X 'X=1 = X '=Y*

then we get: AX = XA YH./ AX = XA /.YH
diagonal form of matrix spectral representation of matrix

CYHAX — A A= XAYH




Eigenvalue problem

Spectral representation can be explicitly expressed with set of the eigenvectors

A=XAYH =

n

- —H
E AT Y
k—1

— outer products of two vectors

analogically we can find spectral representation of inverse matrix

Al = (XAYH) T

— XA 1YY =

- (YH)‘l

Z

—

wkyk

Difference between inner (scalar) product and the outer (tensor) product

* inner product gives the scalar (number)

dlb=ceC

abf =

A—lX—l

outer product generates matrix (operator)

a1
a2

161,53, - -

]

I Oélﬁik

Oé25ik

| a7

04155

an B3

0415*
0425*

an B}




Eigenvalue problem
Projectors — projecting (matrix) operators

The outer product can be used as a part of spectial matrix operator called projector

Proj =1—zzH

When projector act on the vector it projects this vector on the direction established
by the vector used in outer product (below we remove this direction)

Projy = (I—f:i’H) y = g’—f(ng')
—
product

Projectors may contain many outer products (many direction), e.g. Gram-Schmidt projector

n
Proj=1— E Tzt
k=1



Eigenvalue problem

Similarity transformation of a matrix

There is no method which could allow us directly diagonalize dense square matrix.
Therefore numerical diagonalization becomes a 3-step process

()  the matrix is transfomed by similarity to a simpler form
(i)  after that diagonalization is easily conducted for the transformed matrix
(i) then eigenvectors are reconstructed (if required)

Generally the process of diagonalization presents as follows

* matrix transformation - columns are transformed sequentially

A=Ay~ A1 A —~ ...~ A, =B
A; = Pi_lAi_lpi — i-th similarity transformation step
B=P'AP, P=PP,...P,, - fullsimilarity matrix
» diagonalization of B with specialized methods
By, = AWy, Sp(A) = Sp(B)

* retrieving the eigenvectors of original matrix A

Ty = PZy



Eigenvalue problem

Similarity transformation method depends on the type of matrix

* symmetric/hermitian matrix is transformed to tridiagonal matrix

A=AH —  T=pPlAP=

* nonsymmetric matrix is transformed to Hessenberg matrix

A#£ AT — B=P AP =

* K% X X

* X X X X

O S SR S S

* X X X X X

“

i upper Hessenberg
matrix




Eigenvalue problem

Example: iterative QR similarity transformation of tridiagonal matrix

e \ 4 | « explicit fc_)rm of -Qo & Ro N
-2 1 0 0 —-0.894 —0.359 —0.195 0.183 2.236 —1.789 0.447 0.
. -2 0 0. 0447 -0.717 -0.390 0.365 | 0. 1.673 —1.912 0.598
' 0o 1 -2 1 a 0. 0.598 —0.586 0.548 0. 0. 1.464 —1.952
0o 1 =2 0. 0. 0.683 0.730 | 0. 0. 0. -0.913 |
\_ J
- eigenvalues of T T, = Qo Ro [ —2.800 0.748 —1.266x107'% 1.454x107"7 | )
—0.382 Ty = RoQy 1 7T— 0.748 —2.343 0.875 1.828 x1071°
—2.618 Y 0. 0.875 —2.190 —0.624
=1 _3618
1-382 0. 0. —0.624 —0.667
’ I —17 ~16 |
\_ ) T = R,Q4 —3.524 0.292 —9.124x10 —1.352x 10
- 0.292 —2.701 0.118 2.505 x 10716
Y 0. 0.118 —1.393 —0.003
(e each transformation retains h i 0. 0. —0.003 —0.382 |
tridiagonal form and symmetry TP [ _3.614 0.063 —6.479x10"Y 1.899x 101
within precision of calculations 10 = RoQo 18
L0 T— 0.063 —2.622 0.005 —1.895x 10
. eigﬁnvall;]eistart to ]localize_ T 0. 0.005 —1.382 4.210%x 1078
atther t bottom of a matr
9 0 0. 0.  4210x10~° ~0.382
separated diagonal blocks 2x2 [ _3618 0.013 —6.220x10"Y —1.993x 1016 |
- can be diagonalized individually T15 = Ri1aQh4 ' ) ' g s ' g .
“ = — 0.013 —2.618 1.903 x 10" 1.787 x 10~
Y 0. 1.903x 1074 —1.382 —6.790x107°
0. 0. —6.790x107° —0.382 7
\_ /




Eigenvalue problem

STEP 1 - Hausholder tridiagonalization of hermitian matrix ( A"=A)

A=Ay — A = Ay — ... = Am =T 51 A 0 | o
A =P 'A; 1P, 72 0
] ) ) Yi-1 | O
Jic1| € 0 0 Yi—1 i1 | Vi
P7lA . P=PA_P=| & | ¢ all p, =10 ... 0 ~ | & |4w0...0
|0 P,d; | PA; 1P, | Vi1
0 ] _ 0
I10] 0 bi—1 0 : PA, P
P,=|0[1]0 0
00| P, )
AN

\ ‘ L .- / //
- - ) / n \

o=@l =] D logil?
9 - \ j=i+1
| Pa;, =k -é;
1
~ — oloHlori) all
U =a— ke , .
k= —oe'? <— Q41,5 — 6“0|Cki_|_1,7;| /ﬁ"

\ 7 S \
N d




Eigenvalue problem
STEP 2 - iterative similarity transformation with QR factorization (finding eigenvalues)

QR factorization can be easily used to find similarity transformation (below we assume Q'Q=I)

e
y

N
T = Q1R QlT ./« Trew_is tridiagonal matrix but with smaller

e values of off-diagonal elements
Q1T = Ry /- Q1
T * if we perform many such transformation we get matrix "almost”
Ql ThQr = RiQ1 =15 diagonal similar matrix — diagonal elements shall be the eigenvalues
. @ ' Q1=Ty

Tip1 = QuThQr = Qi Q1 1 TQ1Q; ...Qu=Q7TQ
\\ QT Q )

* to prevent stagnation of off-diagonal elements
the process is accelerated by shifting the matrix
with already stabilized eigenvales
(these are localizes at the right bottom part of matrix)

* degenerated eigenvalues form isolated 2x2 blocks
which can be diagonalized individually

/ ™~ — -—

- T — M = QiRy | *
*
| Tpy1 = RiQp + Al
- - T —
* %
*
*
T, = B -
0 But does it make sense?
i 0] Ak i we know the QR factorization of dense matrix

requires O(n®) operations 11



Eigenvalue problem

QR factorization of tridiagonal matrix

Lets express the QR in the folowing form
T =QR — Q'T=R — Gno1...G2G1T =R
Qr

* matrices G¢ are compounds of Q matrix and each representstransformation of single columnin T

* on the right side we have triangular matrix, therefore we need such G« which eliminate the subdiagonal elements

* Gy are constructed as Givens rotation matrix or Hausholder projector

action of Hauseholder operator: Gr=1-— ﬂ’kﬁf — i, =1[0,..., ¢k Chs1,0,...,0"
[ 1 1 [ x * ]
1 *
a b *
Gr(Gr_1... GiT) =
k(Gr-1 1T) b —a x
1
1

each requires 2 numbers to remember - single QR factorization needs only 2(n-1) numbers to be saved !!!
(provided that we wish to retrieve the original eigenvectors)

QR factorization of tridiagonal (and Hessenberg) matrices is very efficient and has small small memory requirements
12



Eigenvalue problem

STEP 3 - calcultions of eigenvectors

« from iterative QR factorization we get the matrix B with the eigenvalues on its diagonal
(for tridiagonal matrix get the diagonal B while for Hessenberg we get upper triangle matrix B).

* eigenvectors of B are calculated as follows

P 'TP=B ( ’ St
B ) = o = J=1
i - (k)
Bii®) — \.7® 2, bamm
g = Al | L = j=i-Li—2,0
1| | x| % ]
1 * | % | %
_ [0 7@ . gm] = Lo s
Y—[y Gy ]— 1] s |«
1| %
- 1_

» computation of original vectors x® is straightforward, but computationally demandlng

(the similarity matrix P has to be reconstructed from Q1,Q,Qs,...,Qn-1)

AT = \E
4 ~ PBP 'z =)z
P'AP=B . .
wp BP 'lz=AP 'z
A=PBPT vy
AN / f: ng




Eigenvalue problem
General (symmetric) eigenvalue problem

As has been mentioned at the beggining of lecture, besides the ordinary EVP we are very often faced to
more complex task, namely general EVP, which is defined by matrices A and B#|

AZ = \ BZ, A Be RV, Z7e R"" A€ R

GEVP are routinely constructed in Galerkin/Finite Elements Methods when the PDE solution is
is approximated with linear combination of smooth basis functions. The entries of B matrix are then
the overlap integrals of all pairs of the basis functions, if these are non-orthogonal B becomes non-diagonal matrix.

However, in many cases B, called the mass matrix, is symmetric (hermitian) and positive definite,
hence Cholesky factorization (LL™ — LL" for hermitian matrices) can be used in calculations

BE =B A #F'BZ>0 — B=LL"

We utilize LL™ decomposition to transform GEVP to ordinary EVP.

 first, let’s substitute LL™ product into GEVP

~ ~ N — N——
G y ]
Gy =y

14



Eigenvalue problem

We get ordinary EVP but may now make a question: does such transformation preserve the symmetry of GEVP?

Let's assume both A and B are symmetric and both have their Cholesky factorization

G=L"'A(LT)"

~

AT—4 A BT=B G=L"'vUT (L7
W_/\ _/
— S ‘?’
A=UUY AN B=LL"

: S=LW = §T=C'0)T=U0TL")"
. Gj=85TF=)j

Transformation keeps the symmetry of original problem. How to find G?

G=L1A4 (LT>_1 — LG =F ~ then use F as the rhs columns
———— to find columns of G
F

F:A(LT)_l — T —A — [FT =4 - firstfind matrix F

In order to find F or G there must be solved n systems of linear equations.
Here is revealed the great advantage of using the matrix decompositon,
only one factorization is needed for the n right hand sides.

After solving EVP with G matrix we obtain the eigenvectors for the original GEVP
by transforming the G eigenvectors

g=L'%

15



Eigenvalue problem

Example: solution of time-independent Schrodinger equation with Finite Difference Method

* theoretical model

energy operator:

e ~ Sketch of confining potential with two
~ 1 d? ) lowest energy solutions
H=— V(x)

2m* dx2

0 <= z€][0,Tmaz] V =+ o

| (@) :{ +00o <= 23 [0,Tmaz]

eigenproblem of differential operator:

‘/7 7\‘
H(z)r(2) = extor(z)
‘\, 7/‘
' : x
exact solution - eigenvector + eigenvalue: ' ' o
0 xmam
| 2 nweT |
Yi(x) = sin ( )
mmaa: xmax
. 5 2R
=n
n
| 2x2 m*
\ %

16



Eigenvalue problem

* numerical model

* mesh of nodes discretizes the space

r—x,=0+1)A, i=-1,0,1,....,n—1,n

N ~ - 1=—1 0 1 - n—1n
working
area L - >
T
 distance between neighbouring nodes working area
_ xmax
n+1

« we are looking for functions’ values at nodes

V(@) = P(z:) = i

« finite difference replaces the 2-nd order derivative

d*p i1 — 20 b

dr2 ~ A2 (+O(A2))




Eigenvalue problem

 discretized energy operator acting at i-th node on the wave function

7 L tipr — 290 + i
Hai = — i = e 1 .
ay 2m* A2 +Vivi =ey hi i = — t Vi — diagonal
m*A elements
hii—1¥i—1 + hiihi + Ry ip10ip1 = €y hio1i=hii1 = —— ~ off-diagonal

2
2m*A elements

 after writing this expresson for every node in working area we get matrix EVP

I hll h1,2 ] ~ _ ~ _
h21 h2,2 h2,3 ¢1 ¢1
hsa  h3g3 h3 4 (0D (0D
V3 (UR!
. =&~ .
wn—Q ¢n—2
hn—2,n—3 hn—2,n—2 hn—2,n—1 | wn—l | | 77bn—1 |

hn—l,n—2 hn—l,n—l |

* matrix is tridiagonal real-symmetric - the eigenvalues are real

* diagonalization is performed with LAPACK procedure dstev

lapack__int LAPACKE_ dstev (int matriz__layout, char jobz, lapack int n,
double* d, double* e, double* z, lapack__int ldz);

18



Ex [ meV ]

Eigenvalue problem

energies energy error
1000 0
900 .
800 N -50
700 - g
°
600 B £ -100
500 . T}
0D - S 150
300 R T}
200 N -200
100 N
0 -250
10
K k
exact eigenvalues
242
oy = k2 m“h
202 m*

max



Yy —*—
Yo —*—
Yz —*—

Yg —*—
Yi0 —*—

0.4
0.3
0.2
0.1

-0.1
-0.2
-0.3
-0.4

0.4
0.3
0.2
0.1

-0.1
-0.2
-0.3
-0.4

Eigenvalue problem

wave functions

n =200

10
x[nm]

12

14

16

18

o 2 4 6 8 10 12 14
x[nm]

16

18

20



Eigenvalue problem

Example: quantum well in quantum well - searching long-lifetime resonances

* we may extend the model of single QW by adding the second well surrounding
by left and right barriers at the center of system

* this will change only the potential V(x) and consequently only the diagonal elements of matrix

—  wire length

‘/ba'r'r’ie:'“ >0

V'well <0

Diagonalization was performed for parameters: .
m* = 0.067 mg (mg - mass of bare electron)

Viarrier = 100 meV
Vet = —100 meV
well width = 30 nm
barrier thickness = 10 nm

wire length = 100 — 200 nm 21



Ex [ meV ]

Eigenvalue problem

Expanding box - cont’d
stationary states: Ex <0

0.15 | | | | | | I 100
k=1 ——
0.1 F k=2 ——
Energy spectrum k=3 —— 1 50
200 0.05 ked —
= 0 0
150 -0.05 |
8 -50
100 0.1 3
-015 L l | | | ] ] _100
50 60 80 100 120 140 160 180 200
X[ nm]
0
Es =22.1meV  Eg = T71.4meV
-50 E = | resonances: Ex>0
015 1 T I I I T T 100
-100 - ' ' - k=5 —
100 110 120 130 140 150 0.1 - k=6 |
wire length [ nm ] 0.05
=% 0 0
-0.05
-50
-0.1
015 H—t—t -100
60 80 100 120 140 160 180 200

X[ nm]
22



Eigenvalue problem

Example: quantum well in quantum well + Complex Absorbing Potential

We may add imaginary smoothly decreasing potential to Hamiltonian at the left and the right boundaries.

Characteristic feature of complex potential:
* positive imaginary value creates particle
* negative imaginary value absorbs particle (present case)

- wave function vanishes at boundaries as if particle escapes the box,
imitating the open boundary condition i.e. infinite quantum wire

wire length

V=400
« only potential is modified

(diagonal elements of matrix )

Viot =V (z) + Voap(x)

q vaarrier >0
. r—TCAP
VCAP(-I) = —tVimaz A y 4= 47 6
CAP
/ Vwell <0
Acar - range of absorbing potential Im (Voap)

(blue curve in figure)

Because we put the complex numbers on diagonal of matrix it becomes nonsymmetric,
we must change diagonalization procedure - left and right eigenvectors will be different &

eigenvalues becomes the complex numbers

call zgeev(jobvl, jobvr, n, a, l1da, w, vl, 1dvl, vr, 1dvr, work, lwork, rwork, info)

400
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Eigenvalue problem

quantum well + absorbing potential -~ cont’d

Im(E) [ meV ]

0.18
0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02

Energy spectrum

0
10 F -
20 F o
_30 - ]
H H
40 F i
50 F -
60 - ¢ $ ]
_70 | | | | | | | | | |
14 0 1 2 3 4 5 6 7 8 9 10
Re(E) [x 10 meV ]
bound states
L ' ' ' I In=1 A— 100
I s =
L 2;4 1 50
I 40
I - -50
] | | | 1 | | i -100
160 180 200 220 240 260 280 300
x[nm]

|E7| < 107 "meV - numerical errors

V[meV]

]

"~ bound states and resonances are resistant
~ to changes in quantum well/wire width

Im(E) [ meV ]

0.18
0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02

Energy spectrum - resonances

2
| wireI length =I200 nm e
wire length =400 nm O
1 - -
0 éﬁe ® e) ‘/é -
S % -~ *
1Lk O il
L )
o)
'e)
2+ o —
«©
_3 - © _
0 Q
o
4 | L | L
-100 -50 0 50 100 150
Re(E) [ meV ]
resonances
L ' | ' " Re(E)=21.7 —— 1 100
i (\ Re(E)=70.8 ——
| \p q/‘ I
i 410
i U 4 -50
— : . | | : : -100
160 180 200 220 240 260 280 300
x[nm]

|[E7| > 107° meV - resonances

VmeV]

24



Eigenvalue problem
Singular Value Decomposition (SVD)

Any rectangular matrix can be decomposed into product of three matrices

A=UxVE, (*- transpose + complex conjugation)
Ae C™ " r=rank(A)
U c mem, E c Ran, V c Cn)(n

* matrices U and V are orthonormal

UHU =T VHYV =T

* matrix Z is real with non-negative entries (singular values) on its diagonal

UMAV =% = diag(oy,09,...,0,) € R™*", g1 >09>...20,2>0
n>m
(o 0 0[O 0
( u11 uiz ... Uim \ 0 o2 ... 0 0 O V11 V12 ... Uln
A— U21 U292 ... % 0 0 0 0 0 % v21 V22 ... U2n
K : : . : ANO O od |0 (¥
O 0 0 O v v v
Um1 umm) nl n2 nn
0o 0 0 O




Eigenvalue problem

How to find SVD?

usvi=4 ).V osvi =4 U"./
Uy =AV A% ./ i =vua /M
AT = AR AV »T — A°

N,

AFAV =vETS

. - H
we get the standard eigenvalue problem for matrix A#A — for dense matrices bidiagonalization methods

T H .o 5 are used while for the sparse ones an iterative
AT AY; = o0 Lanczos method is employed (A"A — hermitian)

J

~ only for largest singular values, the smallest
ones might vanish after squaring
Having V and Z finding the first p column (thin SVD) is straightforward

A=Uxvlt /v

AV =U%x /-7t (for o; > 0)

1
’lzj:—A?Tj, j:1,2,...,p

U=AVE™! | — —
) ‘\ J

26



Eigenvalue problem

Thin SVD - from the two vector subspaces spanned by the columns of U and the columns of V

we need only p = rank(A) linearly independent columns to reconstruct the matrix A
(in other words — not all U/V columns are always needed)

Ue Ccm™™ — yum=?
Ve o — v
e R™*™ ¥, € RP*P

A=USVH ZO‘Z’J@U

« rank(p) matrix A

Ais a rank(p) matrix built as a sum of rank(1) matrices (outer product of two vectors)

Each rank(1) matrix is scaled with singular value, hence the largest contributions gives
the pairs of vectors (u,v) belonging to largest sigmas.

By limiting the summation just to largest k contribution we get rank(k) matrix which approximates matrix A

k<p

A~ AR — Z o0« rank(K) matrix A®

1=1

27



Applications of SVD

Eigenvalue problem

* solving systems of linear equations — standard and overdetermined, backsubstitiution is not required,
for square matrices it is less computationally efficient than other methods

AZ
Usvtz
Utoyxviz

vz

standard SLE:

T

Ax

overdetermined SLE:

T

pseudoinverse of (rectangular) matrix

~

SV o9

) UT /
uTy, 2./
>~ 'uTs,  V./

vy—uTh,

b, AT./
ATAzZ = ATh, (ATA)™'./

Alp,

(AT A)~tAT

AI

)
m>n: A:U(O)VT — A'=Vv(z'o)U’

28



Eigenvalue problem

some advanced applications

 statistics: Principal Component Analysis

* speech recognition

* information transmission in wireless communication

* tensor decomposition — to speed up work of neural networks

* recommendations systems (trading/commerce)

 classifications of handwritten digits for Optical Character Recognition (OCR)
» facial recognition

* in quantum physcis to assess the degree of entanglement

A survey of SVD applications contains following paper

Carla D. Martin and Mason A. Porter, ,,The Extraordinary SVD?”,
https://arxiv.org/pdf/1103.2338

29



Eigenvalue problem
1000 ¢ T T T T T I

* compression of images (data gathered in matrix form)

We may think of an image as a matrix, and each matrix element
corresponds to distinct pixel. Full matrix represents an original _
image, but if we approximate it with rank(k) matrix by retainig 10 |
small number of vector pairs (u,v) we can save then smaller g
amount of data at the cost of little (?) worse quality !
of reconstructed picture. 1k

k<p
(k) — PPy & 0.1 }
j=1 :

0.01
0 100 200 300 400 500 600 700

index of singular value

A€ R™"  m=2890, n =650

full rank AGO A\ (100) A\ (200)



