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Electron spin and charge switching in a coupled quantum-dot—quantum ring system
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Few-electron systems confined in a quantum dot laterally coupled to a surrounding quantum ring in the
presence of an external magnetic field are studied by exact diagonalization. The distribution of electrons
between the dot and the ring is influenced by the relative strength of the dot and ring confinement, and the
magnetic field which induces transitions of electrons between the two parts of the system. These transitions are
accompanied by changes in the periodicity of the Aharonov-Bohm oscillations of the ground-state angular
momentum. The singlet-triplet splitting for a two electron system with one electron confined in the dot and the
other in the ring exhibits piecewise linear dependence on the external field due to the Aharonov-Bohm effect
for the ring-confined electron, in contrast to smooth oscillatory dependence of the exchange energy for laterally
coupled dots in the side-by-side geometry.
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I. INTRODUCTION tum mechanical tunnelling. The transfer of the charge be-

Coupling~4 between semiconductor quantum dbtee- tween a quanum_ring and inline- as \_NeII as side-cqupled
sults in the formation of so-called artificial molecules. Sinceduantum dot ar?d its effect on th? pers(;stgn_t cuhrrentsdln me-
most of the quantum dots have flat geometry, the coupling iSOSCOPIC samples was previously studed in the Anderson-

- 6
realized either by vertical stackifig or by fabrication of ImPurity-type modef o .
dots coupled Iateyrally on the sant]g pI%ﬁgTheoreticaq—ll We study the effect of the magnetic field on the confined

considerations and experimerifal*realizations of laterally ©N€- Wo-, and three-electron systems using an exact diago-
coupled dots are based on the idea of dots placed side fiRlization approach. In quantum dots and rings the magnetic
side. This paper is devoted to few-electron states in an e feld mducﬁs grlour}d-hstat? angulalr momentum tranfsmo;ls.
: . . owever, the role of the electron-electron interaction for the
Zi;ﬁ%d(;fcf)(tar:LT:rgSr?cjrjg?jtrgyO;sz;ﬁlt;%ufé:;%hn:%ﬂﬁetlo Airansitions in these two structures is different. In quantum

barri ting both parts of th tem. Th G rings the interaction is of secondafy® importance for the
arrer separaling both parts of the system. 1he con Ir"ame%tngular momentum transitions which are mainly determined

poter}tial considered in this paper can be obtained using 3hy the Aharonov-Bohm effect. In spinlé&g° few-electron
atomic force microscope to locally oxidiZethe sample sur- systems the ground-state angular momentum is not influ-
face which results in the depletion of the two-dimensionalenced by the Coulomb interaction, and for electrons with
electron gag2DEG)underneath it. Alternatively one can ap- spin the angular momentum of the ground state differs from
ply split gates with a central cap gate surrounded by a thifhe noninteracting case by at mdist® On the other hand, in
collar gate on top of a plan@AlGaAs-GaAs heterostructure quantum dots the Coulomb interaction influences strongly
containing a 2DEG. A proper geometry of split gates for thethe values of the magnetic field at which the angular momen-
fabrication of the confinement potential considered in thistum transitions appear. Moreover, in two- and three-electron
paper was applied in the stuldyof effects related to electron systems these transitions are absent if there is no electron-
localization on local fluctuations of the confinement potentialelectron interaction. In this paper we study the hybrid
in the low electron density regime. The system studied in thenagnetic-field evolution of the electron spectra in the dot-in-
present paper would require a sufficiently strong confinemenrthe-ring geometry.
which is less perturbed by fluctuations. The effect of local The magnetic-field along with the angular momentum
perturbations can be largely diminished by optimizatfasf  transitions induces a redistribution of the electron charge in
the size of electrodes for the strength of the electrostaticuantum dotg?-2°Here, we will show that in the considered
confinement potential. geometry the magnetic field can be used to transfer the elec-
Phase effects appearing in electron transport througtrons from the dot to the ring or vice versa. We will also
guantum dots were studied in the Aharonov-Bohmaddress the problem of the magnetic-field-induced trapping
interferometef®?1 The potential geometry studied in this pa- of electrons in local potential cavitiés.
per is a two-dimensional counterpart of quantum-dot The spins of a pair of electrons localized in laterally
quantum-well structureg:?® Impurity effect on the single- coupled dots have been propo%ad a possible realization of
electron states in a three-dimensional quantum ring focoupled qubits. A universal quantum gate requires the possi-
strong in-plane confinement has been studfeRelated to  bility of application of single-qubit as well as two-qubit ro-
the present work is the magnetic coupling of a superconductations. For this purpose one should be able to address each
ing disk surrounded by a superconducting rfAdn contrast  of the electrons individually as well as to control the state of
to the work of Ref. 25, in the system considered here théhe pair, which requires the spatial separation of electrons
coupling between the ring and the dot occurs through quarand a tunable coupling between them. We studied the singlet-
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triplet splitting energy for the two-electron system with one O L ¥
electron localized in the dot and the other in the ring. We 25+ =
show that the angular momentum transitions, appearing for ool ]
the ring-confined electrons as a consequence of the g - ;
Aharonov-Bohm effect, lead to a simple piecewise linear de- = R ]
pendence of the exchange energy on the external magnetic = 1o / \ -
field. Since the unitary evolution in quantum computation S ke St ot ]
5
needs precise control of the underlying qubit interaction this - \/ 1
simple dependence makes our system a good candidate for OV ]
the realization of the magnetic field controllable pair of spin By 2'0 : 4'0 : &'0 : 3'0 Toc
qubits. Recently, it has been establistetat the spin relax- pinm]

ation time in quantum dots defined by electric gates in two- FIG. 1. Confinement potentiict. Eq. (3) for fiw;=5 meV

dimensional electron gas is much longer than the qubit red; :16 m'ev Vo=-5 meV, b=30 m;q aﬁd the Ga/sl\s effecti’ve
. . . . . (o] 1 1] 1 ‘

out time in spin-to-charge conversion technique. massm’/my=0.067. The dot oscillator length= 2%/ mew; is equal

This papers is organized as follows: In the next sectiony 2133 nm and the oscillator length for the rihg=15.08 nm
the present approach is explained, the single electron spegmnich gives the ring radiuR=66.4 nm.

trum is described in Sec. lll, the results for two and three

eIectron§ are given in Secs. IV and V,.respect|vely, and SecWithin both the quantum dot and the quantum rikg,is the
VI contains the summary and conclusions.

depth of the dot confinement with respect to the bottom of
the quantum ring potential. The confinement poter(@alis
shown in Fig. 1 for Aw;=5 meV, Aw,=10 meV, V,
=-5 meV, andb=30 nm. A model potential parametrized
We study two-dimensionall-electron systems confined in similarly to EQ.(3) was used previously for the
circular potentials using the effective mass Hamiltonian ~ descriptiod®!? of side by side quantum dots. The cusp
N NN 2 present in simple potentials of this typef. Fig. 1)is rather
_ « unphysical and cannot be realized in real structures, however
H= .2:; hi + gl j:i2+1 Amree;; *BS0 v, (1) this shortcoming is of secondary importance since the cusp
L _ appears in a region of space where the barrier potential is
wheree is the dielectric constang” is the effective Landé |argest and the wave functions of the lowest energy levels are
factor, ug is the Bohr magnetorg, is thez component of the  small. In the weak coupling limitfor large barrier thicknegs
total spin, B is the magnetic field, andh stands for the approximate formulas for the dot- and ring-confined states as
single-electron Hamiltonian, which written in the symmetric functions of the magnetic field can be givesee below).

II. THEORY

gaugeA=(-By/2,Bx/2,0) has the form In the present paper the single-electron eigenfunctions for
42 1 1 Hamiltonian(2) and definite angular momentum are obtained

h=-—=V2+ -m w2p?+ Zhaod,+ V(p), (2)  numerically on a radial mesh of points using the finite-
2m 8 2 difference approach. Eigenstates of the two- and three-

electron Hamiltonian(1) are calculated using the standard
configuration interaction methétwith a basis composed of
Slater determinants built with single-electron wave func-
tions. The Coulomb matrix elements are evaluated by a

with m" the electron effective mask, the z-component an-
gular momentum operatolp.=eB/m" the cyclotron fre-
guency, and/(p) the confinement potential. We adopt mate-

rial parameters for GaAs, i.et /my=0.067,€=12.9, and two-dimensiona&’ numerical integration. The few-electron
g =-0.44. The last term of Eql), i.e., the spin Zeeman . gration.

splitting energy is independent of the distribution of eIec—Sta’[es are described by the tot_al spiand angl_JIar momen-
trons between the different parts of the system as well as otf"m L quantum numbers. In thls_paper we .O.I'SCUSS only the
the Coulomb interaction energy. Moreover, the value of thetwo' and three- glectron states \.N'th nonpositive total angular
g' factor can be tuned by the admixtures of Al Substitutingmomenta. We will therefore omit the minus sign for the an-
Ga2® We have therefore decided to neglect the Zeeman efgular momentum quantum numbker

fect in most of the results presented in this papanless
explicitly stated otherwise). Ill. SINGLE-ELECTRON STATES
We model'a strictly two-dimensional cylmdncally SYM-  The single-electron spectrum fofiw,=6 meV, %w,

metric potential of a quantum dot placed within the quantum- 11 mey, V=0, andb=30 nm is shown in Fig. 2(a). For

ring with the following confinement potential: this relatively large barrier thickness, the low part of the
V(p) = min[m’ w2p2/2 + Vo, m' -R?2], 3 energy spectrum is essentially a sum of the spectra of.an

() (M wip oM wolp ~R172] ® electron localized in the dot and in the ring. The solid lines in

wherefiw; andfiw, are the confinement energies of the dotFig. 2 correspond to states localized in the ring and dashed

and the ring, respectively, and the radius of the riRds lines tos (lowest dashed lineand p states localized in the

determined by the sum of oscillator lengths for the dot anddot. The ring part of the spectrum exhibits Aharonov-Bohm

ring potential and the barrier thickneds according to for-  oscillations. The angular momentum of the lowest-energy

mula R= 24/ mw; +v2k/mw,+b. This potential is parabolic ring-localized states takes on the subsequent values 0,-1,
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FIG. 2. Single-electron spectrum fémw;=6 meV, iw,=11 meV, V=0, andb=30 nm (R=63.85 nm). The solid lines correspond to
states localized in the ring and the dashed lines to states localized in the dot. Lowest of the dashed lines correspansiat® dinel the
two higher top states. Inset shows the low-field and low-energy part of the spectrum-enlargement of the fragment surrounded by thin so
lines corresponding to anticrossing of 0 angular momentum dot- and ring-confined energy levels. Dotted (Inemah(c) shows the
confinement potentigleft scale)for the parameters applied {a). Solid and dashed curves (in) show the radial probability densify|y|?
and in(c) the wave functions of the lowest statessodind p symmetry, respectively.

=2, etc.[in A units]when the magnetic field increases. The confined states. However, f&;=0 and w,~ 2w; the mag-
period of these oscillations is 0.337 T. This period corre-netic field can induce oscillations of the ground state local-
sponds to a flux quantum passing through a strictly oneization from the dot to the ring, which results from the local
dimensional ring of radiu®;5=62.51 nm which is in good deviations of the lowest ring-confined energy level from the
agreement with the radius of the ring in the present modetmooth envelopgcf. Fig. 2(a)]. On the other hand, the mag-
R=63.85 nm. The energy of the states localized in the donetic field favors localization in the deep but sméthin)
change with the magnetic field more slowly than the energyquantum do{ring). This effect is illustrated in the following

of the ring-localized states. States with the same angular mdigure.

mentum change their order in anticrossings due to quantum Figure 3 shows the energy spectrum fofi@, which is
mechanical tunnel coupling between the dot and the ringincreased with respect to Fig. 2 from 6 to 20 meV and the
Anticrossing fors states appears fd@ around 0.65 T[see bottom lowered byWy=-14 meV. ForB=0 the low-energy
inset of Fig. 2(a)]. A much wider anticrossing fprstates is  part of the spectrum is the same as in the case shown in Fig.
visible around 2.4 T. 2(a). However, the energy of the dot-localized state grows

Figure 2(b)shows the confinement potential for the pa- more slowly than the envelope of the ring-localized states. In
rameters applied in Fig. 2(aps well as the radial probability consequence, the dot-localized state becomes the ground
densities for the lowest: and p-symmetry states. The radial state forB=3.3 T. When the radius of the Landau orbit be-
densities for the ring-localized states do not depend on theomes smaller than the size of the local potential cavity, the
angular momentum. However, Fig.(c} shows that the electron can enter inside the dot without an extra increase of
s-wave function penetrates the dot region in a much strongethe kinetic energy due to the localization. Similar effects of
way than thep-type wave function. It will have an important trapping of electrons in local potential cavities at high mag-
consequence for the singlet-triplet splitting of the two- netic fields are probably at the origin of the bunching of the
electron stategsee the next section). Note that the angularcharging lines observed in single-electron capacitance spec-
momentum has an opposite effect on the strength of the tun-
neling of the dot-localized states to the ring part of the po-
tential. Barrier thickness is effectively smaller for the dot-
localized states of higher angular moment[oh Fig. 2(b)].

The dependence of the energy of the lowest dot-localized
state can be very well approximated by the expression for the
lowest Fock-Darwin state, i.eEg,=Vo+\(fhw)?+(hwdl 2).
Without the magnetic field the lowest energy ring-localized
level is approximately equal thw,/2, i.e., to the energy of
the single-dimensional harmonic oscillator in the radial di-
rection. In the external field the envelope of the lowest-
energy ring-localized level can be quite well approximated 5

O plam) 100
1 1 1

3 4

1 ]

! 0 1 2
by Eqing= 1\ (hw,/ 2)*+(fiw./2)2. These two formulas can be BM
used in order to roughly determine whether the ground state F|G. 3. Single-electron spectrum fofiw;=20 meV, fw,
of a single electron is localized in the dot or in the ring. For=11 meV,V,=-14 meV, andd=30 nm(potential is plotted in the

equal depth of the ring and the ddf,=0) the magnetic field inset). The solid lines correspond to states localized in the ring and
does not change the order of the lowest-energy dot- and ringhe dashed line to the lowest-energy state localized in the dot.
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FIG. 4. Charge accumulated in the dot as a functiofi@f for  Numbers close to extrema of the lines denote the absolute values of
different values of the barrier thickness aMg=0. Inset in(a)  the angular momentum i units. The dotted line shows the abso-
shows the charge accumulated in the dot as functioWgofor b yte value of the angular momentum of the ground state single
=30 nm,fiw; =6 meV, andiw,=20 meV.(b) Phase diagram for the  glectron confined in the ringight scale).(b) Same aga) but with

distribution of two electrons foB=0, V,=0, andb=30 nm. Solid  gpin Zeeman effect included. Only the lowest energy level of the
lines in (b) divide regions of different electron localization in the gpjit spin triplet is plotted.

two-electron system. Above the dotted line the ground state of a
single electron is localized within the dot. which shows the charge accumulated within the dot as a
function of V, for the potential parameteréw,=6 meV,
troscopy of large quantum dots.The opposite effect, i.e., fw,=20 meV,b=30 nm, i.e., corresponding to the central
the change of the ground-state localization from the dot tglateau of the solid curve in the main part of Fig. 4(a).
the ring under influence of the external magnetic field is also  Figure 4(b)shows the phase diagram for the spatial dis-
possible if the ring is thin but with a bottom deeper than thetribution of electrons in the two-electron system in the ab-
dot. sence of the magnetic field for barrier thickndss30 nm.
Borders of regions corresponding to different electron distri-
IV. TWO ELECTRON SYSTEM butions are marked yvith solid Iines.. Above_ the (_jotted line the
ground state of a single electron is localized in the dot and
For B=0 the ground state of the electron pair correspondgelow it-in the ring. The dotted line can be very well ap-
to zero total spin and angular momentum independently oproximated byw,=2w;, which is in agreement with the ap-
the electron distribution between the two parts of the conproximate formulas for the lowest-energy dot- and ring-
finement potential. The electron distribution in the systemocalized states given in the preceding section. In the
can be illustrated by the charge accumulated within the doinoninteracting case this line would divide the regions in
This quantity is calculated as the integral of the radial probwhich both of the electrons are localized in the dot or in the
ability density from the origin to the cusp of the confinementwell. In the presence of interaction a third region in which
potential (cf. Fig. 1). Figure 4(aghows the dependence of one of the electrons is localized in the dot and the other in
the charge accumulated within the dot as a function of thehe ring appears. This region of electron distribution starts
ring oscillator energy for different barrier thickness, the dotslightly above the dotted line. This results from the fact that
confinement energfiw;=6 meV and equal depth of the dot the Coulomb interaction, smallest for both electrons local-
and ring(V,=0). Forb=30 nm the dependence of the chargeized in the ring, stabilizes the ring-confined ground state for
accumulated in the dot on the ring confinement energy isargerfw, than in the noninteracting case. The central region
almost stepwise and it becomes smoothened for thinner baof the phase diagram for which one electron resides in the
riers for which the separation of electrons between the twalot and the other in the ring is particularly interesting from
parts of the system is less distinct. The transition of electronthe point of view of potential spin guantum gate
between the ring and the dot can also be provoked by changypplications
ing the relative depth of the confinement potentials for fixed Let us now look at the magnetic field dependence of the
oscillator energies. This is illustrated in the inset to Fig)4 two-electron energy spectrum for the potential parameters
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FIG. 7. Energy spectrum of two electrons for30 nm, 7w;

FIG. 6. Exchange energy, i.e., the energy difference of the low-
est triplet and the lowest singlet energy Ievgls for two electrons an(l6 meV, andfiw,=26 meV (spin Zeeman effect neglectedThe
V=0, iw;=6 meV, andhw,=18 meV for different values of the onoqy jevels of states in which batbne)electrons are localized in
barrier ‘_N'dth and spin Zeeman SP"F“”Q is neglected. Th_e daShfhe dot are plotted with dashedolid) lines. The inset shows the
dotted line shows the Zeeman splitting between states $#0 4.5 ng state angular momentum. The dotted line corresponds to
and#. twice the lowest Landau level energy.

corresponding to one electron in the dot and the other in théowest triplet is large(smaller)thanL of the lowest singlet.
ring, i.e., for Vo=0, b=30 nm, ZAw;=6 meV, and fiw, When the angular momentum of both singlet and triplet
=14 meV presented in Fig. 5(a). For this potential the onestates exceed 2, the exchange energy vanishes. The exchange
electron ground state is localized in the dot. The angulaenergy is a piecewise linear function of the magnetic field in
momentum of the lowest excited ring-confined one-electrorcontrast to smooth oscillatory dependence of the exchange
state is plotted with a dotted lireight scale). Comparison of interaction on the magnetic field for side-by-side dats
this line with the ground-state energy crossings in the twoFig. 4 of Ref. 11). In side-by-side dots the magnetic field
electron spectrum shows that the angular momentum transinduces a continuous decrease of the overlap of the wave
tions in the two-electron system are due to the Aharonov{unctions of electrons confined in different dots. For the dot
Bohm effect for the electron confined within the ring. All the in the ring geometry this decrease is discontinuous due to the
angular momentum of the system is therefore carried by thé&haronov-Bohm effect for the ring confined electron. Since
ring-confined electron while the electron confined in the dotthe Aharonov-Bohm magnetic period is inversely propor-
remains in thes state. Singlet-triplet splitting of the ground tional to the square of the ring radius one can largely reduce
state[cf. the distance between the dashed and solid lines ithe range of the magnetic field in which the exchange energy
Fig. 5(a)] disappears at larger angular momentum. This efis nonzero by a mere increase Rf
fect can be understood if we look back at Figc)2showing The magnetic field can change the distribution of the elec-
that the dot penetration of the ring-localized single-electrortrons between the coupled cavities. Consider the cade of
states decrease with their angular momentum. In Hg) 5 =30 nm, V=0, Zw;=6 meV andfw,=26 meV. For these
above 14.9 meV the energy band corresponding to both eleparameters in the absence of the magnetic field both elec-
trons confined within the ring appears. Since in this bandrons are localized within the d¢f. Fig. 4(b)], but the state
both ring-confined electrons are subject to the Aharonoveorresponding to one electron in the ring is close in energy.
Bohm effect the angular momentum of the lowest state in th¢rigure 7 shows the magnetic field dependence of the two-
band grows roughly twic¢€ as fast as in the ground state. electron energy spectrum for this potential. Energies of states
The energy levels of eveln correspond to spin singlets and corresponding to both electrons localized in the dot are plot-
of oddL to triplets. Around 0.6 T we observe an anticrossingted with dashed lines. The lower of these two energy levels is
of L=3 triplets corresponding to one and two electrons in thea spin singlet ofs symmetry. The upper dashed line corre-
ring. The Zeeman effedccf. Fig. 5(b)] for large B lifts the  sponds to a spin triplet op symmetry, i.e., to the two-
ground-state degeneracy with respect to the spin. electron maximum density dropl&. Spin singlet of
The energy difference between the lowest spin singlet ang-symmetry with both electrons localized in the dot lies
triplet states, i.e., the exchange enérgyan important quan- higher in energy beyond the range presented in this figure.
tity for the coupled spin qubit operations is also a very ad-The energy levels plotted with solid lines correspond to one
equate measure of the strength of the tunnel coupling beelectron localized in the ddin the lowests state)and the
tween the dot and the ring confined wave functions. Figure ®ther in the ring. FoB=1.44 T an avoided crossings appears
shows the exchange energgeeman energy neglectetbr  for the L=1 spin triplets. FoB=3.74 T the energy level of
different values of the barrier thickness f&f,=0, fiw; the dot localized state crosses the energy level of the state
=6 meV, andhw,=18 meV, i.e., for the central point of the with L=10 corresponding to one electron in the dot and the
plateau corresponding to one of the electrons localized in thether in the ring. Note that beloB=3.74 T in the ground-
dot [cf. Fig. 4(a)]. The exchange energy is nearly indepenstate the electrons are in the singlet state while above this
dent of magnetic field when the lowest singlet and the lowestfield singlet and triplet states are nearly degenerate. Decou-
triplet possess the same angular momentum and it distinctlgling of spins, in the sense of vanishing exchange energy
decreaseggrows)with the magnetic field when thie of the  appears abruptly after crossify3.74 T. ForB=4.35T, a
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FIG. 8. Two-electron ground-state energigft scale)for b the dot and the other in the ring. Radial density of this state plotted
=30 nn'1 \/0:0 fiw;=6 meV, andhw,=13.65 meV(spin Zeeman with dotted line(right scale). The first excitesl singlet state corre-
’ 1 1 1 0 . . .
effect neglected). Energy of states corresponding to one electron iﬂoonds to both electrons in the doashed line).
the dot and the other in the ring plotted with solid line. Energy of

states in which both the electrons are localized in the ring are plot- The magnetic field can induce opposite transitions of the
ted by the dotted curve. The thin solid step-like line gives the totalg|actrons from the ring to the dot if the dot is small but deep.
angular momentum which is referred to the right axis. Consider the following set of parametefsws,=50 meV,
hw,=6 meV,b=20 nm, andv,=-66 meV. Figure 9 shows
crossing of dot-localized singlet and triplet states appearghe confinement potential and the radial probability density
The dotted line shows twice the lowest Landau energy levekor the lowest two-electron singlet states with total angular
ForB>4 T the envelope of the energy levels with one elec-momentum equal 0. For zero magnetic field in the ground-
tron in the dot and the other in the ring as well as the doktate one electron is localized in the ring and the other one in
localized maximum density droplet run approximately paralthe dot. In the first excited singlet state both electrons re-
lel to the lowest Landau levetotted line). Figure 7 shows  sjde within the dot. Note that in this case the ground state is
that the magnetic field can change the electron occupation ghore extended than the excited state as a consequence of the
the dot and the ring. Generally, fp=0 such an effect is not ~ electron-electron interaction preventing the second electron
observed for a single electron. The appearance of this effe¢tom entering the dot. The magnetic field energy dependence
for two electrons is due to lowering of the Coulomb interac-js displayed in Fig. 10. The magnetic field has only a small
tion energy when one of the electrons is transferred from thehfluence on the energy of the singlet with both electrons
dot to the ring. RecentRf it was shown that in the infinite |gcalized in the dot. Aroun®=2 T, singlets corresponding
magnetic field limit the ground-state electron distribution canto different electron distribution change their energy order
be identified with the lowest energy configuration of with a pronounced anticrossing. F&=5.725 T the dot-
classical” point charges. Fov,=0 the lowest-energy classi- |ocalized singlet becomes the ground state. In this structure
cal configuration corresponds to both electrons localized ifhe Aharonov-Bohm oscillations are interrupted by the mag-
the ring. One should therefore expect that at higher magnetigetic field which removes the second electron from the ring.
fields the second electron should also be transferred to thgs a consequence a giant singlet-triplet energy difference
ring. However, the magnetic fields at which this effect couldappears foB>5.725 T. This transition appears in spite of
appear are beyond the reach of our numerical calculationsthe Coulomb interaction energy which is increased when the

For Vp=0, b=30 nm,7%iw;=6 meV, andiiw,=13.65 meV  second electron is trapped in the central cavity.
[the left end of the central plateau in the Fig. 4(B)i B

=0 one of the electrons is localized in the dot and the other
in the ring, but the state with two electrons localized in the
ring is not much higher in energy. Figure 8 shows the
ground-state energy and the ground-state angular momentum -9
as functions of the magnetic field for this set of parameters.
The state with one electron in the dot remains the ground
state up to 1.6 T. BetweelR=1.6 T andB=3.1 T the state
with two electrons in the ring is almost degenerate with the
state with one ring-confined electron and as a consequence
the localization of the ground state changes several times as
the magnetic field is increased. Ground-state ring- A2
localization becomes established above 3.1 T. The period of

the angular momentum transitions becomes halved with re- FIG. 10. Two-electron energy spectrum for the potential param-
spect to the low magnetic fields, for which the ring is occu-eters of Fig. 9. Dotted lines show the energy levels ainglets.
pied by a single electron. The dashed line corresponds to theiplet.

-0

E [meV]

-1

125310-6
praca 10A 115



ELECTRON SPIN AND CHARGE SWITCHING IN A. PHYSICAL REVIEW B 70, 125310(2004)

200 ————————

L 30
3 electrons
1801 inthedot €127 2 iy gl

1 in the ting]

3 electrons|
in tha ring ]

o I B
10 20 3¢ 4C

Ao, [meV]

FIG. 11. Phase diagram for the electron distribution in(fhe;,
frw,) plane forVy=0 andb=30 nm in the absence of the magnetic
field. Solid lines separate regions of different electron distributions. 0 i 2 3 4 5
Numbers denote the ground-state total spin and total angular mo- BT]
mentum quantum numbés,L).

FIG. 12. Energy spectrum foN=3, Vp=0, b=30 nm, Zw;
=6 meV, andhw,=37 meV. The soliddashed)ines show the low-
est energy levels with the two dot-confined electrons V@t /2
Distribution of electrons in the three electron system with-and oppositgS=3/2 and the samespin and one electron in the
out the magnetic field fok,=0 andb=30 nm is plotted in  ring. The states with the two dot-confined electrons of parallel spins
Fig. 11. Regions of different electron distribution are sepa#'® almost degenerate with respect to the spin orientation of the
rated by the solid lines. For large dot confinement energyelectron in the ring. The only exception is the state witn2. The
i.e., w > w, all the electrons reside in the ring and the ground/oWer of the dash-dotted line shows this state $srl/2 and the
state corresponds to total sgB¥3/2 andzerd®angular mo- upper forS=3/2. Dotted lines correspond to all electrqns_ conflngd
mentum. In the single-particle picture this state correspondd € dot. Quantum numbetk,S) of these states are indicated in

to electrons having parallel spin and occupying states with e fug_ure._ Only nonpositive angulgr momenta are shown. The thick
- . . . solid line in the lower part of the figure shows the the ground-state
angular momenturh=-1,0, and 1(in # units). For increas-

. . fi t the elect ter the dot b angular momentum quantum numlggght scale). The panel above
Ing ring confinement the electrons enter the dot one by oNng,,, upper axis shows the number of electrons in thengandS for

In states Wi_th two electrons of OPpOSiFe SPi”S occupying th(?he ground state in formaiy(S), “deg” stands for degeneracy of the
dot or the ring(cf. two central regions in Fig. 11 the ground g-175 and 3/2states.

state corresponds ®=1/2 andL=0. When the ring confine-
ment energy is much larggfive times or morejhan the dot  field due to the interaction of the magnetic field with the
confinement all the electrons occupy the lowest dot-confinethagnetic momentum of the electron. This decrease results
energy levels forming the state of spB¥1/2 andangular in an anticrossing of the=1 energy levels corresponding to
momentumL=1. two and three dot-confined electrons aro@wl T. Another

In the preceding section we showed that for equal deptltonsequence of this anticrossing is a visibly increased region
of the ring and the dotV,=0) the electron-electron interac- of L=1 ground-state stability between 0.15 and 0.7 T. Sub-
tion triggered the magnetic-field-induced transitions of elecsequently forB=1.7 T, the state with three electrons in the
trons from the dot to the ring. We found that in the three-dot andL=1 becomes the ground state. The transition of the
electron system the magnetic field can also induce théhird electron from the ring to the dot happens in spite of the
opposite transition from the ring to the dot. This is illustratedelectron-electron interaction which is not strong enough to
in Fig. 12 which shows the energy spectrum =0, b prevent it.
=30 nm,Aiw;=6 meV, andiw,=37 meV. Solid lines in Fig. ForB=0, the energy of the lowest spin polarized s(afe
12 show the energy levels corresponding to two electrons aflashed linesyith L=1 is equal to about 44.25 meV. In this
opposite spins in the dot and one electron confined in thstate the two electrons confined in the dot have the same spin
ring. All these states hav®=1/2. Dashed lines correspond and occupy & and Ip energy levels, while the ring-confined
to spin-polarized states witB=3/2 in which the two dot- electron occupy the orbital with=0. Note that level cross-
confined electrons occupy the &nd 1p states. Energy levels ings appear at the same magnetic fields as in the lower
corresponding to three electrons localized in the dot ardranch withS=1/2 where two electrons are in the drbital
shown by dotted curves. Quantum numbers of the doteonfined in the dotcf. solid lines in the Fig. 18 The angu-
confined states are given in the figure. Thick solid steplikdar momentum quantum number of these states is equal to
line at the bottom of the figure shows the absolute value ofhe ring confined electron plus 1 - the angular momentum of
the ground-state angular momentum which is referred to théhe dot-confined subsystem. For the adopted large barrier
right axis. AtB=0, the energy of the state in which all three thicknessb=30 nm the states of this band wi8=3/2 are
electrons are localized in the dot with=1 is 1 meV higher almost degenerate witB=1/2 statesomitted in the figure),
in energy(cf. dotted line above 42 me\gbove the ground i.e., the energy of the system is not influenced by the orien-
state with two electrons in the dot and one in the ring. Thistation of the spin of the ring-confined electron. The only
energy level decreases initially with increasing magneticexception appears for the=2 state. The lowerupper)

V. THREE ELECTRONS
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— T 1 117 70 coupling between the dot and ring wave functions is negli-
39 /y_,ﬂj gible [cf. Fig. 8] and the spin of the dot confined electron
115 does not influence the energy. Therefore, the states with trip-
| 2 sfestons ofspposto 1 let configuration of spins in the ring subsystem correspond to

E [meV]

S=1/2 andS=3/2 degeneracy.

The envelope of the lowedt=3 energy levels with three
electrons and two electrons in the ring run almost parallel to
each other as a function of the external field. One should
expect® that for equal depth of the ring and the dot at very
large magnetic field the three-electron ground state corre-

FIG. 13. Ground-state energleft scale)and the absolute value s_ponds tp electrons_ forming an _equilateral triangle in the
of the ground-state angular momenturight scale)for N=3, V, ring, but in fche studlgq magnetic field range we did not ob-
=0, b=30 nm,fiw,=6 meV, andiw,=27 meV. The dotted vertical SErVe & distinct transition of the last electron from the dot to

line marks the magnetic field for which the electron distribution is the ring.
changed. The vertical arrows on thestaircase correspond to triplet
state of the ring subsystem.

2
B [T]

VI. SUMMARY AND CONCLUSIONS

We have considered a quantum dot inside a quantum
ring—a unique example of lateral coupling realized with con-

fact that the energy of the state with=2 andS=1/2 is servation of circular symmetry of the confinement potential.

pushed downward by the anticrossing with the dot-confinedA‘ simple model for the potential was used. The model as-

state of the same quantum numbers, similarly as the abovseumes_parabolic confinement in bOth the dot and the ring so
discussed-=1, S=1/2 energy level in the lower part of the approximate formulas can be given for the lowest-energy
spectrum ' single-electron dot- and ring-confined states. One-, two-, and

The angular momentum of the ground state with three_.three-electron systems were studied using the exact diagonal-

: : ization approach. We have investigated the distribution of
(:aljcgtr_orr(lgf iﬁgfg:?)gs;ggtgf thdeofj oi?;‘dnﬁr?zs;r%nl;oéetg 52$6E[th eelectrons between the dot and the ring. This distribution de-
grdund stéte corresponds again to two eiectrons ih the d ends not only on the parameters of the confinement poten-
and one in the ring like foB=0 T, but now the dot-confined lal but it can also be altered by an external magnetic field,

subsystem is spin-polarize@f. the crossing of the dashed which therefore can be used as a driving force to transfer the
and dotted lines) ' electrons from the dot to the ring @ice versa. The passage

- f an electron from the dot to the ring should be detectable
Figure 13 shows the ground-state energy for the sam . -
parameters as studied in Fig. 12 but with the ring confine-gy a change of ihe Aharonov-Bohm magnetic period. The

ment energy reduced from 37 to 27 meV.B¢0 the ground present model also allows for simulation of the magnetic

state still corresponds to two electrons in the dot and one ilfliEId induqed electron trapping in Ioc;al potential cavities. We
the ring, but the state with two ring-confined electrons iShave studied the exchange energy in the two electron system

higher in energy by less than 1 meV. The envelope of thé"’ith one electron confined in the dot and the other in the

lowest energy level with one electron in the ring grows With;mg' taueAao the agglrj]lar r#on:efntutr;]‘n trgnsﬂmnfs rgsulltlng
the magnetic field faster than the envelope of the energy©™ € Anaronov-bohm etiect for the ring-contined elec-

levels with two ring-confined electrons which results in the ron, the singlet-triplet splitting exhil:_)its_ a piecgawise linear
change of the ground-state electron distribution Bt dependence on the external magnetic field. This should be a

in thdnore elegant method for the control of the spin-spin cou-
pling than the smooth oscillatory dependence predicted for
side-by-side coupled dots.

dashed-dotted line shows the energy of the state witl2
andS=1/2(3/2). The reason of the lifted degeneracy is the

electron distribution. Left of this line the ground state has
S=1/2, the twodot-confined electrons are in the spin singlet,

and the spin of the ring confined electron is arbitrary. Right ACKNOWLEDGMENTS
of this line the spin-configuration of the ring-confined sub-
system oscillates from singléfor evenlL) to triplet (for odd This paper has been partly supported by the Polish Min-

L) [cf. also the branch of ring confined electrons in Fig.istry of Scientific Research and Information Technology in
5(a)]. The magnetic fields for which the ring subsystem is inthe framework of the solicited Grant No. PBZ-MIN-008/
the triplet state have been marked by vertical arrows on th®03/2003, the Flemish Science Foundat{®wWO-VI), the
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Few-electron eigenstates of concentric double quantum rings
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Few-electron eigenstates confined in coupled concentric double quantum rings are studied by the exact
diagonalization technique. We show that the magnetic field suppresses the tunnel coupling between the rings,
localizing the single-electron states in the internal ring and the few-electron states in the external ring. The

magnetic fields inducing the ground-state angular momentum transitions are determined by the distribution of
the electron charge between the rings. The charge redistribution is translated into modifications of the fractional
Aharonov-Bohm period. We demonstrate that the electron distribution can be deduced from the cusp pattern of
the chemical potentials governing the single-electron charging properties of the system. The evolution of the
electron-electron correlations to the high field limit of a classical Wigner molecule is discussed.

DOI: 10.1103/PhysRevB.72.155316

I. INTRODUCTION

The phase shift of the electron wave function by the vec-
tor potential' results in oscillations of the quantum transport
properties? ¢ of ring-shaped structures. The conductance’ of
metal and semiconductor rings is periodic in the external
magnetic field with a period determined by the magnetic flux
through the ring. On the other hand, in bound states of closed
circular quantum rings, the single-electron spectrum exhibits
periodic ground-state angular momentum transitions with the
period of the flux quantum.® In confined interacting few-
electron systems fractional Aharonov-Bohm (AB) periodicity
of the spectrum was predicted”!? and subsequently observed
in conductance oscillations measured!! in a transport spec-
troscopy experiment. Discussion of the fractional periodicity
in the context of the strength of the electron-electron inter-
action was given in Ref. 12. The fractional period for the
interacting electron system is also found in realistic model-
ing of InGaAs self-assembled quantum rings.'3

Recently, fabrication of self-assembled strain-free double
concentric GaAs/AlGaAs quantum rings was reported.'*
Concentric coupled quantum ring structures can also be pro-
duced by the atomic force microscope tip oxidation
technique.*!! In this paper we present an exact diagonaliza-
tion study of the properties of few-electron states confined in
concentric quantum rings. In the presence of inter-ring tunnel
coupling the electron wave functions undergo hybridization,
forming molecular orbitals similarly as in artificial molecules
formed by lateral’>!® or vertical’*??> coupling of quantum
dots. The magnetic field AB period will be significantly dif-
ferent for the internal and external rings. Therefore, the ques-
tion arises, what will be the periodicity of the angular mo-
mentum transitions for such hybridized orbitals?

In the two-electron laterally coupled dots, the external
magnetic field enhances the localization of the wave func-
tions in each of the dots.!” Similar is the effect of the
electron-electron interaction favoring charge segregation. On
the other hand, in concentric rings the electron-electron in-
teraction will favor localization of the electrons in the exter-
nal ring while the diamagnetic term of the Hamiltonian will

1098-0121/2005/72(15)/155316(9)/$23.00
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tend to localize the electrons in the inner ring. We will show
that the redistribution of the electrons between the rings af-
fects the AB period of the angular momentum transitions,
which can be extracted from conductance measurements'' on
rings connected to electrodes. Moreover, the angular momen-
tum transitions result in characteristic cusp patterns of the
chemical potential determining the single-electron charging
of the structure. The alignment of the chemical potentials of
the confined electrons with the Fermi level of the gate elec-
trode can be detected in capacitance spectroscopy, which was
used earlier to study the electronic structure of self-
assembled quantum rings?? incorporated in a charge tunable
structure.

The present paper extends our previous work on the cou-
pling between a quantum dot and a quantum ring.>* For a
single quantum ring, the envelope of the single-electron
ground-state energy depends only on the strength of the con-
finement in the radial direction and not on the radius of the
ring. For the radial ring confinement energy 7w, when the
radius of the ring is large as compared to the range of the
radial confinement, the ground-state envelope is approxi-
mately given?* by /(fiw)*+(fhiw,)?/2, where . is the cyclo-
tron frequency. Therefore, a continuous evolution of the elec-
tron distribution between the two rings should be expected as
a function of the magnetic field in contrast to the rapid
ground-state charge redistributions found previously for a
quantum dot coupled to a surrounding quantum ring.>*

A study related to the present one was presented earlier
for two concentric superconducting rings> in which the cou-
pling between the rings was mediated by the magnetic self-
field of the separate rings.

The paper is organized as follows. In Sec. II we present
the model, the results for the single-electron coupling are
given in Sec. III, and for the interacting electron systems in
Sec. IV. Section V contains the summary and conclusions.

II. THEORY

We consider a two-dimensional model of circularly sym-
metric double concentric rings with confinement potential
taken in the form

©2005 The American Physical Society
119


http://dx.doi.org/10.1103/PhysRevB.72.155316

B. SZAFRAN AND F. M. PEETERS

2
Vip) =" minl(p= R (p = Ro)*. ()
where m is the effective electron band mass, R, and R, stand
for the internal and external ring radii, p is the distance of the
origin, and w is the harmonic oscillator frequency for the
lateral confinement of the electrons in each of the rings.
Similar models were previously applied for laterally coupled
dots.!”"!” In our calculations we take the GaAs value for the
mass m=0.067m,, the dielectric constant e=12.4, and as-
sume Aw=3 meV. The adopted oscillator energy corre-
sponds to a length [=v2%/mw=27.5 nm which defines the
width d=2/ of the considered rings. The Hamiltonian of a
single electron in a perpendicular magnetic field (B), using
the symmetric gauge, is

h? ( a 1d ) RLY molp?
=- +——+
dp? pdp 2mp 8

1
- EhwcL + V(p)s

(2)

where L is the angular momentum of the considered state,
and w.=eB/m. In the following we refer to the second, third,
and fourth term of the Hamiltonian as the centrifugal, dia-
magnetic, and the orbital Zeeman terms. We neglect the Zee-
man interaction of the electron spin with the magnetic field,
which at high fields polarizes the spins of the confined elec-
trons. The spin Zeeman interaction is decoupled from the
orbital degree of freedom, it does not influence the tunnel
coupling, and can be trivially accounted for as an energy
shift linear in B.>* The eigenstates of the N-electron Hamil-
tonian

2m

H= 2h+22 (3)

i1 j>i 477660r

are found with a standard?®?” exact diagonalization approach
using the single-electron eigenstates of operator (2) to con-
struct the basis elements in the form of Slater determinants.
We use the numerical method as originally developed to dis-
cuss the coupling between a quantum dot and a quantum
ring.>* The single-electron Hamiltonian (2) is diagonalized
using a finite difference scheme and the Coulomb matrix
elements are integrated numerically.

III. SINGLE ELECTRON COUPLING

Let us first discuss the single-electron states in the
coupled concentric rings. Figure 1 shows the potential felt by
an electron in the L=0 and L=6 states as well as the lowest-
energy orbitals (radial probability densities) for R;=120 nm
and R,=180 nm in the absence of a magnetic field. In the
lowest L=0 states the electron is equally probable to be
found in both rings and the orbitals possess a clear bonding
and antibonding character. On the other hand, for L # 0, the
centrifugal potential pushes the electrons towards the outer
ring. In Fig. 1 we show the result for L=6, which clearly
shows that the lowest-energy orbital is shifted to the external
ring. As a consequence, the electron in the excited-state or-
bital occupies predominantly the inner ring and the zero of
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FIG. 1. (Color online) Radial profile of the confinement poten-
tial (black solid curve referred to the right vertical axis) of the two
concentric rings for R;=120 nm and R,=180 nm at B=0. The black
dotted curve shows the sum of the confinement potential and the
centrifugal potential for L=6. Red (light gray) and blue (dark gray)
curves show the square of the modulus of the two lowest-energy
single-electron wave functions multiplied by Jacobian p at B=0 for
L=0 and L=6, respectively. The lower-energy orbitals are given by
the solid curves and the higher-energy orbitals by the dashed
curves.

the wave function is displaced from the center of the barrier
to the external ring. We see that the bonding-antibonding
character of the lowest-energy orbitals occupying both rings
is, for increasing L, replaced by a single-ring type of local-
ization. Therefore, the effect of the centrifugal potential is to
lift the tunnel coupling.

The energy levels are shown in Fig. 2 as functions of the
inner ring radius R; for fixed R,=180 nm. Note that for R;
=0, the system consists of a quantum dot surrounded by a
quantum ring.”* The lowest-energy level for L=0 and B=0
[see Fig. 2(a)] is then associated with the ring-localized state
(of energy close to iw/2=1.5 meV) and the excited state
corresponds to an electron confined in the parabolic quantum
dot (of energy fiw=3 meV). For R;>0 the quantum dot is
transformed to a quantum ring. The energy of the orbital,
which is predominantly localized in the inner ring, first goes
below Aw/2 and then returns to this value. Around R,
=80 nm the tunnel coupling appears between the internal and
the external rings, leading to an energy gap between the two
energy levels. Finally, for a single quantum ring (R;=R,
=180 nm) the spectrum resembles the one-dimensional har-
monic oscillator potential.>* For L=2 at R;=0 both the
lowest-energy levels correspond to orbitals localized in the
external ring. The energies are slightly shifted above fw/2
and 3%w/2 by the centrifugal potential. The internal ring
localized level becomes the first excited state near R,
=30 nm. The centrifugal potential lowers the height of the
inter-ring tunnel barrier (see Fig. 1). Consequently, the
avoided crossings between the L=2 energy levels (R,
=100 nm) are visibly larger than for L=0. A larger centrifu-
gal shift of the energy levels and a stronger level interaction,
a signature of a stronger tunnel coupling, is observed for L
=6 [see Fig. 2(b)]. For L=6 and B=0.5 T the diamagnetic
shift of the external ring-confined level is almost exactly
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FIG. 2. (Color online) Two lowest single-electron energy levels
for L=0, and L=2 at B=0 (a) and for L=6 at B=0 and 0.5 T (b), as
functions of the internal ring radius for an external ring of radius
R,=180 nm.

cancelled by the orbital Zeeman term [compare the lowest
black and blue curves at R;=0 in Fig. 2(b)]. However, the
Zeeman term dominates for the state localized in the internal
ring. As a consequence, the energy levels change their order
in a narrow anticrossing near R;=90 nm.

The dependence of the single-electron energy spectrum on
the external magnetic field is plotted in Figs. 3(a)-3(c) for
fixed R,=180 nm and different internal ring radii. For R;
=60 nm there is no tunneling between the rings and the spec-
trum is a simple sum of two single-ring spectra. The spec-
trum corresponding to the internal ring exhibits angular mo-
mentum transitions with a period of 0.214 T while the period
of the one corresponding to the external ring is 0.0406 T.
These periods correspond to the flux quantum passing
through an effective one-dimensional ring of radius 55.4 nm
and 180 nm, respectively. The ground state corresponds to
the electron in the internal ring, except for B=0.2 T and B
=0.65 T. The inner-ring localized states are favored by the
—(1/p)(d/dp) term of the kinetic energy.

For R;=100 nm [see Fig. 3(b)] the inter-ring coupling is
non-negligible. For comparison, the ground-state energy of
the single quantum ring of radius 180 nm is also shown in
Fig. 3(b) by the black curve. For B>0.15 T, sightly above
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the ground state, we observe more frequent angular momen-
tum transitions than in the ground state. This energy band
corresponds to the electron predominantly confined in the
external ring. With increasing magnetic field, this band
closely approaches the single-ring spectrum (cf. the black
curve), which indicates that the electron becomes entirely
localized in the external ring. Thus at high magnetic fields
the spectrum of the internal and external rings become de-
coupled. Note that the energy band corresponding to the lo-
calization of the electron in the external ring becomes dis-
tinct only for L>4.

Energy levels with the same angular momentum change
their order through avoided crossings. The lowest-energy
levels, for L=2, possess two minima, after and before the
avoided level crossing. The wave functions and the poten-
tials for the anticrossing of the L=35 energy levels [see the
anticrossing of red lines near 0.38 T at Fig. 3(b)] are pre-
sented in Fig. 3(d). The L=35 eigenstate for B=0.2 T is the
lowest-energy state of the external ring energy band [see Fig.
3(b) and the paragraph above] and its wave function is pre-
dominantly localized in the outer ring [see Fig. 3(d)]. At B
=0.38 T, corresponding to the smallest distance between the
anticrossing energy levels, the electron can be found with a
comparable probability in both rings. After the avoided
crossing the diamagnetic potential localizes the electron in
the internal ring. For B=0.7 T the L=5 state is localized
almost entirely in the inner ring [see purple curve in Fig.
3(d)] when it corresponds to the ground-state of the system
[Fig. 3(b)]. Concluding, for B=0 and fixed nonzero L the
lowest energy level is predominantly localized in the external
ring due to the centrifugal potential. For high magnetic field,
the lowest-energy state for a fixed L is transferred to the
internal ring by the diamagnetic term of the Hamiltonian.

For R;=120 nm [Fig. 3(c)] the coupling between the two
rings is stronger and the difference between the centrifugal
potentials in both rings is smaller. Consequently the two de-
coupled spectra of the internal and external ring are only
distinguishable for B>0.5 T. The amount of electron charge
localized in the internal ring [integrated over p from 0 to
(R;+R,)/2] for the ground state is plotted in Fig. 4, together
with the ground-state angular momentum. For low magnetic
field the ground-state wave functions are almost equally dis-
tributed between the two rings and at high field they are
entirely localized in the inner ring. Consequently, the period
of the ground-state oscillations increases with B (see the
slope of the black staircase in Fig. 4). Note that the decou-
pling of the spectra in Fig. 3(c) for B>0.5 T (R;=120 nm)
is accompanied by the transfer of the electron to the internal
ring (see Fig. 4). For R;=140 nm many more angular mo-
mentum transitions are needed before the electron becomes
entirely localized in the inner ring.

At the end of this section we would like to explain the
role of the adopted finite value of the rings’ width for our
results. The studied rings radii (R= 150 nm) and width (d
=55 nm) correspond to structures produced by the tip oxida-
tion technique.4 For instance, the ring of Ref. 4 is character-
ized by R=132 nm and d=65 nm. In the limit of infinite
oscillator energy (fw) the rings become strictly one-
dimensional (d— 0) and decoupled due to the infinite inter-
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FIG. 3. (Color online) (a)—(c) Single electron spectrum for coupled rings with the external ring radius R,=180 nm and the internal ring
radius R;=60 nm (a), 100 nm (b), and 120 nm (c). Energy levels corresponding to different angular momenta up to 8 were plotted with
different colors. In (b) the ground state of a single ring with radius 180 nm is shown by the black curve. (d) Lowest energy L=5 wave
function (solid lines) for R;=100 nm, before (B=0.2 T) at (0.38 T) and after (0.7 T) the avoided crossings of the energy levels [cf. red lines
in (b)] corresponding to states localized in the external and internal ring, respectively. Dotted curves refer to the right vertical axis and show

the sum of the confinement, centrifugal, and diamagnetic potentials.

ring barrier. The energy levels of states confined in one-
dimensional rings only depend on the magnetic flux® E,(L)
=[#%/(2mR?)|(L-®,/®,)?, where i=1, 2 stands for the in-
ternal and external ring localization respectively, ®y=h/e is
the flux quantum, and ®; corresponds to the flux through the
radius R;. It is clear that the localization of the lowest-energy
level of a pair of one-dimensional rings will oscillate
abruptly between internal and external rings when the mag-
netic field is increased. However, this switching is deprived
of physical consequences since due to the infinite inter-ring
barrier the electron is not allowed to release its energy tun-
neling from one ring to the other. Note that a trace of the
discussed localization switching can be observed in Fig. 3(a)
for negligible inter-ring tunnel coupling. Decoupled spectra
with short appearances of the external ring localization in the
lowest-energy state similar to Fig. 3(a) are obtained for R,
=120 nm, R,=180 nm for d decreased from 55 nm [as in
Fig. 3(c)] to 13.5 nm (Aw=50 meV). The rapid localization
switching disappears for the nontrivial case of a non-
negligible tunnel coupling [cf. Figs. 3(b)-3(d)].

10— — 40
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FIG. 4. (Color online) The discontinuous lines show the amount
of charge localized in the internal ring for the single-electron
ground state. The results correspond to the external radius R,
=180 nm and internal radius R;=120 nm (black lines) and R,
=140 nm (red lines) as functions of the magnetic field. The stair-
cases at the lower part of the figure are referred to the right axis and
show the ground-state angular momentum.
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of the inner ring radius. The dotted lines show the values in the
absence of the electron-electron interaction. (b) Charge localized in
the inner ring as function of the magnetic field for R,=180 nm and
different radii of the inner ring. (c¢) The two-electron energy spec-
trum for R;=122 nm and R,=180 nm. The spin singlets are plotted
as solid lines and the triplets with dotted lines. In the bottom of the
figure the ground-state angular momentum staircase is plotted.

IV. FEW-ELECTRON EIGENSTATES

Let us now discuss the effect of the electron-electron in-
teraction on the ground-state properties of few-electron sys-
tems. We find that for the interacting two-electron system the
ground-state angular momentum takes on all the subsequent
integer values, such as for a single quantum ring. The upper
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FIG. 6. (Color online) Three electrons in two concentric rings.
(a) Charge localized in the inner ring for R,=180 nm and various
R, radii. (b) Upper bound for the ground-state angular momentum.

bound for the ground-state angular momentum of the two-
electron system A= L is plotted in Fig. 5(a) as a function of
the external magnetic field. In contrast to the single-electron
problem, no influence of the inner ring on the ground-state
angular momentum is observed for R; <90 nm. This indi-
cates that the Coulomb repulsion prevents the electrons from
occupying the inner ring if its radius is too small. As a sig-
nature of the inter-ring coupling we see for Ry=115 nm, 120
nm, and 122 nm that the ground-state angular momentum
increases initially more slowly than for the single R
=180 nm ring, indicating the presence of electron charge in
the internal ring. At a certain value of magnetic field, how-
ever, the lines change their slope and tend toward the values
obtained for a single ring of radius 180 nm. In the discussed
range of the magnetic field, the inter-ring coupling for the
internal ring radii R;=130 and 140 nm is preserved.

Dotted lines in Fig. 5(a) show the \ values for the nonin-
teracting electron couple for a single ring with R=180 nm
(black dots) and for the double ring with R;=120 nm and
R,=180 nm (orange dots). For the single R=180 nm ring,
the N\ values for the interacting and noninteracting cases run
parallel to one another. However, for R=120 nm the \ values
for the noninteracting pair decreases its slope as the magnetic
field is increased, while for the interacting pair an increase of
the slope is observed instead. This is because for high mag-
netic fields the interacting electrons tend to occupy the ex-
ternal ring [cf. Fig. 5(b)] to minimize their mutual repulsion
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FIG. 7. Pair correlation function for two-electron ground state in
concentric rings with radii R;=120 nm and R,=180 nm. One of the
electrons is fixed at the point (180 nm,0).

in contrast to the single-electron problem in which the dia-
magnetic term of the Hamiltonian promotes the localization
in the inner ring (see Fig. 4).

The energy spectrum for R;=122 nm, for which the local-
ization of the charge in the external ring appears in the most
abrupt way, is plotted in Fig. 5(c). Below B=0.4 T one can
observe two bands of energy levels. In the ground state the
spin singlets correspond to even angular momenta and the
spin triplets to odd angular momenta. Opposite correspon-
dence is found in the excited energy band. The two bands
approach each other near B=0.5 T, but never cross. The re-
lation between the ground-state spin and the even/odd parity
of the angular momentum remains unchanged [cf. singlets
and triplets of L=24 marked in orange in the right upper part
of Fig. 5(c)].

The distribution of the charge between the rings in the
three-electron system is qualitatively similar to the two-
electron case. At zero magnetic field the electrons refuse to
occupy the inner ring if its radius is too small [see Fig. 6(a)].
Some electron charge is present in the internal ring due to
inter-ring tunneling, which is lifted by the application of the
external magnetic field. The ground-state angular momentum
at high magnetic field tends toward the value obtained for a
single, external ring [see Fig. 6(b)]. For R;=140 nm, in the
range of the magnetic field presented in Fig. 6, the inter-ring
coupling is not broken [cf. Figs. 5(a) and 5(b) for R,
=130 nm and R;=140 nm]. In the high magnetic field limit,
when the magnetic length becomes small compared to the
size of the confining nanostructures, the charge distribution
in few-electron systems can be identified”® with the lowest-
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FIG. 8. Same as Fig. 7, but now for three electrons.

energy configuration of a classical system? of point-charge
particles. Therefore, one should expect that in our model,
assuming equal depths of both rings, the few-electron system
will eventually become entirely localized in the external ring
at still higher magnetic fields.

Next, we study the evolution of the ground-state electron-
electron correlations with increasing magnetic field. For this
purpose we consider the pair-correlation function plots given
in Figs. 7 and 8 for two- and three-electron systems, respec-
tively. The position of one of the electrons is fixed in the
middle of the external ring, namely in the point (180 nm,0).
For two electrons at zero magnetic field the second electron
is found with an almost equal probability in the outer and
inner rings opposite to the fixed electron [Fig. 7(a)]. For 0.6
T [Fig. 7(d)] the second electron occupies mainly the exter-
nal ring with a small leakage of the probability density to the
internal ring [cf. also the orange line in Fig. 5(b)]. On the
other hand, in the three-electron system at B=0 there is al-
ready a pronounced shift of the pair-correlation function to
the external ring [Fig. 8(a)]. Figs. 7 and 8 show that the
infinite magnetic field limit is obtained in two steps: first the
charge is removed from the internal ring and then the angular
correlations between the electrons start to increase. The
Wigner type of localization, i.e., separation of electron
charges in the internal coordinates, increases with each
ground-state angular momentum transition tending to the
point-charge limit.
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FIG. 9. (Color online) Magnetic field dependence of the chemical potentials for 1, 2, and 3 electron systems in a single ring of radius
R=180 nm (a), in double concentric rings of external ring radius R,=180 nm and internal ring radius R;=100 nm (b), and R,;=120 nm.
Chemical potentials for one and three electrons have been shifted for clarity. (d) Deviation of the chemical potentials from the local average

(see text) for plot (c).

The above discussed AB oscillations associated with the
angular momentum transitions can be measured through the
magnetic field dependence of the conductance!! as per-
formed in phase-sensitive transport spectroscopy. Such trans-
port measurements require contacts to be attached to the
nanostructure. Connection of terminals to rings formed by
the surface oxidation technique*!! is straightforward. On the
other hand, attachment of electrodes to self-assembled
rings'*23 has not been reported so far. However, the ground-
state angular momentum transitions can still be extracted
from the chemical potential as measured in a capacitance
experiment.?? The magnetic field dependence of the chemical
potentials wy, defined as the ground-state energy difference
of N and N—1 electrons, is presented in Fig. 9. Figure 9(a)
shows the chemical potential for a single quantum ring of
radius 180 nm. For a single electron the chemical potential is
equal to the ground-state energy. The potential exhibits cusps
having a A shape at the angular momentum transitions.
These A cusps are translated into V-shaped cusps of the
chemical potential for the two-electron system. The angular
momentum transitions in the two-electron system are twice
as frequent'® as for N=1, hence in the u, plot we observe
two A cusps per one V cusp. Similarly, in the cusps’ pattern
of the three-electron chemical potential we obtain three A’s
per two V’s. Below 0.7 T for the double-ring structure with
R, =140 and R,=180 nm, we obtain qualitatively the same

spectrum of a single-ring type, only the AB oscillations pe-
riod is increased due to the reduced effective R value. This is
because for R;=140 nm the inter-ring coupling is not broken
by the magnetic field for B<0.7 T [see Figs. 4, 5(a), and
6(a)]. The occupied orbitals are equally distributed between
the rings.

Figure 9(b), for the doubled ring with internal radius R,
=100 nm, corresponds to the situation when a small mag-
netic field localizes the single-electron ground states in the
internal ring and ejects the entire charge of the two- and
three- electron systems to the external ring [see Figs. 5(b)
and 6(a)]. As a consequence, for w, we observe seven to
eight A cusps between each couple of V’s. On the other
hand, the pattern of cusps in the chemical potential of the
three-electron system resembles the single-ring case [Fig.
9(a)], only below B<<0.1 T a small perturbation of the pat-
tern is observed.

Figure 9(c) shows the chemical potentials for R,
=120 nm, for which the inter-ring tunnel coupling is quite
significant at B=0, but becomes suppressed in the studied
range of magnetic field [see Figs. 4, 5(a), 5(b), and 6] for all
considered N. Note that for N=1 and 2, the range of the
chemical potential modification by the magnetic field is an
order of magnitude larger than for a single ring [see Fig.
9(a)]. A distinctly larger range of chemical potential variation
can also be noticed for N=1 in Fig. 9(b). This increase is due
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to the magnetic field lifting of the inter-ring coupling present
at B=0. For larger N the Coulomb repulsion weakens the
tunnel coupling at B=0, which explains the weaker depen-
dence of the envelopes of w3 and u, in Fig. 9(b) and us in
Fig. 9(c).

In order to extract the fine features of the cusps’ pattern
we fitted slowly varying sixth order polynomials to the
chemical potentials in Fig. 9(c) and then subtracted from uy
this local average provided by the fitted polynomial. The
result is displayed in Fig. 9(d). For N=1 we see an enlarge-
ment of the AB oscillation period as the electron becomes
localized in the inner ring. The low magnetic field A-V cusp
sequences for N=2 and 3 resemble the single-ring localiza-
tion [see Fig. 9(a)]. For B>0.45 T when both electrons are
ejected to the external ring and the single electron is local-
ized in the inner ring, we see in u, several A’s per one V, as
in Fig. 9(b). For w3 the single-ring type of pattern is found
above B>0.45T. In the transition region (0.35 T<B
<0.45 T) the cusp structure is less pronounced. This is due
to the fact that in the B range corresponding to the transition
of the electrons to the external ring, the angular momentum
increases very fast, tending toward the angular momentum of
the ground state in the single quantum ring [see Figs. 5(a),
5(c), and 6] of radius R=180 nm.

V. SUMMARY AND CONCLUSIONS

We studied the coupling between concentric rings for the
few-electron eigenstates using the exact diagonalization ap-
proach. We find that the strength of the tunnel coupling de-
creases with angular momentum since the centrifugal poten-
tial favors the localization of the electrons in the external

PHYSICAL REVIEW B 72, 155316 (2005)

ring. At high magnetic field, for which the ground state cor-
responds to high angular momentum, the tunnel coupling
between the rings is suppressed and the energy spectrum
becomes decoupled into spectra of separate external and in-
ternal rings. The ground state for the single electron becomes
entirely localized in the inner ring due to the diamagnetic
term of the Hamiltonian, enhancing the localization of the
electron orbits. In contrast, the few-electron states at high
magnetic field become localized in the external ring to mini-
mize their mutual Coulomb repulsion. In our model, assum-
ing a similar radial confinement potential near the centers of
both rings, we find that the order of the spin-orbital ground-
state symmetries is not perturbed by the inter-ring coupling,
only the stability intervals of the subsequent ground states
are affected by the coupling. The modification of the electron
distribution between the external and internal rings is trans-
lated into the frequency of the ground-state angular momen-
tum transitions on the magnetic field scale. The electron dis-
tribution can be extracted from the cusp patterns of the
single-electron charging lines, i.e., the chemical potential de-
pendence on the magnetic field. Suppression of the tunnel
inter-ring coupling and localization of the ground states in
one of the rings under the influence of a magnetic field is
accompanied by a distinctly stronger increase of the chemi-
cal potentials compared to the charging spectra in which the
charge distribution between the rings is not modified.
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In-plane magnetic-field-induced Wigner crystallization in a two-electron quantum dot
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The orbital effects of the in-plane magnetic field on a two-electron harmonic quantum dot are studied using
a variational method. For flat quantum dots the singlet-triplet transitions appearing in a perpendicular magnetic
field are absent in a magnetic field oriented parallel to the plane of confinement. Instead, a degeneracy of
orbital energies for symmetric and antisymmetric states at high in-plane magnetic field is observed. This
degeneracy is due to the formation of Wigner molecules in the laboratory frame of reference with charge
islands elongated along the direction of the magnetic field and localized within the plane perpendicular to it.

DOI: 10.1103/PhysRevB.70.235335 PACS numbeis): 73.21.—b, 73.22.Gk

I. INTRODUCTION order 10-15 nm?® As a consequence, the orbital effects of

Epitaxially grown quantum dotsusually have a flat ge- the field are nonzero and can be visi_ble for instance in the
ometry with a confinement in the growth direction much diamagnetic shift§ of chemical potentials. The role of the
Stronger than the in_p|ane confinement. App“cation of aln-plane magneth field for the attenuation of tunnellng be-
magnetic field oriented along the growth direction leads to dween vertically’ and laterally® coupled dots has been
number of extensively studiéeffects, i.e., angular momen- pointed out.
tum and spin transitions, which are observed in transport The effect of the in-plane magnetic field on few-electron
spectroscopyas cusps in the single-electron charging lines.systems in a single dot has not been studied so far. The
A high perpendicular magnetic field induces separation ofurpose of the present paper is to provide such a study for
electron charges, i.e., Wigner crystallization, which for cir-the two-electron system—the simplest few-electron eigen-
cular dots appears only in the internal degrees of freedonmproblem. We show that although for strong vertical confine-
Laboratory-frame Wigner crystallization is a realizable fea-ment and relatively weak magnetic fields the orbital related
ture of the ground state only at the angular momentuniriplet-singlet energy differencéhe exchange enerdy is
transitions> On the other hand, Wigner molecules can bepositive and approximately constant, its limit value in the
observed in anisotropic quantum dots if the system possessbigh magnetic field falls to zero, which results from the sepa-
a nondegenerate classitabunterpart reproducing the sym- ration of the electron charges appearing due to Wigner crys-
metry of the confinement potentiaf. The pinning of Wigner tallization. In vertical and lateral quantum dots the confine-
molecules by a local potential cavity or by an external ment in the growth direction has a rectangular or triangular
charged defe@twas studied recently. In this paper we con- shape. In the present paper we are interested in the qualita-
sider the breaking of the rotational symmetry of the quantuntive effects of the in-plane field, so we consider a harmonic
dot by the application of an in-plane magnetic field, and weconfinement potential that largely simplifies the calculations
show that it can result in a laboratory-frame Wigner localiza-due to the separation of the center-of-mass motion.
tion. This paper is organized as follows. The next section out-

The effect of the external magnetic field on the electronlines the theory and the method to solve the Hamiltonian
system is proportional to its flux through the area encircleceigenvalue problem. In Sec. Il the results and discussion are
by the electrons. Therefore, the orbital effects of the in-plangiven. The summary and conclusions are presented in Sec.
magnetic field are weaker than those of the perpendiculalV.
field and in the limit of a strictly two-dimensional confine-
ment the in-plane magnetic field does not influence the or-
bital wave functions. Such an in-plane magnetic field Il. THEORY
has been applied experimentafy*? to investigate spin ef-
fects(Zeeman splitting and spin-orbit'“interactions). Nev-
ertheless, the electron wave functions in real dots have

We consider a pair of electrons in a three-dimensional
garmonic guantum dot, rotationally symmetric with respect
- ; PR ; to thez axis and subject to a magnetic field oriented along
finite spread in the growth direction. In pillar quantum dots T
based on AlGa,_As/InGa,_As double barrier hetero- the x dlref:non. We apply .the Landau gauge=(0,-Bz,0)
structure® the quantum well has a width of 12 nm, and the Under which the Hamiltonian reads
yvidth of the GaAs quantum well in the planar vertical dot H == #3(V2 + V)/2m+ ma?(:E + y2 + 32+ y2)/2
is about 17 nm. The lateral quantum ddtare based on a . _
gated two-dimensional electron gg8DEG) formed at a + M’ + wd)(Z + 5)I2 +ihod(z 19y, +2,31Y,)
GaAs—Al,Ga,_,As heterojunction. The vertical spread of +e2/a Fo—t 1
the electron wave function in the 2DEG for typical values of meeolry =2, @
the electron density and dopant concentration is also of therherefiw, is the confinement energy in tiedirection,zw is
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the energy of confinement in th&,y) plane,m is the elec- TABLE I. Convergence of the energy estimates obtained with
tron band massp,=eB/m is the cyclotron frequency, and  wave function(6) to the exact ground-state energgst row)of the

is the dielectric constant. For our numerical calculations matelative Hamiltonian as function d¥l (the number of terms used in
terial data of GaAs are used=0.067 ande=12.9. We study the wave functiqn isK) for B=0 and a spherically symmetric con-
the orbital effects neglecting the spin Zeeman interactionfinement potential witthw=fw,=3 meV.

which, however, can be trivially accounted for.

Introducing center-of-mag&=(r,+r,)/2 and relative po- M K E(meV)
sition r=r,—r, vectors, one can separate the Hamiltonian 0 1 8.6100
into a sum of center-of-mass and relative Hamiltoni&hs 5 5 8.4336
=Hem*Hrer with 6 30 8.4187
Hem= = 72V2.[2M + M@?(X? + Y?)/2 + M(w2 + 03 Z%/2 14 204 8.4145
. 22 650 8.4134
tihwZ 010 2 exact 8.4134
and
oot = - H2V2 /20 + pa?(2 + Y212 + (02 + wd) 212 magnetic contributions to the energy, has to grow simul-
taneously withw,. For thew./ w, ratio kept constant the dia-
+ihwzd oy + Elameey, (3)  magnetic contribution is approximately linear an and the
, paramagnetic contribution is approximately constant.
whereM =2m and u=m/2. The two-electron wave function * |5 order to solve the eigenequation for the relative motion
can be written as a product of center-of-mass and relativgjamiitonian in the presence of the interaction we use the
eigenfunctions variational method with the following trial wave function:
W(ry,rp) =D (ry+1)/2]D g (r—r5). 4 k=M
( 1 2) cn[( 1 2) ] rel( 1 2) ( ) (I)re|(r) _ exp(— axz—ﬁyz— ‘yzz+ iczy) E dijkxiyjzk,
It can be verified by a direct calculation that the ground-state i.j,k=0
energy of the center-of-mass motion equ5§1=h{w+[w§ (6)

+(w+w,)?]Y3/2, and that the ground-state wave function

reads(up to a normalization constant) wherea, B, v, ¢ are the nonlinear parameters atig is the

linear variational parametek] controls the number of basis
DerfR) = expl- b X2~ b Y2~ b,22 + b, ZY) (5) elements. In the absence of the interaction, the wave function
e X Y z o (6) reproduces exactly the analytic eigenfunctions using a
with b =Mw/2%, by=Mw\/1+w§/(wZ+w)2/2h, b, finite number of terms in the expansion. In this sense the
- M+ 02/ (0t w)2 db..=M Nt o)k present approach is equivalent to the three-dimensional gen-
Maz\1tac/ (0 )"/2h, andby =Moo/ (0 + w)h. eralization of the method used by Drouveés al?223 for

op;hafo:(erlimier)Hggtlggr\];v?tﬁ?\;%gndrg;] :)easrit\;/wg:etgimpri:g two-dimensional anisotropic quantum dots with perpendicu-
: lar magnetic field. Similar single-electron wave function was

fic (antisymmetricjwith respect to the interchange of elec- used by Harjet al?! for the configuration-interaction study

trons and the_refo_re correspond to spin singlatplets). The of the electron pair in two-dimensional laterally coupled
relative Hamiltonian commutes also with operators of 'nver'quantum dots

sion inx direction(x— —x) and in the plane perpendicular to The exact wave function for the-type states in a
the magnetic f|eI(ﬂ(y,z)_—>—(y,_z)]._ln the fol_lowmg we W'_” harmonic-oscillator confinement potential is asymptotically
label the states by th§|r parities xnandy dlre_ct|ons putin  jiearin the limitr — 0 (has a cusp at=0), which is related
parentheses by the first and second descriptor, respectively he coulomb interaction singularity. Sincecannot be
[for instance(even,odd}stands for a state evenxdirection o eloned in a MacLaurin series in Cartesian coordinates the

and oﬂd inbthe(y, z)fplr;eme]l. | : ion th resent and previously used wave functfdn® cannot ac-
In the absence of the electron-electron interaction the Corg, ¢ for this finearity in the nearest neighborhood of the

tribution of the diamagnetiemz*/2) and the paramagnetic origin. We have performed test calculations in order to esti-
(ifiweza/ dy) terms describing the in-plane magnetic field in yate the importance of this shortcoming. For this purpose
Hamiltonians(1)—(3) can be evaluated analytically. For the \ye have solved the eigenequation for Hamiltonidn for
center-of-mass Hamiltonigi2) and the wave functiob)the =g and a spherically symmetric potentidlw=tfiw,
expectation values of the diama%M@ramagnetig3 meV in a numerically exact manner with a finite differ-
terms equal Mw?/8b,=fiw}/4w1+wi/(w,+w)* and  ence method. Table | shows the convergence of the energy
—hwdb,,/4b,= ~fwwll 2w+ o) o1+ (0,+©)?, respec- estimates obtained with the wave functig) to the exact
tively. In the limit of infinite w, the electrons become con- ground-state eigenvalue. Comparison of the wave functions
fined two-dimensionally in the=0 plane, which leads to the is presented in Fig. 1. FOM=6 the wave function has a
vanishing of the diamagnetic and paramagnetic contributionshallow local minimum at the origin and the maximum of the
(it is also evident from the form of the corresponding termswave function is shifted to the right with respect to the exact
in the Hamiltonian). In order to maintain the values of thesolution. ForM =22 the local minimum gets almost as deep
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FIG. 1. Ground-state wave function of the relative Hamiltonian B[T]
calculated for the parameters used in Table I. Solid line shows the ) ) )
exact wave function, the dashedotted)line is the wave function FIG. 2. Energy eigenvalues of the relative Hamilton{@n cal-

obtained by the variational method fof=6(M=22). Inset: com-  culated with respect to the lowest Landau level for a spherical quan-
parison of the exact radial probability densisolid line)with the ~ tum dot with Aw=%w,=3 meV (Zeeman effect neglectgdThe

dependence obtained variationally wih=22 (open circles). solid and dotted lines show the singlet and triplet energy levels,
respectively. In parentheses the parity of the corresponding eigen-

in th uti h f ion b i states in thex direction and within thgy, 2) plane is given. The
as in the exact solution, the wave function becomes N3 mbers indicate the component of the angular momentum7in

between 5 a”O_' 15_ nm, and the_posmon of the maximum Ofjts. The inset shows the lowest singlet probability density inte-
the wave function is improved with respect to te=6 wave  grated over the direction for magnetic field8=0, 12, and 18 T.
function. The expectation value of the energy is a functlonaP

of the radial probability density, which is depicted in the of the angular momentum is quantized. Figure 2 shows that
inset of Fig. 1. We can see that the exact radial probabilityangular momentum and spin transitions appear in the ground
density and the one calculated ft=22 are indistinguish-  state. Thex component of angular momentum of the lowest
able, which explains the high precision of the energy estisinglet(triplet) states takes values of evéodd) parity inte-
mates(cf. Table 1). The region of the trial wave function 9€rs(in 7 units). The angular momentum transitions and the
nonlinearity around the origin can be made arbitrarily small Singlet-triplet oscillations are qualitatively similar to the ef-
and a numerically exact value of the energy and a nearlyects appearing in two-dimensional circular quantum dots in
exact radial probability density are obtained. Therefore thdhe presence of a perpendicular magnetic fiéf%.The ori-
application of the proposed wave function is well justified. 9in of the singlet-triplet oscillations in two-electron two-
The cusp shortcoming concerns also the statgs ofmme-  dimensional quantum dots is well undgrstood. The increase
try, but its importance is smaller since fprstates the func- ©Of the magnetic field pushes the maximum of the relative
tions vanish at the origin. Wave functions of higher angularvave function toward the origirin the three-dimensional
momentum have no cusps at the origin. The cusps in théase—towards thg axis) increasing the mean value of the
exacts andp symmetry states dissap&ain the Wigner crys- Coulomb interelectron repulsion. In consequence the state of

tallization limit for which a Coulomb hole is formed in the @ higher angular momentutwith stronger electron separa-
relative wave function near=0. tion) acquires lower energy beyond some critical value of the

magnetic field. The ground-state angular momentwrith-

out the spin Zeeman terntakes the subsequent integer val-
Ill. RESULTS AND DISCUSSION ues as the magnetic field increases. The lowest-energy states
of the odd(even)angular momentum are realized in the trip-
let (singlet) spin configuratiorf> which leads to the singlet-

We consider first the effect of the magnetic field on atriplet oscillations.

spherical quantum dot. The lowest energy levels for all parity On the other hand, the order of the lowest singlet and
symmetries calculated with respect to the lowest Landatriplet energy levels that are odd in thedirection is not
level are plotted in Fig. 2 as function of the external mag-affected by the fieldcf. Fig. 2). Here, the magnetic-field-
netic field. The solid(dotted)lines correspond to states of induced localization of the relative wave function around the
even(odd) total parity, i.e., to singleftriplet) states. In the x axis does not essentially decrease the electron-electron dis-
absence of a magnetic field the ground state corresponds tance since in these states the electrons are separatedxin the
the angular momentum quantum numherO, the lowest direction. The driving force for the singlet-triplet oscillations
excited states ofeven, odd)as well as with(odd, even) is therefore absent in this branch of energy levels.
parity correspond td_=1. The lowest(odd, odd)energy The inset to Fig. 2 shows the contours of the relative
level corresponds td.=2. The magnetic field breaks the probability density for the lowest singlet state integrated over
spherical symmetry of the system so only thkeomponent the x direction. Note that in the integration the minimum of

A. Spherical quantum dot
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FIG. 3. Energy eigenvalues of the relative Hamiltonian calcu-  FIG. 4. Triplet-singlet energy differena&vithout the spin Zee-
lated with respect to the lowest Landau level for a flat quantum doinan effect)as function of the magnetic field fdrw=3 meV and
with Aw=3 meV and%w,=12 meV. The solid and dotted lines various confinement energies in tkedirection. The thick dashed
show the singlet and triplet energy levels, respectively. In parentheline shows the spin Zeeman splitting between the triplet and the
ses the parity of the corresponding eigenstates ix tieection and  singlet states. The inset shows the low-magnetic-field region.

within the (y,2) plane is given. ) ) )
tropy of the confinement potentigkf. the line for Zw,

o . .- . =3.5 meV), the exchange energy becomes a smooth function
the probability density at the origin foB=0 (cf. Fig. 1) of the magjnetic field. 19he oscﬁlétions of the energy differ-
disappears. The lowest singlet statesB670, 12, and 18 T o6 around zero have a decreasing amplitude with growing
correspond to thex component of the angular momentum ¢qnfinement energy in thedirection. Forfiw,=8 meV the
equal to 0, -2, and -4, respectively. For nonzero angular ogcijliations disappear and the exchange energy decreases
momentum, the probability density is totally removed from mongtonically to zero with the external field. The thick
the x axis. The densities exhibit perfect circular symmetry yashed line in Fig. 4 shows the spin Zeeman splitting be-
around thex axis, although it is not evident from the form of tyeen the singlet and triplet statesBfig’ ug with the effec-
the Landau-gauge Hamiltonignf. Eq. (3)]. This result can  tjye | andé factorg’=-0.44). The crossing of this line with
serve as an additional test of the reliability of the numericakhe exchange energy curves indicate the value of the mag-
approach applied. netic field for which the triplet becomes the ground state.
The inset to Fig. 4 shows the exchange energy in the low
magnetic field region. FoB=0 T the singlet-triplet energy
splitting is a decreasing function of the strength of confine-
The low-energy spectrum for a flat quantum dot with ment in thez direction. As thez size of the quantum dot is
hw=3 meV andfiw,=12 meV is plotted in Fig. 3Zeeman  decreased the system starts to approach the strictly two-
effect neglected). For this value of taeconfinement energy  dimensional limit in which the singlet-triplet splitting for
the spread of the electron charge density in zhdirection  %»=3 meV is 1.3 meV. The increase of tlzeconfinement
2Az=2(7%)Y?=\2fi/mw, is about 13.75 nm. The magnetic energy affects more strongly the energy of the singlet state,
field lifts the degeneracy of the triplet energy levels, whichincreasing the value of the wave function at the origior-
for B=0 correspond to states witacomponent angular mo- responding to both electrons localized in the same pogition
mentum equal to #. In the presence of a magnetic field The triplet wave function vanishes at the origin due to the
oriented along the direction none of the components of the Pauli exclusion principle.
angular momentum commute with the Hamiltonian and Let us now look at the origin behind the magnetic-field-
therefore none of them are quantized. The external magnetiaduced singlet-triplet degeneracy for the dot withw,
field leads to singlet-triplet degeneracy in contrast to singlet=12 meV. The contour plots in Fig. 5 show the relative prob-
triplet oscillations observed in a spherical dof. Fig. 2).  ability density integrated ovex (left panel)and z (right
Figures 2 and 3 show that the lowest singlet as well as theanel) coordinates for the lowest singlet state. The quasi-
lowest triplet states have evendirection parity, indepen- three-dimensional plots at the right-hand side of Fig. 5 show
dently of the value of the magnetic field and the strength othe surface in the>0 half space at which the probability
the electron-electron interaction. density falls to one-fifth of its maximum value. Region in-
The singlet-triplet energy splitting in the absence of theside the surface contains roughly 90% of the probability. For
spin Zeeman effect is shown in more detail in Fig. 4. TheB=0 T the probability density integrated over thélirection
exchange energy for the spherical quantum dot has a discoexhibits local maxima outside the=0 line (cf. left panel of
tinuous derivative when angular momentum transitions apthe contour plot in Fig. 5). The magnetic field transforms
pear in the lowest singlet or triplet states. For small anisothem into separated islands on thge z) plane. ForB=0 T

B. Flat quantum dot
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FIG. 5. Contour plots at the left side of the
figure shows the relative motion probability den-
sity for the lowest singlet state integrated over the
x direction (left panel)and over thez coordinate
(right panelfor Aw=3 meV, hw,=12 meV, and
different magnetic fields. Larger values of density
are marked with darker colors. At the right side of
the figure we show the surface at which the prob-
ability density takes one-fifth of its maximum
value.
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the density integrated over ttzecoordinate is circular sym- N(r) =(W(ry,ry)|80r —rqy) + 8 —ry)|W(ry,ry)

metric (cf. right panel of the contour plot in Fig. 5). For the

flat quantum dot the integration over thecoordinate does - zf dr 4| (1 1 + 1)/2)2|D (1 — 1) 2. )

not fill in the central local maximum as in the spherical case

(cf. Fig. 1 and inset of Fig. 2 foB=0 T). When a magnetic

field is applied, the density loses its circular symmetry and idigure 7 shows the comparison of the probability densities of

transformed into two maxima elongated along the directiorthe center-of-mass and relative ground states and the two-

of the magnetic fieldx) and becomes strongly localized in electron charge densitigglivided for comparison by two

the direction perpendicular to the field. The region in whichintegrated over the direction for the potential parameters of

the probability density is nonzero at high magnetic field re-Figs. 5 and &’ The noninteracting densityivided by two)

sembles two beans put along tkexis near the=0 plane. and the center-of-mass density come from solutions of the
Figure 6 shows the relative probability density for the same Schrddinger equations, the only difference is that the

triplet state[of odd parity in the(y,2) plane and of even center of mass is twice heavier, which results in a stronger

parity in thex direction]. ForB=0 they and z degrees of localization of the center-of-mass density. On the other hand,

freedom are decoupled and the wave function is simply ofhe mass that enters the relative Hamiltonian is half of the

odd parity in they direction and even iz direction?® The  electron mass, which along with the repulsive Coulomb

plots for B=0 T show that the density vanishes near yhe potential results in a weaker localization of the relative

=0 plane and that it forms two semiround islands parallel tocharge density. The interacting two-electron charge density

the x axis localized around the=0 plane. Magnetic field calculated according to expressiof is more weakly local-

makes the islands thinner, longer, and less oval. Bor ized than the center-of-mass density but the localization

=30 T the probability densities for the triplet and singletis stronger than for the relative wave function. The integra-

states become almost identical, which is the reason for thion of the relative charge density with the center-of-mass

singlet-triplet degeneracy at high magnetic figtfl Fig. 3).  density fills the Coulomb hole visible in the relative density
For the sake of physical interpretation it is useful to look(cf. right panel of Fig. 5 foB=0 T). The effect of the Cou-

at the ground-state charge density in the laboratory frame dbmb interaction on the electron localization can be esti-

reference. The charge density can be extracted from the twanated from a comparison of the interacting and noninteract-

electron wave function by integration with Dirafunctions  ing charge densities.
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The evolution of the ground-state charge densitir)] merge into a central maximum when integrated over the rela-
with the in-plane magnetic field, which is presented in Fig. 8.tive probability density with the center-of-mass density. For
The two local maxima of the probability density visible for B=10 T the limits of the charge pool become squeezed in the
the relative eigenstatécf. left plot for B=0 T in Fig. 5) direction perpendicular to the field. The appearance of the

maximum elongated along the=0 axis (cf. right plot for
T T . T B=10 T) is due to the formation of the two maxima in the

B=0 . relative density(cf. right plot in Fig. 5 forB=10 T). Plots for

|- ho=3mev B=20 T andB=30 T show a distinct separation of the elec-
Fop, = 12 mey tron charges, i. e., Wigner crystallization. The single-electron

TCM - charge islands formed under the influence of the in-plane

- - field form stripes elongated along the direction of the applied
field. The extent of the charge density is not essentially
.. % noninteracting changed along the direction of the field.
S The magnetic-field-induced singlet-triplet degeneracy can
- be conveniently explained in the single-electron picture as
due to the vanishing overlap between the wave functions of
the two electrons. In the absence of the overlap the exchange
interaction disappears leading to the observed spin degen-
== eracy. The wave function separation is due to the strong lo-
calization of the single-electron charge islands in the direc-
tion perpendicular to the field. The present effect is similar to
FIG. 7. Probability densities of the ground state of the center ofthe singlet-triplet degeneracy induced by the in-plane mag-
mass(CM) and relative(rel) Hamiltonians, and the charge density netic field for laterally coupled quantum dats® For
of the noninteracting and interacting system of two electrons intecoupled dots the in-plane magnetic field induces stronger
grated over the direction as a function of the radial coordingte localization in each of the quantum dots, which results in a
=Vx?+y? for hiw=3 meV, hw,=12 meV, andB=0 T. The two- decreasing tunnel couplingan increase of the effective
electron charge densities have been divided by 2. height of the interdot barrigrwhich eventually leads to the

interacting

probability density [arb. units]

B - -
“‘"-
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FIG. 8. Contour plots at the left side of the
figure show the two-electron probability densities
[n(r)] integrated over tha (left panel)andz co-
ordinates (right panel) for Zw=3 meV, fiw,
=12 meV. The surface plots at the right side of
the figure show the surface at which the charge
density takes one-fifth of its maximum value.
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separation of the single-electron wave functions. The separ%wz>§ﬁw the exchange energy falls to 0.1 meV Bt
tion accompanied with the singlet-triplet degeneracy appears1.24¢.w,—0.37 meV)T/ meV, B=2.1(hw,~—1.72 meV)
also without the in-plane field for the thick interdot barffer
as well as in large quasi-one-dimensional quantum #ots.
Drouvelis et al?® found the ground-state singlet-triplet de-
generacy for large anisotropy in small two-dimensional 1
quantum dot in the absence of the external magnetic field. 1
For strong anisotropy this modél gives a strictly one-
dimensional potential, for which the Coulomb interaction is
extremely strong, leading to Wigner crystallization even for
dots of relatively small size.

Since the laboratory frame separation is accompanied by a
singlet-triplet degeneracy one can use the vanishing value of
the exchange energy to propose a criterium for the magnetic-
field-induced Wigner crystallization. Figure 9 shows the
triplet-singlet energy differencéZeeman effect neglected)
on the(w,, B) plane forhw=3 meV. The magnetic field for
which the exchange energy becomes negligible is a distinctly
growing function off.w,. The magnetic field above which the
exchange energy falls' below 0.1 me\{ i, >4 meV can hw=3 meV. Blue(white and redyegions correspond to the triplet
be very well approximated by a linear dependerB_e (singlet) ground state for the spin Zeeman effect neglected. The
=1.6(hw,~1.266 meV)T/meV. The value of the magnetic- gashed line shows the values Bfand i, for which the triplet-
field-inducing Wigner crystallization is an increasing func- singlet energy difference is equal to 0.1 meV. Color scale is given at
tion of Aw—the confinement energy in th&y) plane. For the right-hand side of the figure.

hw, [meV]

W kB 0 > N @ w0 O

BI[T]
FIG. 9. (Color online) Triplet-singlet energy difference as a
function of the magnetic field and vertical confinement energy for
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T/meV, B=2.95¢w,—3.74 meV)T/meV forhiw=2, 5, and  confined within a harmonic three-dimensional quantum dot
10 meV, respectively. rotationally symmetric with respect to theaxis. Calcula-

In spherical quantum dotsf. Fig. 2)as well as in circular  tions used explicitly the center-of-mass separation and were
two-dimensional quantum dots in a perpendicular magnetigerformed with Gaussian trial wave functions. In flat quan-
field?>2* singlet-triplet oscillations are observed instead ofy,m dots a high in-plane magnetic field leads eventually to

the above degeneracy. But in these systems the separatiorl%m degeneracgin the absence of the spin Zeeman interac-
the electron charges appears in the inner degrees of freed ion) instead of spin-triplet oscillations, which are obtained

not in the laboratory frame, so that the picture of vanishin% tic field oriented al h is of lindrical
overlap between the single-electron wave functions does n pr magnetic neid oniented along the axis of a cylindrica

apply (it would imply breaking of the symmetry of the ex- Symmetric quantum dot. The spin degeneracy is due to
ternal potential). Wigner crystallization induced in the laboratory frame by the
In the present paper we have used a harmonic confindd-plane magnetic field. For flat quantum dots and low mag-
ment potentia| in the growth direction. The potentia| in rea|netiC fields the orbital effects have |n|t|aIIy a negllglble effect
dots has often a quantum-well or a triangular form. Althoughon the singlet-triplet energy splitting. In the high-magnetic-
the shape of the confinement in the growth direction shouldield limit, when Wigner molecules are formed, all the
not have a qualitative influence on the results, one shouldinglet-triplet splitting can bestrictly attributed to spin-
expect quantitative differences except in the region where theelated effects. Nevertheless, between the low-field and mo-
magnetic field is so strong that the magnetic lengthlecular regimes there exists a magnetic field interval for
(V2#/eB=36.28 B nm\yT) is much smaller than the range which the exchange energy rapidly changes with the mag-
of the vertical confinement. In quantum wells the energynetic field.
spacings between the lowest-energy levels are larger than
that for the harmonic-confinement potential. The spacings
between the lowest-energy levels for an infinite quantum
well with width 13.75 nm(corresponding to a similar verti- ACKNOWLEDGMENTS
cal spread of the electron wave function fo®,=12 meV)
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Spatial ordering of charge and spin in quasi-one-dimensional Wigner molecules

B. Szafran'? F. M. Peeter3,S. Bednarek, T. Chwiej}? and J. AdamowsKi
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2Faculty of Physics and Nuclear Techniques, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakéw, Poland
(Received 19 January 2004; published 2 July 2004

Few-electron systems confined in quasi-one-dimensional quantum dots are studied by the configuration
interaction approach. We consider the parity symmetry of states forming Wigner molecules in large quantum
dots and find that for the spin-polarized Wigner molecules it strictly depends on the number of electrons. We
investigate the spatial spin ordering in the inner coordinates of the quantum system and conclude that for small
dots it has a short-range character and results mainly from the Pauli exclusion principle while the Wigner
crystallization in large dots is accompanied by spin ordering over the entire length of the dot.

DOI: 10.1103/PhysRevB.70.035401 PACS numbsis): 73.21.La, 73.20.Qt

I. INTRODUCTION parity symmetry of the nearly degenerate states forming

Strong confinement of charge carriers in two directions'igner molecules in large dots. We show that for spin-
results in reduction of their degrees of freedom to a singlePolarized electrons the Wigner localization is formed only
one, i.e., in quasi-one-dimensional motion. Such onefor one(even or odd)spatial parity of the state strictly de-
dimensional systems are realized typically in split-4a@nd  pendent on the number of electrons. We present this depen-
cleaved-edge overgrowtlsemiconductor quantum wires, as dence in the form of a theorem for which we provide a rig-
well as in carbon nanotubéshut can also be realized in orous analytical proof. The found dependence of the parity of
finite-size systems, i.e., in anisotropic quantum #ais  one-dimensional Wigner molecule states on the number of
quantum ring$. There is a renewed interest in the one-gjectrons is similar to the appearance of the magic angular

dimensional systems related to the recent progress of vapoytomenta states for which Wigner crystallization is possible
|IQUId-S70!)Id fabrication of quantum wires of very high iy circular dots224 Furthermore, we discuss an inhibition of

quz_a;_l;]ty. ¢ is devoted to elect ‘ f igner crystallization by a perturbation of the confinement
. € present paper 1S devoted 1o electron Systems Contingghq yjiq| through a central inversion-invariant potential well.
in one-dimensional quantum dots and in particular to thei Magnetic spin ordering of electrons in one-dimensional

Wigner crystallizatio® appearing when the electron- space has been extensively studteth Hubbard models

electron interaction dominates over the kinetic energy. hich. i di . ith onl t-neiahbor hoopi
Wigner electron solidgWigner moleculespare predicted to which, In one dimension with only hearest-neighbor hopping
interactions, predict the appearance of a low-spin ground

appear in large dotsor in strong magnetic field<. In the 26 This | 2 . : P
Wigner molecules the charge density separates into distin&(€* This is a consequenteof the Lieb-Mattis theore

charge maxima each corresponding to one of the confine@hich implies that Withgut spin-dependent interactions the
electrons. Formation of Wigner molecules in the ground-statground state of one-dimensional electron systems corre-
charge density in one-dimensional quantum dots was previsPonds to the lowest possible spin quantum nunie0 or
ously obtained in exact diagonalizatidn'® and the density 1/2). This feature generally does not have to result in any
functional approach® In one-dimensional dots the Wigner spatial spin ordering. In this paper we use the exact numeri-
localization appears in the laboratory frame, in contrast tecal solution of the Schrddinger equation to investigate the
the inner-coordinate crystallization appearing in circularspatial distribution of spins in the one-dimensional quantum
quantum dotd? including quantum rings. Transport proper- dot and the relation between the charge and spatial spin or-
ties of Wigner crystals formed in open infinite one- dering in the Wigner crystallization limit. We find that
dimensional systems have also been stutfié8 The Lut-  Wigner crystallization is accompanied by a long-range spin-
tinger liquid formalism has been appli€do quantum wires ordering in the inner coordinates of the system instead of a
with box-like boundary conditions, i.e., to the one- spin-symmetry breaking predicted by the density functional
dimensional quantum dots. Melting of classical one-theory!6-28In the ground-state this ordering has a clear anti-
dimensional Wigner crystals has recently been deschbed. ferromagnetic character.

We study the quasi-one-dimensional quantum dots using a This paper is organized as follows. In Sec. Il we present
configuration interaction approach with the effectivethe theoretical method. Section Il contains the results for the
electron-electron interaction potential which we derivedWigner localization and ground state degeneracy of the few
recently?! This work is a generalization of our exact two- electron systems. In Sec. IV we present proof for the depen-
electron studif to a larger number of electrons. In the weak dence of the parity of spin-polarized Wigner molecules on
confinement limit the ground state becomes nearly degenethe number of electrons. Section V contains a discussion of
ate with respect to the spin configuration of the electronthe effect of a central defect on Wigner crystallization. In
systemt*15 Similar approximate degeneracy has been foundSec. VI the study of spin ordering is presented. Section VII
in quantum rings of large radid8.In this paper we study the contains our summary and conclusions.
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FIG. 1. (a) Lowest energy levels multiplied by the dot length féx 2. Numbers close to the curves denote the total spin quantum number
of the corresponding states and signs +, — stand for even and odd parity synibmetig), (d) Charge density of 0+, 1-, 1+, and O- states
plotted with solid, dotted, dashed, and dash-dotted linesl#®0, 100, and 200 nm, respectively.

Il. THEORY bitals. Spatial single-electron wave functions have been ob-

We consider N electrons confined in a quasi-one- tained by numerical diagonalization of the finite-difference
dimensional quantum dot with strong lateral harmonic-version of the single-electron one-dimensional Hamiltonian
oscillator confinement potential. The Hamiltonian of the sys—(4_) ona mesh of points. In construction of thg Slater deter-
minants with required spin and parity symmetries we use the

tem reads . ) ) .
spatial wave functions of up to eight lowest-energy single-
N NN K electron states which results in a Slater determinant basis
H=2 hi"'E > o (1) size of up to 1520 elements and an accuracy better than
=1 ELE 0.01 meV.
whereh stands for the single-electron Hamiltonian The present approach is based on the assumption that only
5 . 5 the lowest state of the laterét,y) quantization is occupied.
h=— h _v24 m o R +y?) +V(2), (2)  We performed test calculations for two, three and four elec-
2m 2 trons to check the validity of this approach. We allowed the

electrons to occupy also thetype lowest excited state of the

lateral quantization with angular momenturf.#nclusion of

p states not only allows for determination of the critical well

length above which the shell is emptied, but it is also
rTPwelpful to estimate the importance of the angular correlations
“in the x-y plane. The Coulomb matrix elements were evalu-

ated using effective interaction potentials derived with the

V(2) is the confinement potential in thedirection. For a
large lateral harmonic-oscillator confinement enefgy)
the movement of electrons in tlie,y) plane is frozen to the
harmonic-oscillator ground state. Then, one can perfor
integratiori! over the lateral degrees of freedom which re
sults in the following Hamiltonian:

N NN use of the Fourier transform technigtieWe have obtained
H=Naw+ >, hiP+> > (w/2)Y(«ll) the following results: the shell is left empty ford> 39 and
i=1 i=1 j>i 41 nm forN=3 and 4, respectivelgfor two electrons the
« erfc(zijlzl’zl)exp(;%IZIz), (3) s_he_II is never occupied). Acc_ount_ing for tble,_/ corrglati_ons
via inclusion of thep-type orbitals in the configuration inter-
wherez; =z _Zj| and action basis lowers the two-electron total energy estimates by
2 ¢ 0.18, 0.12, 0.01, and IHmeV for d=40,50,100, and
htP=-——+V(2) (4) 200 nm, respectively. These “lateral correlation energies” for
2m' d7 the same values ofl are equal to 0.4, 0.3, 0.08, and 4

is the single-electron one-dimensional Hamiltonian. In theX 10" meV for N=3, and 1.18, 0.67, 0.23, and 0.03 fur
following we will neglect the first term in Eq3), i.e., the =4, respectively. The energy overestimation in the range of
lateral confinement energy which is independent of the forntudied further is never significant and the present approach
of wave functions in the direction. The last term in Eq3)  is nearly exact in the Wigner localization regime.

is the effective interaction ener§jyfor electrons in a quasi-
one-dimensional environment resulting from integration of
the Coulomb potential over the lateral coordinatesjs the
effective massig=€?/4meqe, ¢ is the dielectric constant, and
I=VA/m ». We assum&/(z) =V, (2), a rectangular potential In this paper we label the states by their total sBiand
well of depthV,=200 meV, and widthd. We adopt GaAs parity quantum numbers using the notati&t, where the
material parameters, i.em'=0.067m, €e=12.4 as well as positive(negative)sign stands for eve(odd) parity. We dis-
hw=10 meV (1=10.66 nm)for the lateral confinement en- cuss only the lowest-energy states for a given spin-orbital
ergy. Calculations have been performedfbr2,...,5 elec- symmetry. Figure 1(aghows the lowest energy levels of the
trons by the configuration interaction approach with a basiswo-electron system multiplied by the dot lengthas func-
set of Slater determinants built with single-electron spin ortions of d. For large dots the states 0+ and 1- as well as

Ill. GROUND STATE DEGENERACY AND WIGNER
CRYSTALLIZATION
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FIG. 2. (a) Lowest energy levels multiplied by the dot length fo+ 3. (b), (¢), (d) Charge density of 1/2—, 1/2+, and 3/2- states plotted
with solid, dashed, and dotted lines fd=50, 150, and 200 nm, respectively. (d) the charge density of the 3/2+ state is shown by the
dash-dotted curve.

0- and 1+ become mutually degenerate. For large values @harge densities of these states for large dots present four
d potential energy related to penetration of electrons into thelistinct maxima[cf. Fig. 3(d)]. Energy levels corresponding
barrier region is negligible, the kinetic energy scales a¥ 1/ to states 0— and 2- are separated by a significant energy
and the Coulomb energy as d./Therefore, the product of distance from the ground stafef. Fig. 3(a)]and in large
energy and dot length for large behaves a$(d)=C+D/d  dots they correspond to identical charge densities with five
function, where the constants and D are related to the maxima. The ground state charge density evolution obtained
Coulomb and kinetic energy, respectively. The energy levelfor N=3 and 4 is in a qualitative agreement with the results
of the degenerate pairs of states tend to different constants if Ref. 13.
the infinited limit which is apparently due to different values  Finally, in the five-electron system the ground state of
of the Coulomb interaction in these pairs of states. The evol/2+ symmetry becomes degenerate with2—, 3/2+,
lution of the charge density for growing length of the dot is3/2-, and 5/2+ statefef. Fig. 4(a)]forming Wigner mol-
shown in Figs. 1(b)-1(d). For large daotsf. Fig. 1(d)]the  ecules for large dotief. Figs. 4(b)—4d)]. The spin polarized
charge densities of the degenerate pairs of states becoratate of odd parity 5/2— does not become degenerate with
identical. In the ground state the charge density has two pradhe ground-state and its charge density in large dots forms six
nounced maxima which indicates the separation of electromaximalcf. Fig. 4(d)].
charges into two charge islands, i.e., the Wigner crystalliza- In the entired range and for all electron numbers studied
tion. Figure 1 shows that the singlet-triplet degeneracy obthe order of the lowest energy levels for given total spin
tained previoushp for the two-electron ground-state appearsquantum numberéeglecting the parityfollow the order of
also in the first excited state. the spin quantum numbers, which is in agreement with the
Figure 2(a)shows the energy levels and Figgb2-2(d) theorem of Lieb and Matti& In large dots the ground-state
the charge density for the lowest-energy states of the thre@glegeneracy appears. In Ref. 14 the degeneracy was inter-
electron system for increasind. For three electrons the preted in terms of a vanishing tunnel coupling between the
Wigner molecule is formed in states 1/2-, 1/2+, and 3/2-local minima of the totalN-dimensional potential energy.
which become degenerate for lardeln the state 3/2+ the The present results indicate that the nearly degenerate states
charge density exhibits four maxinjaf. Fig. 2(d)], which  possess the same charge density in the laboratory frame.
apparently prevents this state to be degenerate with thiloreover, we observe the following regularities. In the limit
ground state. of Wigner localization the ground state of ti-electron
In the four-electron system the ground state correspondsystem appears fdx different pairs of the spin and parity
to 0+ symmetry. The states 1—, 1+, and 2+ for large ¢icts ~ quantum number® For even electron numbeN=2 and 4,
Fig. 3(a)]tend to the degeneracy with the ground state. Thé\ charge maxima are formed only for even parity states with

5 M LI T 1 1 T —_— T T T T L] M T T T — T L] T T T T _a. i T T T T
7] @ | 1w |
z| (b)| 2 (] Z
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FIG. 3. (a) Four-electron energy levels multiplied by the dot lengh), (c), (d) Charge density of 0+, 1—, 1+, and 2+ four-electron states
plotted with solid, dash-dotted, dotted, and dashed lineslar00, 200, and 300 nm, respectively.(t) the charge densities of 2— and 0+
states are marked with crosses and dots, respectively.
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FIG. 4. (a) Five-electron energy levels multiplied by the dot length. Eqeaid) parity levels are plotted with soligtlotted)lines. (b), (c)
Charge density of 1/2+, 1/2-, 3/2+, 3/2-, and 5/2+ states plotted with solid, dash-dotted, dotted, dashed, and dash-double-dot lines
d=100 and 200 nm, respectively. (d) the charge density of the 1/2+, 3/2—-, and 5/2- state is shown by solid, dashed, and dotted lines
respectively{charge densities of 1/2—, 3/2+, and 5/2+ are almost identical with the 1/2+ and 3/2- charge densities are therefore omitt
in (d) for the sake of clarity

S=0, while the odd parity zero-spin states possBssl  right of the dot around points which satisky=-z, for k
charge maximdcf. Figs. 1(d)and 3(d)]. The spin-polarized =+1,+2,...,£M. In the Wigner phase the total charge den-
Wigner-localized state can only be formed for qeeen or sity possessedN maxima corresponding to the separate
odd) parity. Namely, the parity of the spin-polarized Wigner single-electron charge densities. A single-electron density
molecule state is even for four and five electrons and odd fof(2)|? is localized around poirg,. In the Wigner limit the

two and three electrons. The charge density of the spineverlap between the single-electron charge densities vanishes
polarized state of the other parity exhibs-1 maxima, i.e., (the proof is only valid when this overlap is negligihleso

the state does not form a Wigner molecule and as a consghe total charge density can be expressed as their sum. Since
quence does not become degenerate with the ground statee total charge density is symmetric with respect to the ori-
even for large dots. This conclusion will be cast into a theogin the following equality holds:

rem in the next section.

(= 2D? = [y, (5
IV. PARITY OF SPIN-POLARIZED WIGNER

MOLECULE STATES which results in the following relation for the single-electron

: . wave functions:
Here we give an analytical proof of the theorefor an

odd number of electrons }2M +1 as well as for an even .

number of electrons N2M the parity of one-dimensional (= 2) = €%y (2), (6)
spin-polarized Wigner-molecule state is even (odd) for even

(odd) value of the integer M where the phasep, is a real number. Relatio6) with

We will present here the proof for an odd number of elec'changed sign ok reads:

trons (the proof for everN can be easily deduced from the
present demonstration). For oditlone of the electrons re- _
sides near the center of the dpbint z,=0, cf. Fig. 5), and Y- 2) = €% (2). (7
the others occupy spatially symmetric sites to the left and

Phasesp, and ¢_, are not independent. Changing the sign of

| ' ) zin Eq. (7) and making use of relatiof6) we arrive at
A N
=l ) Y2 = €% p(-2) = 0y (2), (®)
§ I .
@ [ - hence,
2| .
1]
S| -
¢k == d)—kr (9)
position up to an unimportant multiple of2 Considering relatio6)

for k=0 and reminding that we arrive at the same valy@®)
FIG. 5. lllustration to the proof that foN=2M+1 or N=2M  (nonzero for odcN) approaching the origin from both posi-
electrons the parity of the spin-polarized state which exhibitstive and negative sides we arrive ¢§=0 and consequently
Wigner localization is accordant with the parity if. o is an even parity function
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o(— 2) = ho(2). (10) V(zy,2, ... ,2Zy)
Since the considered state is spin polarized the spin and spa- Um(z)  omaa(Z) - vme(Z) Ya(z)
tial parts of the wave function can be separated into a prod- bz Yo -2 Y(20)
uct =
X(zy,0, ... 2y 0n) = aloyal(oy) - aloy) bmz) Poma(z) Y-z ()
X W(Z1,Zp, ... 2N), (12) (12)

where « is an eigenfunction of the single-electron spin
z-component operator. The spatial wave functibncan be  We apply the parity operator off and make use of proper-
written as a Slater determindhit ties (6) and(9) obtaining

e_id)M l,bM(Zl) e_i¢M‘11//M_1(Zl) . .ei¢M71(//—M+l(Zl) eI¢M l;b—M(Zl)

V-2 . 2= e MYy(z) €My 4(2) @Ml ya(z)  @Myy(2) . (13)

e Myn(zy) €1y a(Zy) LY a(zy) EMMYy(zy)

Phase factors can be extracted from each of the determinaglet (zero-spin)two-electron state€0-) requires at least

columns, which yields three single-electron functions, for instance, the function
V(=2,-2, ...,72) WO (21,2)) = ho(20) Y(2) + ¥1(20) Y0(2Z2) = ho(Z) Yh-1(2)
= et et et ) = 12 (22, (16)
In(z)  Pu-1(z) - eme(Z) Pou(z) is of odd parity provided that we take zero phase shifts in
Iz 1) () (2 relation (6). Indeed, the O- state fdl=2 exhibits three

charge maximdsee Fig. 1(d)]. Moreover, construction of a

triplet antisymmetric spatial wave function with even parity

Iz -1z - pewa@) Pem(z) (1+) also requires at least three localized functions, for in-
(14)  stance

The phases in front of the determinant in Ed4) cancel V(21,25) = Yho(20) 1(20) = n(20) Pro(20) + hio(20) 9h-1(20)
according to property9). ExchangingM pairs of corre- _
sponding columns in the determinant we arrive at 8@) Vea(Z)1(Z2), (A7)
but multiplied by(-1)M, which proofs that the parity of spin- possesses the required symmetries for zero phase shifts in
polarized one-dimensional Wigner molecule state is deterrelation(6). The charge density corresponding to wave func-
mined by the odd or even value bf. tions (16) and (17) is the same provided that the overlaps
We have found that two- and four-electron zero-spinbetween the functiong; are negligible. Figure 1(dghows
states can form a Wigner-localized charge density only fothat the charge densities of the states 0— and 1+ are indeed
even spatial parity. We are unable to proof in general that théndistinguishable. The area below the central maximum of
zero-spin state with Wigner localization has to be of everthe probability density of degenerate 0— and 1+ states in Fig.
parity for evenN. But for N=2 such a proof is easily given. 1(d) is two times larger than the area below each of the
In this case the spin and spatial parts of the wave functioxtreme maxima, which can be interpreted by saying that

can be separated as follows: one of the electrons stays in the neighborhood of the center
(20 0120,0) = [0y Blo) — a0 B(ory)] qf the system with 100% probability while probabilities of
LELE2 T2 1 2 2 1 finding the other one at the left or right end of the well are

X [4n(z0) h-1(2o) + _1(Z) ¥n(20)]. equal to 50%. This feature is in agreement with the probabil-

(15) ity amplitudes(16) and(17). Although in the wave functions
(16) and(17) the electron positions are separated, this sepa-
Applying the parity operator to the spatial part of this waveration has a nonclassical character since the charge maxima
function and making use of the properties of the single-at the left and right ends of the dot correspond to subelectron
electron wave functions given earlier we find that this wavecharges. Therefore, we do not refer to this separation as
function is of even parity. Moreover, it follows that construc- Wigner localization. Average electron-electron distances in
tion of a symmetric spatial wave function for odd-parity sin- states described by wave functiofi) and(17) are smaller
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FIG. 7. (a) Lowest energy levels foN=3 as function of the
length of the well with a central attractive cavitig. (18)]. Num-
bers close to the curves denote the total spin quantum number of the
H:Lprresponding states and signs +, — stand for even and odd parity
corresponding states and signs +, — stand for even and odd pari mmetry_.(b),(c_),(d)Charge density of 0+, 1-, 1+, and 0- states
symmetry, respectivelyb), (c), (d) Charge density of 0+, 1-, 1+, lotted with solid, dotted, _dashed, and dash-dot curves fo50,
and 0- states plotted with solid, dotted, dashed, and dash-dot curvégo’ and 200 nm, respectively.

for d=50, 100, and 200 nm, respectively. are equal. This differs essentially from the two-electron
Wigner molecule charge density in the unperturbed [dbt
than in states 0+, 1- with two charge maxima, which leads td-ig. 1], for which the probability to find an electron in the
a larger value of the Coulomb interaction energy and consesenter of the well was negligible and for which each of the
quently to an energy separation between pairs of degeneraf@o charge maxima could be associated with an integer elec-
states 0+,1- and 0—,1+ presented in Figa)in the weak tron charge. The formation of three maxima in the charge
confinement limit. density is possible for all statgsf. Eqs.(16) and (17), for
0- and 1+ states, similar formulas can be given for the other
two]. Therefore, the ground state tends to a fourfold degen-
V. WIGNER CRYSTALLIZATION IN THE PRESENCE eracy in contrast to the double degeneracy for the unper-
OF A DEFECT POTENTIAL turbed dot[cf. Fig. 1(a)].
. Figure 7 shows the lowest energy levels and correspond-
WiTI:]er prresterl}icze tiOfn ?:fle (;ts cant snlqgnn:l/(\:/antlyn pigrtrurhb rth%ng charge density evolution for the three-electron system.
'gner crystaflization In farge systems. Vve consider here %:ontrary to the two-electron system the central defect does
thin attractive cavity just deep enough to bind one electron o herfurh the number of charge maxima, Wigner localiza-
The perturbed quantum dot potential is of the form tion appears similarly as for the unperturbed it Fig. 2]
- for1/2+, 1/2-, and 3/2- states which become degenerate in
V(2) = Vuei(@) + Vaetedl 2, (18) the Wigner localization limit. State 3/2+, which accgording to
whereVgerecf2) =—50 meV for|zl <1 nm andVyeref2) =0 for  the theorem given in Sec. IV cannot form a Wigner phase
|Z/>1 nm. The assumption that the defect is localized in thdies higher in energy, like for the unperturbed dot.
center of the system does not perturb the inversion invari- The influence of the central attractive defect is qualita-
ance of the total potential. tively different for odd and even electron number. For an odd
Figure 6(a)shows that contrary to the unperturbed quan-number of electrons it simply enhances the localization of
tum well potential[cf. Fig. 1(a)]the 0— and 1+ states be- the central electron, and does not influence the ground state
come degenerate with the 0+ and 1- states. Figuredegeneracy. While for eveN it destroys Wigner crystalliza-
6(b)-6d) show the evolution of the charge densities of thetion leading to the appearance of an extra charge maximum
four considered states with increasing size of the system. Faorresponding to subelectron charge and allows more states
large well thicknesqcf. Fig. 1(d)] the charge densities of to become degenerate with the ground state.
these states become indistinguishable. One of the electrons is
trapped by the potential of the central cavity which results in VI. SPATIAL SPIN ORDERING IN THE WIGNER LIMIT
the sharp central peak of the charge density. The probabilities It is interesting to look whether the low-spin ground states
to find the other electron at the left or right side of the originexhibit any spatial antiferromagnetic ordering of the electron

FIG. 6. (a) Lowest energy levels foN=2 as functions of the
length of the well with a central attractive cavitig. (18)]. Num-
bers close to the curves denote the total spin quantum number of t

035401-6
praca 13A 142



SPATIAL ORDERING OF CHARGE AND SPIN IN.. PHYSICAL REVIEW B 70, 035401(2004)

(@ F L spn {cr FIG. 8. PCFs for four elec-
i {neependent i [rdependem tiﬂg'f’)“ ; trons in state 04(a),(b)]and state
d=100nm B Ll - 1- with S,=#% (c) for d=100 (a)
w A=on ], L w and 300 nm[(b),(c)]. One of the
g 12t gL - electrons is fixed and its position

is marked by a thin vertical line.
- Solid curves show the spin-
N [}/ opposie spin - independent PCF, dash_edbtted)
s 0 50 00 0 100 00 6 100 curves show the oppositesame)
z[nm] z[m) z [nm] spin PCF.

spins. For even number of electrons and arbitrary dot lengtlwith d=300 nm. The charge density of the system exhibits
the ground state corresponds to zero total spin. In this cadeur distinct maxima[cf. Fig. 3(d)]. We fix the position of
the spin-up and spin-down densities are exactly equal to eacgine of the electrons at the rightmost density maxinjam
other, so that spin ordering is not visible in the laboratorythe vertical line in Fig. 8)]. The probability that the elec-
frame of reference. In order to investigate a possible spiriron in the adjacent maximum has the opposite spin is nearly
ordering in the zero-spin ground states one has to look intd00%. The spin-dependent PCFs also differ for the two
the inner coordinates of the quantum system. We use here ti§§arge maxima at the left of the origin. An electron confined
spin-dependent pair correlation functiof®CFs)defined for ~ at the first(secondcharge maximum to the left of the origin

a given state by the expectation values is more probable to have the safepposite)spin as the one
of the fixed electron. The ordering is of a probabilistic char-
NN acter, so that the antiferromagnetic order of spins is the most
FRCr Za ) = E 2 Nz = 2) 3z~ Z) probable to be found, but the probability is not 100%. The
i=1 j>i spin ordering in this state has a clearly antiferromagnetic
X (|a(oy) al o) X el o) e 7)) character and its range covers the entire length of the dot. A

similar inner-coordinate antiferromagnetic order was previ-
ously found for quantum rings.
+|B(0) Blay)XBla)Blo]) ) (19) The 100% probability of finding the opposite spin in the
charge maximum adjacent to the maximum associated with
and the fixed electron presented in Fig. 8{b)not, as one could
naively expect, related to the Pauli exclusion. In Fig.)8ve

o NN plotted the PCF for the 1- state, which becomes degenerate
Fodzaz) = 2 2 8za—2)8(2,- 7) with the ground 0+ state in the weak confinement limit. We

=1y see that in this state the spin of electrons confined in the two

X (el o) Boy) X alai) B(ay)| central maxima is independent of the spin of the electron at

the rightmost maximum. However, in this state one may ex-
pect that the electrons at the opposite ends of the dot have
the same spin, which means that also in this state a long-
range spin ordering exists, even if it is not of antiferromag-
wherea and 3 stand for spin-up and spin-down eigenstates netic origin.

respectively. Functiongl9) and (20) give the probability of For odd number of electrons the difference between
finding at positionsz, and z, a pair of electrons with the spin-up and spin-down densities appears in the laboratory
same(19) or opposite(20) spins. The sum of functiond9)  frame. This is qualitatively different from quantum rings,

+|Bla) (o)X Bla)ala)]) ), (20)

and(20) gives the spin-independent PCF. which in fact are endless structures. Figu@)%hows the
Figure 8(a)shows the PCF plots for the four-electron spin densities for a relatively small dot length af
ground state in a small quantum daf. Fig. 3(b)]with d =100 nm[too small for the ground state Wigner localization

=100 nm. The position of one of the electrons is fixed neato appear, cf. Fig. 4(b)]. The spin-up electrons tend to gather
the right end of the doposition marked by the thin vertical at the extreme left and right ends of the dot as well as in its
line in Fig. 8(a)]. We see that the probability of finding an center. The spin-down density is minimal in the center of the
electron with the same spin in the neighborhood of the fixeddot, and the overall spin densitgifference of the spin-up
position electron is zero, which is a signature of the Pauliand spin-down densitig®exhibits antiferromagnetic sign os-
exclusion principle. At the left side of the dot probabilities of cillations within the dot. These sign oscillations are due to
finding an electron with the same or opposite spin as the onthe electron-electron interaction since in the noninteracting
of the fixed position electron are nearly equal. For the totaklectron system the majority spin-up density is nowhere
zero-spin states in relatively small dots the spin ordering irsmaller than the spin-down density. For larger systdths
the inner coordinates is of short range and results from the 250 nm, cf. Fig. 9(b)lthe antiferromagnetic spin oscilla-
Pauli exclusion. We only found a long-range inner-tions become more pronounced. However, for even ladger
coordinate spin ordering in the Wigner crystallization limit. [cf. Figs. 9(c)and 9(d)], for which the Wigner molecule ap-
Figure 8(b)shows the plot for the four-electron ground statepear in the 1/2+ ground state, the typically antiferromagnetic
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for long quasi-one-dimensional dots. The appearance of the
spin-density wave for even electron number amounts in spin
symmetry breaking. Recentl§,it was found that for eveiN

the formation of the spin density wave in the density func-
tional theory accompanies the Wigner crystallization. But in
the present study we find that for the exact solution spin
symmetry is conserved and Wigner crystallization is associ-
ated with the inner space spin ordering. In the exact solution
the interlocked spin densities in the laboratory frame can
only be observed for odd numbers of electrons, but the pre-
sented five-electron case shows that this effect is not neces-
sarily related with Wigner crystallization. In the exact solu-
tion the electrons with opposite spins avoid one another in
the inner space. A mean field approach can only account for
this effect by symmetry breaking. The reason for the occur-
rence of spin symmetry breaking in the mean field approach
for large single-dimensional dots are similar to the origin of
the broken spatial symmetry mean field solutions for the
magnetic field induced Wigner crystallization in circular
structures?

In large systems the spin-independent PCF plots become
identical for all states degenerate with the ground sfefte
spin-independent PCFs for the four-electron degenerate 0+
and 1- states in Figs. 8(lgnd 8(c)]. This means that in
Wigner-molecule states electrons avoid one another with the
real-space spin ordering with the spin orientation changingame efficiency independently of their spins. As a matter of
between the adjacent charge maxima vanishes. fact this is the origin of the appearance of the ground state

Let us look at the spin distribution in the inner coordinatesdegeneracy in the Wigner molecule regime. One-dimensional
of the 5-electron 1/2+ ground state. Figurga)®shows the Wigner molecules present pronounced magnetic properties
PCF plots ford=100 nm. Electrons of the same spin as therélated to the long-range spin ordering in the inner coordi-
fixed electron do not appear in its close neighborhood, bubate space. This ordering for different degenerate spin eigen-
are more probable to be found at the center of the dot thaftates may be typical for ferromagnetic, antiferromagnetic or
electrons of opposite spin. Probability of finding an electroneéven an other form of order. Due to the vanishing energy
at the opposite side of the dot is independent of its spin. Thépacing between the different spin states the spin magnetic
spin order in this relatively small dgtd=100 nm)is clearly ~ properties of Wigner molecules are of a very soft character.
short range which is similar as for the case of four electrond he Wigner molecules should be extremely susceptible to
in a small dot[cf. Fig. 8(a)]. The PCF plots for opposite any spin-dependent interactions. In particular, even a weak
spins at the left end of the dot start to differentiate ¢br additional effect promoting the spin-polarized phase can re-
=200 nm[cf. Fig. 8(b)]. Ford=300 nm, for which Wigner sult in spin polarization of the system. A possible spin polar-
localization is observeftf. Fig. 4(d)], the PCF plots show a @zation of the one-dimensional electron gas has been found
long-range antiferromagnetic spin ordering. Notice theln transport measurements.
growth of the PCF plot for the same spin direction in the
closest neighborhood of the fixed-position electron frdm
=200 to 300 nm in Figs. 8(kand 8(c). Pauli exclusion plays
a less significant role for larger distances between the charge We have studied the ground and excited states of electron
maxima. systems confined in quasi-one-dimensional quantum dots us-

Density-functional studié&22 predict the appearance of ing an exact diagonalization approach. For large systems we
interlocked waves of opposite spins in the laboratory framdound Wigner localization which appears not only in the

FIG. 9. Spin-up(solid lines)and spin-dowr(dashed linesgen-
sities for the ground-state 5-electron system 1/2+ \8jth#/2 for
different system sizes.

VII. CONCLUSIONS AND SUMMARY
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ground state but also for several excited states which everin one-dimensional quantum dots the Wigner crystallization
tually leads to the degeneracy of the ground state in the largie a necessary condition for the long range spin ordering to
d limit. We have considered spin and spatial parity of statesappear. We have identified the effect of spin symmetry break-
forming Wigner molecules. We have shown that the parity ofing observed in the density functional theory as a tendency
the spin-polarized state which forms a Wigner molecule isf the mean field method to mimic the internal-space spin

strictly determined by the number of electrons. ordering present in the exact solution for the Wigner mol-
We have discussed the effect of a central attractive defeccyle regime.

which destroys Wigner crystallization for an even number of

electrons allowing more states to become degenerate with

the ground state in the weak confinement limit. For odd elec- ACKNOWLEDGMENTS
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Parity symmetry and energy spectrum of excitons in coupled self-assembled quantum dots
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A theoretical study is presented for excitons in coupled self-assembled InGaAs quantum dots. We have
proposed a model of an isolated single quantum dot based on the assumption of the Gaussian distribution of
indium concentration. The same distribution, with the parameters fixed for the single dot, has been applied to
vertically stacked coupled quantum dots in order to study the exciton properties, which result from the interdot
coupling. The exciton lowest-energy levels have been calculated with use of the many-element variational
basis, which includes the two-particle correlation effects. We have discussed the symmetry with respect to the
parity of the exciton wave functions in the coupled quantum dots. We have shown that—in a general case—
these wave functions do not possess the definite one-particle parity. Only for very small interdot distance the
ground-state wave function exhibits the approximate one-particle parity. The nature of splitting of the photo-
luminescence lines in the coupled quantum dots is discussed. The present theory applied to a description of
photoluminescence spectra in coupled self-assembled InGaAs quantum dots leads to a very good agreement
with the experimental data.

DOI: 10.1103/PhysRevB.64.125301 PACS numbgs): 73.23.—b

[. INTRODUCTION visible dependence on the number of confined excitons.
Therefore, at this level of the experimental resolution, a
A three-dimensional confinement of charge carriers intheory of a single exciton should be sufficient for the inter-
semiconductor quantum dot@D’s) results in a space quan- pretation of these measuremefits.
tization of energy leveld Electron systems confined in QD's A theoretical description of the excitons in the single dots
are called artificial atom&® since they show atomiclike Was elaborated for self-assembled InAs/GaAs QBsf. 29)
properties, e.g., their energy spectrum is discrete. Amongnd for InP and CdSe nanocrystél the framework of the
various types of QD's, the self-assembled QD’s are the subPSeudopotential approach. In Ref. 31, the excitons in the
ject of an extensive study?® because of their possible ap- coupled QD’s were studied as candidates for a reliable prepa-
plications in semiconductor lasers. It is expeéfathat the ration of entangled states in solid-state systems.
self-assembled QD’s used as active regions in the semicon- The present paper is devoted to theoretical study of parity
ductor lasers will provide low-threshold currents, a highSymmetry and spectral properties of the exciton in isolated
gain, and an improved thermal stability of the devices. Theand coupled self-assembled quantum dots. The paper is or-
coupled QD's(Refs. 14—21an be treated as artificial mol- ganized as follows. In Sec. Il, we formulate a theoretical
ecules. The coupling between the QD’s should be useful ifnodel of the exciton in a single QD. In Sec. Ill, we gener-
optical applications, because it leads to an appearance @fize this approach to the case of the coupled QD’s. In Sec.
additional spectral lines. The positions of these lines can b/ we present the results and discussion and in Sec. V we
changed by choosing different interdot distances in a technddive the summary.
logical process.

The present study_ has been ins_pi_red by t_h_e recent II. SINGLE QUANTUM DOT
measurement$ of exciton-related radiative transitions in
vertically stacked InGaAs self-assembled QB'sThe ex- In this section, we formulate and parametrize a model of a

perimental resultd! obtained with use of the state-filling single QD, which will be used in the following sections for a
photoluminescence spectroscépyshow a strong depen- description of exciton states in coupled QD’s. Most of theo-
dence of the photoluminescence spectra on the distance brstical papers™1?23-?!dealing with the QD’s use the two-
tween the dots. In the state-filling spectroscépihe excit-  dimensional model of the QD. Such a model does not allow
ing light of large intensity is used to fill as many electron- for a description of the coupling between vertically stacked
hole states as possible; so, all the allowed radiativéQdD’s. In order to describe the coupling between the QD’s
transitions can be detected. In recent measureniéftsar-  aligned in the growth direction, we have proposed a three-
ried out on a single self-assembled QD, the fine structure ofimensional model of a single, isolatedy®a _xAs QD.

the luminescence spectrum has been observed as a functidhe present model is based on the recent understattdihg

of the excitation power, i.e., as a function of the number ofthe growing process of the self-assembled QD’s. During the
the confined excitons. In the case of the coupled QD's, thgrowing process, InAs deposited on the GaAs substrate first
experimental spectfahave been taken from a sample con-forms a thin wetting layer and next InAs island. This nano-
taining a large number of QD’s. Then, the fine structure isstructure is subsequently covered with GaAs. Due to the in-
not observed, since the inhomogeneous broadening of thdium diffusior’ the self-assembled QD’s are made of the
luminescence lines is larger than the fine-structure splittinglnyGa, _xAs alloy with a spatially varying indium concen-
and the energetic positions of the lines do not show anyration. In this paper, we propose a model that takes into
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where mi™$=0.023m,>" mS*°=0.0667m,® mse
=0.41my,*° mP*°=0.5my,*° and m, is the electron rest
h mass.
;. Equations(2)—(4) express the effective confinement po-
TWL\\\_ -~ WL tentials for electrons and holes and the spatial modulation of
= = their band masses by a single indium distribution function
FIG. 1. Schematic of a single QD. Dashed line shows the con{1). The parameters of this functioiX¢, R, andzZ) will be
tour of the indium-concentration Gaussian distribution functionextracted from the experimental photoluminescent data for a
with rangeZ in the growth directionh is the height of the QD and single isolated QD. Such a procedure implicitly takes into
Tw. is the thickness of the wetting layéwL). account the strain effedtsand the indium concentration
given by Eq.(1) has an effective meaning. The same param-
account a spatial modulation of the indium concentration iretrization, with values of parameters fixed for a single dot,
the nanostructure. The present model is based on the assumypill be applied to coupled double QD’s. Therefore, the
tion of the Gaussian distribution of indium concentration in Gaussian distribution functiofEqg. (1)] can be treated as an
the QD. Explicitly, we assume that indium concentratioim  universal function, which allows us to include the most im-
the single isolated QD is described by the Gaussian functioportant effects for the real nanostructures.

of the cylindrical symmetry In the case of the position-dependent effective ma¥ses,
the Hamiltonian of the electron-hole pair confined in the
X(p,z)=Xoexp — p?IR?>—7%17?), (1)  single QD has the following forniin atomic units):
where p?=x?+y?, X, is the indium concentration at the 1
center of the dotRis the dot "radius,” andZ is the half of its T §Ve Me(T o) Vet Velpe ze) = Evh my(rp) Vi

"height.” The real self-assembled QD’s are not symmetric

with respect to the inversion of thmeaxis (Fig. 1). Therefore, _

parameter Z can be treated as the effective height of the FVh(pnZn) &len’ ®)
dot, which partially takes into account the presence of the .

wetting layer(Fig. 1). The InGa, xAs island in the GaAs wherer, andr_r1 are the position vector_s of the ele.ctron gnd
matrix is responsible for the potential confining the chargd©le. respectively, andey=|re—ry|. Since the dielectric
carriers in the quantum dot. The conduction-valence-banfoPerties of GaAs and InAs are similar, we have adopted
offset ratio for the InAs/GaAs interface was estimated to bdhe @verage valdes=12.5 of the static dielectric constant
70/30% Therefore, we assume the confinement potential tdO" the InkGa, —xAs alloy for all values oiX. Throughout the

be parametrized as follows: present paper, the conduction-band minimum of GaAs is the
reference energy level for the electron and the GaAs valence-
Ve(p,2)=—0.7AE4X(p,2) ) band maximum is the reference energy level for the holle
Egs.(2) and(3)].
for the electrons and Probability p of radiative transition from the exciton state
described by the wave functioh(re,ry,) is proportional to
Vi(p,2)= —0.3AEX(p,2) (3) the integral®

2

_ GaAs__ InAs GaAs InAs
for the holes, wherd Eg=E;**~EJ"°, Eg**, andEg pwf dr r D (1o 1) (re—rp)| ®)

are the GaAs and InAs energy gaps, respectively. In the

; aAs_
present calculations, we take Eﬁ =1.5196 eV(Ref. 34) In the present paper, we consider the optically active exciton

and ElgnAs:0'41,05 eV . . states, i.e., the states, from which the radiative transitions
Here, we briefly comment on the choice of the confine-(gjectron-hole recombinatiorare allowed. For these transi-
ment potentia[Egs.(2) and(3)]. The application of the cy- jions the initial states correspond to zero total angular mo-
lindrically symmetric Gaussian potential allows us to de'mentum, since otherwise integrd) vanishes.
scribe the three-dimensional confinement of the charge We note that Hamiltoniafb) commutes with the operator
carriers in the QD's, and to take into account a finite depth ofys the 7 component of the total angular momentum and the
the confinement potential and an approximate parabolicity Of)arity operator. Both these quantities are conserved in the
the potential near the dot center. The properties of the on&;amework of the present model. However, because of the
and two-electron systems in the spherically symmetric, esance of the Coulomb-interaction potential in &), the
Gaussian confinement potential have been studied in detail iBne-particIe operators of parity azccomponent of angular
our recent papef. , _ . momentum do not commute with the Hamiltonian. Due to
Finally, in accordance with the assumed indium-ihe small size of the self-assembled QD's the one-particle
concentration distributiofEq. (1)], we introduce the follow- _energies are considerably larger than to the Coulomb-
ing space dependence of the electron and hole effeCtiVeraction contribution. Moreover, the energy separations
masses: between the one-particle shells of different angular momenta
InAs Gaa are also large with respect to the Coulomb term. On the
Meh(p.2)=MgnX(p,2) + Mgy 11-X(p,2)],  (4) contrary, in the coupled QD’s, the energy spacings between
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the one-particle states of opposite parities can be arbitrarily TABLE I. Convergence of ground-state energy estimaigsor
small. Thus, it should be expected that the Coulomb interacan exciton confined in a single QD with increasing number of basis
tion essentially perturbs the one-particle parity. In this pape@IementS. In the_r first five colymns, the upper limits of the corre-
we concentrate our attention on the problem of parity, whicksPonding sums in E10) are listed. According to Eq10), labels
arises for the coupled QD’s. Therefore, we construct the exi» k. I, n, and p denote the different Gaussians dependent on
citon wave functions of zero total angular momentum, usinge+Ph Ze: Zn, @ndpen, respectivelyN is the total number of basis
the eigenstates of one-particle angular momentum, which is glements used in the calculations. The numbers in the first row
reasonable approximation in the problem considered. Wéorrespgnd to basiés).used in the latter part of the present paper.
shall label the exciton states by the one-particlomponent  =€r9Y is expressed in meV.

angular momentum quantum numbarand use the follow-

ing dependence of the wave functit#(r,r,) on azimuthal k : . P N B
anglesg, and ¢y, 2 2 3 2 24 —241.93
3 3 4 4 144 —242.22
Xm(®e,en)=exgim(ee—ep)]. (7) 3 3 4 4 1 144 —9243.21
In the following, we consider the lowest-energy optically 3 3 4 4 2 288 —243.59
active exciton states witm=0, 1, 2, and 3 labeled bs; p, d, 3 3 4 4 3 432 —243.70

andf, respectively. In Eq(7), the signs of the angular mo-
mentum quantum number for the electron and the hole are
9 =0 in Eqg. (10) we obtain wave functior{8) for m=0.

chosen to be opposite, i.e component of the total angular Yp

momentum for the exciton is zero. All the states considered "€ results of the test calculations reported in Table | show
are symmetric with respect to the in-plane inversion, i.e., thdhat the neglect of the angular correlation yields the ground-
change of sign ok andy coordinates of both the particles. St&t€ energy estimate with the uncertainty less than 2 meV.
Therefore, the total parity of the exciton is entirely deter-Or comparison the estimated widths of photoluminescence
mined by thez parity. peak$! amount to several meV. Therefore, ba@swith the

The eigenvalue problem for the exciton confined in theNeglected angular correlation and smaller number of ele-

single QD has been solved by variational means with thdnents(cf. Table I)is sufficient for the present purposes. The
trial wave function of the form results presented in this paper have been obtained with the

use of basig8), in which the sums run ovegrk,n=1,2, 1
D1(Fe,th)=p oM Xm( Ce.rn) =1,...,3, andp=0 (cf. Table I). The energy eigenvalues
E,, calculated for given angular momentum quantum number
% 2 G Frr( 20,20 Zor) ®) m are used to determine the energy of the radiative interband
{7, “ikintikin{Pe:Ph Zerfh . Zet), transition, which is defined asvy,=ES+ E,.
The values of the parameters describing the indium-

which is expanded in the Gaussian basis concentration distribution in E41) have been obtained from
_ €2 h2 e the adjustment of the calculated transition energies to the
fikin(PesPn1ZesZn 1 Zen) =X — ajpe— a'pi— BiZe experimental dafa for the isolated QD’s. For this purpose
—ﬁrzﬁ— yzzih), 9) we have used the photoluminescence spe@ﬁmken at the

interdot distance of~15 nm, for which the QD’s can be

wherez.,=2z,—z;,. In Eq.(9), variational parameteisf and treated as spatially separated and uncoupled. The values ob-
a" (B¢ and B') describe the localization of the electron and tained areX,=0.66, Z=0.92 nm, andR=24.9 nm. The
the hole in thex-y plane ¢ direction), andy? accounts for ~comparison of the calculated and meastterhdiative-
the correlation of the relative motion in taalirection. Wave ~fransition energies for the isolated quantum dot is presented
function ®, partially includes the radial correlation between in Table Il. The further description of the vertical coupling
the electron and hole, since it cannot be separated into a
product of p, and p,, dependent functions. However, it ne-
glects the angular correlation.

In order to check a quality of trial wave functid8) we

TABLE Il. Calculated energy eigenvaluds,, of the optically
active exciton states for the single QD, energy spacifs be-
tween the consecutive energy levels, and calculated radiative-

’ . transition energieBv , .. The measured transition energles,
have performed test calculations for the exciton ground—statgre extracted from the photoluminescence-peak positiaes 21)

energyEO l,JS,’ing, a more gen'eral variational wave fu,nCtion'taken for the separated QD'ss€ 15 nm). The states involved in
which explicitly includes the in-plane electron-hole distance i yransitions are quoted in the first column. Energy is expressed in

Form=0 this wave function has the form meV.
2_ h 2 2_ ph2 E AE h h
q)O(reirh):,% Cjklnpexli_a?pe_akph_ﬁleze_lgnzh m Feale Vexpt

yenp S-S —241.9 1277.7 1278.2
— Yopen— ¥Y*Zan), (10) p-p -197.2 44.8 1322.4 1322.2
d-d —159.7 375 1359.9 1359.4

where p2,=(xe—Xp)?+ (Ye—Yn)? and variational param- _
Peh e~ *h Ye~ Yn p f-f 125.9 33.8 1393.7 1394.4

etersyy are responsible for the in-plane correlation. Putting
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TABLE Ill. Calculated lowest-energy levels of the electréq,, b)
and hole,E,, states in the single Qthe mutual Coulomb inter- a) = S
action omitted). The separatiodd=,, ,, between the consecutive en-
ergy levels are also quoted. Energy is expressed in meV.

a
Ee AE, Ep AE,
s —118.3 —101.4
p —89.0 28.3 —93.0 8.5
d —64.1 25.9 —84.7 8.3 . , .
f _40.7 234 _76.6 8.1 FIG. 2. Schematic of coupled QD's. The barrier and spacer

thicknesses are denoted byndd, respectivelya is the interdot-
center distance. Plga) shows the profile of the confinement poten-
r{i_al in the growth direction and plab) shows the geometry of the
two coupled dots.

between the QD’s requires an accurate modeling of the co
finement in the growth direction. In this context, we have to
emphasize that the value @fwe have obtained from our fit
very well agrees with the experimental restiThe heighth ~ new fitting parameter. The shape of the potential confining
of the dot was estimated by the transmission-electrothe charge carriers in the coupled QD’s, obtained from Egs.
spectroscopff to be smaller than 2 nm, whereas the wetting-(2) and (11), is schematically displayed in Fig(&. Figure
layer thicknessTy,, =0.54 nm(Ref. 21) €f. Fig. 1, where 2(b) shows the geometry of the coupled-dot nanostructure. In
h=2Z—Ty.). Table Il shows that the differences betweenEd. (11), the values of paramete¥g, R, andZ are the same
the calculated and measured radiative-transition energies d& for the single QOSec. II). In this section, we are using
not exceed 0.5 meV, which is considerably less than the exthe same formulas for the confinement potentials, effective
perimental uncertainty. masses, and Hamiltonian as those given in Sec. Il. In these
Table Il shows that energy spaciny& between the sub- formulas, we substitute concentration distribution function
sequent energy levels decrease with the increasing energy 6§ by Eq.(11). For the exciton confined in the coupled quan-
the interband transitions. According to our interpretation,tum dots we propose the following trial wave function:
three effects of comparable importance are responsible for
this behavior. If the energy of the electron-hole pair state m . m
increases, the charge carriers become more weakly localized2("e:"h) = PePh Xm( Pe.@h)

and in consequenc@) the effect of the nonparabolicity of 11

the confinement potential becomes strorﬁje(ii) the elec- X 2 E 2 cf‘;&hfjkln[pe,ph,ze

tron and hole effective masses become larger with the in- ne=0 np=0 jkin

creasing distance from the dot cenfef. Eq. (4)], (iii) the +(=1)"e(a/2),2+ (—1)"(al2),ze], (12)

Coulomb interaction between the confined charge carriers

decreases. In Table Ill, we have listed the energy levels of

the quantum-dot confined electron and hole calculated withvhich is a generalization of the form given by E§). Wave

the neglect of their mutual Coulomb interaction. The spacfunction (12) allows for a description of the electron and

ings between the hole energy levels are much smaller thahole states of both even and odd parity. Due to the presence

those for the electron, which results from the larger effectiveof the Coulomb-interaction term in Hamiltonidh), the ex-

mass of the hole. We also see that—contrary to the case @fct wave functions areot eigenfunctions of the one-particle

the parabolic confinement—the energy levels are not equallparity operators. Therefore, they do not possess a definite

spaced. The effective nonparabolicity of the confining potensymmetry with respect to the change of sign of #wordi-

tial is consideraby smaller for the hole, which results fromnate of one particle only. However, Hamiltoniés) is invari-

the larger localization of the heavy hole near the dot centerant with respect to the simultaneous change of sign of both
the coordinatesz, and z,. Thus, the electron-hole wave

Ill. COUPLED QUANTUM DOTS functions possess a definitetal parity. The symmetry with

respect to the total parity applied to E@) yields the fol-

The parametrization obtained in Sec. Il for the single QDlowing selection rules: radiative transition is allow@drbid-
enables us to discuss exciton states in coupled QD’s. For thigen)for the initial state of evetiodd) parity. Therefore, only
purpose we have extended the model formulated in Sec. Il tehe states of the even total parity are optically active.
the case of vertically stacked QD’s. Accordingly, the indium-  The thickness of the barrier between the QD’s is a more
concentration distribution in the two coupled, vertically appropriate parameter for a description of the interdot cou-

stacked QD's has been expressed as follows: pling than the distance between the dot centers, since the
S 5o self-assembled QD’s do not possess well-defined centers. In
X(p,2)=Xoexd — p /R~ (z—al2)/Z7] the framework of the present model, thickness the inter-

+Xoext — p2R2— (z+a/2)2Z2], 11 dot barrier is defined as follows=a—2Z [cf. Fig. 2(a)],
08XH ~p ( ) I (D where a is the interdot-center distance. The experimental
wherea is the distance between the centers of the QD’s. Weesult$! have been given as functions of spacer thicknkss
note that the model of the coupled QD’s does not contain anffhese two parameters are related byd+Ty, —2Z
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FIG. 3. Calculated one-particle energy levels of the electron
(solid curves)and the holgdashed curvesas functions of barrier

thicknesst (distancea between the centers of the dotSigns+  nicknesg (interdot-center distanca). Solid (dashedurves show
and — correspond to the states of even and adority, respec- 4 requits for the even-parity optically acti@dd-parity optically
tively, and symbolss, p, d, andf denote the angular momentum jnactive) states. Dotted linediabeled byES+E" and Eg+Ep) dis-
quantum numbers=0, 1, 2, and 3, respectively. play the sums of the energies of the electron and the hole localized

. . . . . in the different infinitely separated QD'AEg and AE, are the
[cf. Fig. 2(b)], Wh'(_:h yields the fo_IIOW|ng relation _be' electron-hole Coulomb-interaction energies foand p states, re-
tween the spacer thickness and the interdot-center d|stanc$ective|y'

d:a_TWL.

FIG. 4. Calculated energy afandp states of the exciton con-
fined in the coupled lgGaAs_x QD’s as a function of barrier

IV. RESULTS AND DISCUSSION confined in the single QDcf. Table I). Similarly, the energy
of lower p level becomes equal to the energypddtate of the

In Fig. 3, we have plotted the calculated energy levels ofxciton in the separated Q(@f. Table Il). In the same limit,
the electron and hole confined in the coupled Q@Wigh the  the higher-energy levels of both angular symmetries tend to
electron-hole Coulomb interaction omitjeds functions of the corresponding sums of the energies for the noninteracting
the barrier thicknesinterdot-center distance). For large in- electron and hole confined in the separated QBfs Table
terdot distances the energy levels are twofold degeneratd). These limit values marked by the dotted lines in Fig. 4
When the distance between the dots decreases, the deg@orrespond to the dissociated exciton.
eracy with respect to the parity is lifted. The energies of Figures 5, 6, and 7 display the contours of the probability
even- (odd-) parity states decread@ncrease)with the de- amplitudes, i.e., the electron-hole wave functio®s(r,
creasing interdot separation. The resulting splitting of the=(0,0,z),r,=(0,0,3)) for the four lowest-energy states of
energy levels is much larger for the electron than for the holes symmetry. In these figures, the coordinates corresponding
and only weakly depends on the angular-momentum quarte the centers of the QD’s are marked by the dashed straight
tum number. lines and the whitédark gray)areas correspond to the lowest

Figure 4 presents the dependence of the eight lowesthighest)values of the wave functionsn plots (a) through
energy levels for the andp states of the exciton confined in (d), the shades of gray do not correspond to the same values
the coupled QD’s(with the Coulomb interaction includéd of the wave function]. Figures 5, 6, and 7 show the asymme-
on the barrier thickness. The solid curves correspond to they in the electron and hole probability distribution, which
optically active states of even total parity and the dashedesults from the stronger localization of the hole due to its
curves corespond to the states of odd total parity, from whictarger mass.
the radiative transitions are forbidden. For large barrier Let us consider the case of large interdot distanEés.
thickness the lowest-energy and p levels as well as the 5). In the two lowest-energy degenerate stafégs. 5(a)and
higher-energy levels are twofold degenerate. This degerb(b)], the values ofb, differ only in signs, i.e., these states
eracy is lifted by the interdot coupling for small interdot are characterized by the same probability density. The iden-
separations. In the limit—« the exciton ground-state en- tical property holds true for the two degenerate excited states
ergy becomes equal to the ground-state energy of the excitdef. Figs. 5(c)and 5(d)]. The probability amplitudes for the
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FIG. 5. Contours of exciton wave functions
®,(r,=(0,0,z),r,=(0,0,3)) for interdot-center
distancea=16 nm, plotted along the axis as
functions of the electrorz, and holez, coordi-
nates for(a) the ground state and thb) first, (c)
second, andd) third excited state. Whitédark
gray) areas correspond to the lowedtighest)
values of the wave functions. The shades of gray
express the relative values of the wave functions,
but are not the same in plota)—(d). In plots(a)
and(d) [and also in 6(aand 7(a)], the wave func-
tions equal zero in the white areas, whereas in all
the other plots the contours corresponding to the
wave function equal to zero are denoted by 0.0.
Dashed straight lines correspond to the coordi-
nates of the dot centers.

FIG. 6. Contours of exciton wave functions
for interdot-center distanca=7 nm. The sym-
bols have the same meaning as in Fig. 5.
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FIG. 7. Contours o exciton wave functions
for interdot-center distanca=4 nm. The sym-
bols have the same meaning as in Fig. 5.

degenerate ground state possess extrema on the straight lipgermediate distance between the dais=¢ nm). The re-
Ze=2; and those for the degenerate excited states possesgits of Fig. 6 show that the correlation in the relative
extrema on the straight line.= —z,. This means that the electron-hole motion is weaker than in the case of large in-
twofold degenerate ground state corresponds to the electrofsygot distances. In the two lowest-energy stdféigs. 6(a)
hole pair confined in the same quantum dot, whereas in thgnq (b)], both the particles still prefer to occupy the same
twofold degenerate ex_cned s_tate, .the electron is confmed.lbD' but there appears a nonzero probability of occupation of
one QD and the hole is confined in the other. Therefore, inyigerent dots. In the third and fourth excited stafégs.

the limit of large interdot distances, the two pairs of degen-e(c) and 6(d)], both the particles exhibit the tendency of

erate states correspond to essentially different physical Sitl‘gvoiding each other, but with the nonvanishing probability of

ations, i.e., the bound exciton and the dissociated exciton, .
dccupation of the same QD.

The ground-state wave functions inside a single QD show In Fia. 7. the shapes of the exciton wave functions are
the inversion symmetry with respect to the dot cefEdgs. 9. 7 ap )
yshown for a small interdot-center distanca=(4 nm). In

5(a)and 5(b)]. The excited-state wave functions are slightly>' X . o L .
spread out in the direction of the other QD, in which thethls case, the wave functions begin to exhibit a definite parity

oppositely charged particle is localizEigs. 5(c)and 5(d)]. with respect to the change of §|gn_of the sm_ghaoordlnate. .
We note that for large interdot distances the exciton wave he ground-state wave function is approximately even in
functions do not show any trace of the symmetry with re-both thez, andz, coordinategFig. 7(a)]. The first excited
spect to the one-particle parity. Obviously, these wave funcstate[Fig. 7(b)]corresponds to the even-parity electron state
tions are symmetric with respect to the simultaneous changand odd-parity hole state. On the contrary, in the second
of sign of both thez, andz, coordinates. excited stat¢Fig. 7(c)], the electron possesses the odd parity
If the distance between the dots decreases, the energy afid the hole possesses the even parity, whereas in the third
the excited state slightly lower&f. Fig. 4), which results excited statdFig. 7(d)] both the particles possess the odd
from the increasing attraction between the electron and holparity.
localized in different dots. This effect is not observed in the According to the results of Figs. 5, 6, and 7, the one-
ground state, in which both the charge carriers are confineparticle description of the parity symmetry is approximately
in the same QD. Therefore, in the case of large interdot distrue only for small interdot distances, i.e., in the limit of the
tances, the only effective coupling is the long-range Coustrong interdot coupling. In a general case, the one-particle
lomb coupling between the charge carriers localized in theparity is not well-defined. Therefore, one has to be very care-
different QD’s. Figure 4 shows that for the barrier thicknessful when describing the symmetry of the exciton for the
t=<8 nm the higher-energy branches begin to grow and theoupled QD’s, especially when using one-particle methods,
degeneracy is lifted. In Fig. 6, we have plotted the excitore.g., LDA approach® which cannot reproduce the total ex-
wave function for the four lowest-energy states in the case ofiton parity. In particular, we can expect that—for some in-
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FIG. 9. Energyhv of radiative transitions from the even-parity
exciton states with one-particle angular-momentum quantum num-
bersm=0 (s),1 (p),2 (d), and 3 ) as a function of spacer thick-
nessd (a is the interdot-center distance, wheredsa—Ty,).
Solid curves show the results of the present calculations and full
circles show results of the experimental dgRef. 21].

FIG. 8. Estimated probability of the radiative transitions from
the even-parity ground and excited state of the exciton withO
confined in the coupled QD’s as a function of barrier thickness
(distance between the dot centas The transition probability is
expressed in arbitrary units.

terdot distances—the broken-parity self-consistent solutionthe energy levels and relative recombination probabilities for
possess a lower total energy. the states of highan are qualitatively the same those for the
The parity of the exciton state strongly affects the prob-s states. This means that the vertical interdot coupling is only
ability of radiative transitions, i.e., the electron-hole recom-weakly affected by the in-plane motion.
bination. In Fig. 8, we have plotted the radiative-transition ~As we have shown the radiative transitions are forbidden
probability calculated according to formu(é) for the opti-  for the odd-parity initial states and are less probable for the
cally active exciton states witm=0 (s states)and even excited even-parity statdsf. Fig. 8). This leads to the con-
total parity. The probabilities of the radiative transitions from clusion that the dominant contribution to the photolumines-
the grounds state take on fairly large values for all the dis- cence spectrum of the coupled dots originates from the
tances between the QD’s. In the ground state, the probabilitiowest-energy even-parity exciton states for givan The
for the electron and the hole to be localized in different QD’sinterdot coupling shifts the energies of these states towards
increases with the decreasing interdot distalefe Figs. 5 the lower valuegcf. Fig. 4).
(a), 6a), and 7(a)], which leads to the decreasing probability Based on these results, we can now compare the predic-
of the electron-hole recombination. The behavior of thetions of the present model with the experim&htn Fig. 9,
probability of the recombination from the excited even-paritywe have plotted the energies calculated for the allowed ra-
s state is just opposite. In this state, the charge carriers amiative transitions. The experimental d&tanarked by the
spatially separated for large interdot distanfg#sFig. 5(d)].  full circles, have been extracted from Ref. 21. Figure 9
Therefore, the exciton wave function under integi@l is  shows that the calculated transition energies agree very well
equal to zero, which causes the probability of the radiativewvith the measured positions of the photoluminescence
transition from the excited state to vanish. When the distancines?! The exciton recombination lines exhibit the pro-
between the dots decreases, the charge carriers can be loacabunced redshift with the decreasing interdot distance. The
ized in the same QD and the excited-state recombinatiofollowing physical interpretation of this redshift can be
probability takes on nonzero and increasing val(flég. 8).  given: the decrease of the interband transition energy means
However, the probability of the radiative transition from the that the exciton binding energy increases with the decreasing
excited state always remains smaller than that from thénterdot separation. This effect mainly results from the low-
ground state. ering of the one-particle energiésf. Fig. 3), i.e., the stron-
We have performed similar calculations for the excitonger quantum confinement of the electron and the hole in the
states with higher angular momentum quantum nunther double quantum well with the growing effective range.
The results(not presented hereshow that the properties of In the experimental spectfd,taken for the QD’s with
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height h=2 nm, no additional photoluminescence linesAccording to our results, one of the new peaks with the
were observed. The appearance of additional photolumine$owest energy should correspond to the excietiate of the
cence lines was report&dor the coupled QD's of the larger €ven total parity.

height h=3 nm). Unfortunately, the evolution of these ad-

ditional lines with the varying interdot distance was not pre-

sented, probably because of a strong overlap of the lumines- V. SUMMARY

cence maxima. The authors suggestetiat thes exciton , )
line does not split and that the splitting becomes consider- N the present paper, we have introduced a theoretical
ably larger for the highly excited exciton states. Based on th&"0del of a single QD based on the assumption of the Gauss-
results of the present calculations, we argue that these sul" distribution of indium concentration. We have general-
gestions are not correct. The calculated spacings between tH€d this model in order to describe the c,ouphng between the
energy levels of the even-parisandp states are comparable vertically stacked 'self—.assembled QDs., The eigenvalue
(cf. Fig. 4)and the dependence of the relative recombinatiorP"oPlem for the exciton in the coupled QD's has been solved
probability on the barrier thickness is similar for both the With the use of the many-element variational basis, which

states. Therefore, if the higher-eneqggtate is observed, the partially takes into account the two-par_ticle correlation ef-
higher-energys state should also be observed. fects. A good agreement has been obtained between the cal-

Let us discuss a possibility of an experimental observatiorgulated and measured positions of photoluminescence peaks
of the energy-level splitting for the exciton in the coupled for d|ﬁergnt interdot dls'ta_nces.. This agreement'supports our
QD’s. As we have shown abovef. Fig. 4), in the limit of _hypothe_5|s of the negllglble_lnfluence of the m'_[er-exmton
large interdot distances, for given the two pairs of energy interaction on the photoluminescence spectra in the self-
levels are twofold degenerate. These levels are associat@§Se€mbled quantum dots. The present results show that the
with the twofold parity-degenerate ground and excited state?r0P0Sed Gaussian concentration distribution with the pa-
In each pair, only one statef even total parity)s optically ~ rameters fixed for the single QD is a universal function,
active and can be detected experimentally. This feature i@’h'?h implicitly includes the most important effects in real
independent of the interdot distance. Therefore, a possibl@D’S and properly describes the electronic properties of both
removal of the degeneracy of the two exciton states with thdh€ isolated single QD and coupled double QD's. For the
different total parity cannot be observed experimentally, ~ coupled QD's we have studied the symmetry with respect to

The higher-energy exciton states of even total parity cathe parity of the exciton states. .The present rgsults show
be observed under certain conditions. The even-parity statd8at—in a general case—the exciton wave functions do not
corresponding to the same angular momentumahneys, POSSESS a plef_lnlte one-particle parity and (_)nly the t(_)tal two-
i.e., for all interdot distances, energetically separaodFig. particle parity is conse_rved. For very small mter_d(_)t distances
4). In the limit of large interdot distances, the higher-energyth® ground-state exciton wave functions exhibit the one-
exciton states cannot be detected, since the electron and tR@ticle parity, but in an approximate manner only. We have
hole occupy different dot&f. Fig. 5)and the transition prob- also suggested that 'the recent assignment of the addltlo.nal
ability vanishes(cf. Fig. 8). The recombination from the ex- photoluminescence Ilnes observed for the small interdot dis-
cited states can be observed only for small interdot distancd@nces should be revised.

(Fig. 8). If the additional photoluminescence lines connected
with the higher-energy states of even parity appear in the
spectrum, they are already blueshifted by at least 15 meV
with respect to the lines corresponding to the lowest-energy This work has been partially supported by the Polish State
states for giverm (cf. Fig. 4). The new peak@with increas-  Scientific Research Committe@BN) under Grant No. 5
ing transition energiestan occur in the photoluminescence PO3B 049 20. One of uéBS) gratefully acknowledges the
spectrum if the distance between QD’s is sufficiently small.support of the Foundation for Polish Scien&NP).
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Exciton and negative trion dissociation by an external electric field
in vertically coupled quantum dots
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We study the Stark effect for an exciton confined in a pair of vertically coupled quantum dots. A single-band
approximation for the hole and a parabolic lateral confinement potential are adopted which allows for the
separation of the lateral center-of-mass motion and consequently for an exact numerical solution of the
Schrddinger equation. We show that for intermediate tunnel coupling the external electric field leads to the
dissociation of the exciton via an avoided crossing of bright and dark exciton energy levels which results in an
atypical form of the Stark shift. The electric-field-induced dissociation of the negative trion is studied using the
approximation of frozen lateral degrees of freedom. It is shown that in a symmetric system of coupled dots the
trion is more stable against dissociation than the exciton. For an asymmetric system of coupled dots the trion
dissociation is accompanied by a positive curvature of the recombination energy line as a function of the

electric field.
DOI: 10.1103/PhysRevB.71.205316 PACS numbes): 73.21.La, 71.35.Pq, 73.21.Fg
[. INTRODUCTION be obtained in a single band model of coupled quantum disks

. neglecting the straifActually, as we discuss below analyz-
Strained self-assembled InAs/GaAs quantum dots growk, o"we stark shift of the first excited state, this deviation is

on subsequent layers stack spontaneously one above tife to a near degeneracy of the ground-state aréigne-
othef? forming artificial molecules with spatially extended sulting from the weakness of the hole tunnel coupling. In the
states due to the tunnel interdot coupling. The.photolumines@resent paper we report on another deviation of the Stark
cence(PL) spectrum of the coupled dots consists of a nUM-if from quadratic form related to the exciton dissociation
ber of lines which are blue or redshifted by the couplihg ;5 4 ground-state anticrossing of a bright state with both

depending on the way the single-particle electron and holggiers in the same dot and a dark state with separated car-
wave functions contribute to the exciton states in question. g g

Application of an electric field oriented along the growth Quantitative modeling-1° of single quantum dots re-

direction offers the possibility of external control of the quires taking into account the valence band mixing, the gra-
strength of the tunnel coupling. Recent experimental réSultsgient in the indium distribution, strain effects, and confine-
on the Stark effect for vertically coupled pai_rs of nonidenti- o nt geometry which are very different for quantum dots
cal dots showed the effect of tunnel coupling through thepcated at various laboratories. In this paper we present a
appearance of avoided crossings between states localized ify;jitative study of the effects of the external electric field on

different dots. Previously, tunnel-coupling related Stark shiftye interdot tunnel coupling visible in the Stark shifts of the
of the electroabsorption spectra has been observed in Vert'cﬁhght energy levels, which should be universal for various

stacks of several quantum déts. types of coupled dots. In particular we focus on the effect of

Stark effect on the exciton states in vertically coupledihe ejectron-hole interaction which was negledtedtreated
self-assembled quantum dots has previously been studied j§ 5, approximate manrfein previous work. For a single

Refs. 7 and 8. An anomaly in the gr_ound—state Stark shift Waguantum dot the Coulomb interaction may have a small ef-
found’ by thek - p method accounting for the strain effects foot on the Stark shift since the interaction energy only
and realistic shapes of the dots. This anomaly consists ijeakly changes with the small displacement of the electron
deV|_at|on of the ground-state energy line from the usual quaz g hole wave functions inside a single dot. On the other
dratic dependenéeon the external field hand, the role of the interaction for the Stark effect in
E(F) = E(Fo) - p(F = Fo) - B(F = Fy)?, (1) coupled do_ts is ess_entia_ll since t_he effect of the externgl fi_eld
on the exciton consists in breaking the electron-hole binding
where F, is the electric field for which the overlap of the and segregation of carriers into different dots.
electron and the hole wave functions is the largest and for In the present work we use a simple model potefitial
which the recombination energy is maximpljs the dipole  with a square quantum well for the vertical confinement and
moment and3>0—the polarizability. The shift calculatéd parabolic lateral confinement adopting the single band ap-
for coupled dots can only be approximated with two paraboproximation for the hole. Due to the applied idealizations the
las: one forF <F, and the other foF >F, amounting in a model is exactly solvable. Our results fully account for the
cusp atF,. Although this deviation was attributédo the interparticle correlations due to the Coulomb interaction and
strain distribution it was shown that such a behavior can alsaover also the excited states.
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A recent experimefton the Stark effect in a vertically h2 ) %2 5 Mew? 5 My’ )
coupled system of quantum dots was performed on a chardd = ~ me ﬂvh*' 5 Pet T, P+ Ve(Ze) + Vi(z)
tunable structure, similar to the one used in studies of nega- n
tively charged exciton&’ A spectacular change in the spec- _
trum was observetlywhen an electron was trapped in the dot Amreeyf o
closer to the electron reservoir. Namely, a sudden drop of the
recombination energy and an unexplained positive curvaturgrhere p2=x2+y2, (Xe,Ye,Z) and (X, yn, 2, are the position
of the recombination line as a function of the electric fieldvectors of electron and the hole, respectively.is the elec-
was observed.This observation motivated us to look at the tron hole distancern, (my) is the electron(hole) effective
Stark effect for the negatively charged trion. For the negativéhand masse is the dielectric constant, anfi(z) is the po-

trion we apply the approximation that the lateral degrees ofential of the external electric field taken as
freedom are frozen. The validity of this approximation is first

verified for the Stark shift of the exciton energy levels. In FZna for Zax < Z
. . . . . ax ax
nanostructures the trion binding energies with respect to the D=1 Fz f e 3
dissociation into an exciton and a free electron are consider- (2= Z 100 Zmin= 2= Zmax 3)
ably increased! However, the trion binding energy is usu- Fzyn for Z= Ziin
ally substantially smaller than the exciton binding energy. . o )
We report here that for a symmetric system of verticallywhereF is the value of the electric field assumed to be uni-
coupled quantum dots the trion isore stable for dissocia- form betweenzy, and zy., (which can be identified as the
tion by the external electric field than the exciton. The studyP0sitions of the electrodgsin the calculations we leave a
of the dissociation mechanism shows, that for the pair offPace of 10 nm between the dots and the paigsandzyax
identical dots the trion is dissociated into a pair of electron®@yond which the electric field is assumed to be zero.
confined in one dot and a hole in the other. Only for the ~The model of the coupled quantum dots used in this paper
asymmetric system of coupled dots a dissociation into afvas previously appliedl to describe the exciton coupling
exciton and a free electron is obtained as an intermediate sté}#tween dots in the absence of an external electric field. The
before the final separation of the hole from the two electronsauthors® used the configuration interaction scheme to ac-
In this case, the trion is more easily dissociated than th&ount for the lateral correlations between the electron and the
exciton. The positive curvature of the recombination energyt©le. The configuration interaction approach for the electron-
as a function of the electric field is obtained for the trion N0l€ Systems is computationally much more challenging than
ionization process into an exciton and a free electron.  for the electron systems due to its slow convergéfice.
Previously, trions in vertically coupled dots were studied Therefore, in this paper we will make explicit use of the
in the absence of the external fildand neglecting tunnel lateral separab|llty of the center of mass. After introduction
coupling between the doté. of the lateral relativgpen=(Xe—X,Ye=VYn) and lateral center-
This papers is organized as follows, the next section con0f-Mass pcm=(MeXe+ MiXy, MeYe+ Myyy) /M- coordinates, the
tains the description of the theoretical approach, the resultsamiltonian can be expresses as a sum of the lateral center-
are given in Sec. I, their discussion is presented in Sec. IVof-mass HamiltoniartH,, and the Hamiltonian for the rela-
Section V is devoted to the summary and conclusions.  tive lateral—and the single-particle vertical—motig,,),
which are given by

+ed(z) - ed(z,), (2)

II. THEORY 52 5 M w2

— 2
Hcm_ - oM Vpcm+ 2 Pcm (4)

We assume a parabolic lateral confinement potential with
equal electron and hole confinement enetfiw). Vertical
confinement for the electrdiVe(z.)] and the holdV,(z,)]is and
taken as double well potentials of deptf for the electron
and \? for the hole and of widthw=6 nm separated by a R, w2 P R P pe?,
barrier of thickness. Isolated quantum dots may possess a '™~ 2. Vren om.a2  2ma2 | 2 Pen” Ve(ze)

: m 2m 072 2mnize 2
built-in strain-induced electric field pushing the hole to the &2
top of the dot as found in the photocurrent measurements of _ _
the Stark effect on buried quantum détsHowever, in + Vilz) 477660reh+ eb(z) - eb(z), ®
coupled quantum dots the built-in electric field has the op-
posite orientatioR. Therefore, this intrinsic electric field is with M=mg+m,, u=mem,/(m.+m), Vi stands for the La-
neglected in the present calculatiaiirs fact, such a build in  placian in thex-y plane. The exciton wave function can be
electric field can also be interpreted as a shift of our appliedvritten as
field). For self-assembled quantum dots the assumption of
harmonic lateral confinement is not valid, however, it should W(rern) = X(Pet Ze: Zp) Yer Per) (6)
not essentially modify the susceptibility of the carriers to the
electric field oriented vertically. where y and ¢, are the eigenfunctions of thd,, and the

In the present model the Hamiltonian of the system can bél.,, Hamiltonians, respectively. Functiogig,, are simply the
written as eigenfunctions of a two-dimensional harmonic oscillator.
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The eigenstates of Hamiltonig) have definitez com-  shift of the negative trion recombination line which increases
ponent of total angular momentum and 8~0 also have with decreasing size of the dot and consequently leads to a
definite parity with respect to a change of sign of the decrease of the redshift due to the tunnel effect in coupled
coordinates. The absorption/recombination probability for quantum dot$? In two-dimensional quantum wells the ex-
stateu is proportional to the integral perimentally observed positive and trion recombination en-

2 ergies for zero-magnetic field are nearly equal, although in
strictly?® two-dimensional confinement significantly lower
recombination energy for the positive trion was predicted.

2 This effect is explainetd32 by stronger hole localization.

. (7) Therefore, the adopted confinement potential takes into ac-
count the electron-hole interaction enhancerffelit33with

In the present paper, we consider only states whose symmEespect to the electron-electron interaction.
try does not prevent them to be bright, i.e., states in which
both the relativey and the center of masg.,, eigenstates Ill. EXCITON IN VERTICALLY COUPLED DOTS
possess zero angular momentum. In the following we show
and discuss only results for states in which the center of mass
is in the ground state. The spectrum wstsymmetry center- For F>0 the electric field pushes the electron to the left
of-mass excitations is simply a replica of the spectrum corand the hole to the right dot. The dependence of the energy
responding to the ground state of the center of mass shiftesbectrum on the external electric field for2 nm is plotted
by the energy 2w. The recombination probabilities for the in Fig. 1(a). At zero electric field the first excited state is of
states corresponding to zero angular momentum center-obdd parity and corresponds to the excitation of the histe
mass excitations amxactlyequal to the corresponding states the inset to Fig. 1(a)—excitation energy is just 0.25 meV
with the ground-state center of mass, since integrals of all th&he electric field breaks the parity symmetry of the system
s type wave functions of a two-dimensional harmonic oscil-and the excited state becomes optically acfofethe inset to
lator are equal, which is due to a property of Laguerre polyFig. 1(a)]. The dependence of the wave functions on the
nomials. For potentials, in which the parity is a good quan-electric field is displayed in Fig. 2(a). In order to explain the
tum number, i.e., for identical quantum dots without anfield dependence of the spectrum we have plotted in Fly. 2
external field, we consider only states of even parity, the oddhe probability densities integrated over the lateral degrees of
parity states being dark. freedom, which gives more accurate information about the
The eigenfunctiong of Hamiltonian(5) are calculated on localization of particles than the wave function on the axis
a three-dimensional finite-difference mesh with the imagi-{whose integral over, andz, gives the recombination prob-
nary time techniqué’ We use the material parameters for anability, cf. Eq. (7)]. In the ground state the hole becomes
In,Ga;_,As quantum dot embedded in a GaAs matrix with aentirely localized in the right quantum dot for a relatively
uniform concentration of indium in the quantum det weak electric field see the plots foF=30 kV/cm in Figs.
=0.66% We take the following parameters for the alloyed 2(a)and 2(b)]. The ground-state localization of the electron
guantum dot materiak=12.5, my=0.037n3, m,=0.45m, in the left dot appears at a much higher electric field, leading
where my is the free electron masS/g=—0.508 ev, Vﬂ eventually to the extinction of the recombination intensity. In
=-0.218 eV, and we take for the lateral confinemémat the excited part of the spectrum one observes two bright
=20 meV. We note, that in the limit oiw=0 the present energy levels which tend to degeneracy at high electric field
problem reduces to the Stark effect for an exciton in coupledcf. levels labeled by, andb, in Figs. 1(a), 2a), and 2(b)].
quantum wellg8 In these two energy levels the electron and the hole occupy
For a particle of masm confined in a harmonic oscillator the same quantum d@it is more clearly visible in Fig. 2(b),
potential of energyiwg the localization radius defined as the for the wave function plots presented in FigaRthis ten-
square root of the expectation value xf+y? is equal to  dency is apparent only at high electric field, cf. the plots for
Viilmeg. For the assumed center-of-mass separation the hotbe third and fourth excited states =90 kV/cm). In the
is therefore more strongly localized than the electron by éright energy levels marked by the carriers become local-
factor of ym,/m.. In INAs/GaAs quantum dots the hole con- ized in the left quantum dot which is favorable for the elec-
finement is stronger than the electron confinement which ig¢rostatic energy of the electron and unfavorable for the elec-
due to the finite quantum well efféétand the electron-hole trostatic energy of the hole. In the higher bright energy level
interaction which localizes the heavy hole much moremarked byb, the electron and the hole are localized in the
strongly than the light electron. In Fig. 7 we show that aright quantum dot, favorable for the hole and unfavorable for
change in the strength of the hole and electron lateral corthe electron. Thd, level increases when the electric field is
finement does not influence the qualitative features of thewitched on. On the other hand theenergy level decreases
spectra in an external electric field. It merely leads to shiftawith field. This behavior is due to a reaction of the electron
of the energy levels along the energy axis. on the field which is delayed with respect to the reaction of
For the negative trion in quantum dots with a rectangularthe hole being more easily localized in one of the dots by the
well confinement the effect of a stronger hole localizationfield [cf. Fig. 2(b)].
leads to a larger electron-hole interaction energy than the Figure 1(a)shows that the two bright energy levels exhibit
electron-electron interaction energfyThis produces a red- avoided crossings and anticrossings with the dark energy lev-

Pu=

f der\lfﬁ(re,l’h)ﬁs(l’e— )

= ‘ f dXedYetfem(Xe, Ye) f dZx,(0,2¢,Z)

A. Stark effect
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FIG. 1. Exciton energy spectrum as a function of external elec-
tric field F for barrier thicknessb=2 nm (a), b=4 nm (b), b
=7 nm(c). The area of the dots is proportional to the recombinatio
probability. The insets ifia) and(b) show zooms of regions marked

by rectangles.
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at aboutF=90 kV/cm. All the avoided crossings become
narrower with respect to the stronger tunnel coupling case of
Fig. 1(a). The most pronounced anticrossing is the one be-
tween theb, and| energy levels, like fob=2 nm[cf. Fig.
1(a)]. The curvature of the degenerate bright energy levels at
high electric fields results from the electric-field-induced de-
formation of the electron and hole wave functions within
each of the quantum dots.

The most interesting spectrum is obtained for larger bar-
rier thickness. Figure 1(ajisplays the electric-field depen-
dence of the exciton energy spectrum for7 nm. For
F=0 the twofold degenerate ground state corresponds to
both carriers in the same quantum @it Fig. 2(b)], while in
the nearly degenerate excited state the carriers occupy differ-
ent quantum dots. The degenerate ground state energy is not
affected by the electric field, since the electrostatic energy
gained by the electron is lost by the hole ancke versa. The
electric-field dependence of both the split excited energy lev-
els, which correspond to spatially separated charge carriers,
is strictly linear. This energy level anticrosses thebright
energy level aroun&=9 kV/cm. After the avoided crossing
the state with carriers separated by the external electric field
becomes the ground state. The bright statis not involved
in the anticrossing and its energy is independenkE of-or
larger b the discussed anticrossing becomes narrow and
barely visible.

Figure 2(c)for F=5 kV/cm shows that in the ground-
state the charge of the hole is considerably shifted to the
right dot and that a part of the electron charge is also trans-
ferred to the right dot. In order to present the movement of
the carriers between the dots in more detail we plotted in Fig.
3 the charge accumulated in the left dot as a function of the
electric field for different barrier thicknesses. We see that the
dependence of the hole charge on the external field is mo-
notonous. On the other hand the electron initially follows the
movement of the hole to the right dot. Fb=10 nm the
electron charge transferred to the right dot is exactly equal to
the hole charge foF smaller than 6 kV/cm. Up to this field
both quantum dots remain neutral and the dipole moment
(see inset to Fig. 3)s zero. When both particles become

els for which the carriers are separated by the electric field icompletely localized in different dots the dipole moment
the same way as in the ground state. The lowest excited dareaches(b+w).

energy level[marked byl in Figs. 1(a), 2a), and 2(b)or-

responds to a lateral excitation. In the second excited dark

energy level[marked byv in Figs. 1(a), 2a), and 2(b)the
hole in the right quantum dot is in a state excited in the
vertical direction. Forb=2 nm the first anticrossing in the
low-energy spectrum appears between the brighand the
dark | energy levels aroundF=40 kV/cm at about

B. Nonidentical quantum dots

The confinement potential of vertically stacked dots usu-
ally exhibits asymmetry, which even for identical dots can be
induced by the strain effectsLet us consider the effect of
—-555 meV. This anticrossing is wide and is due to the eIecIhe asymmetry of the c_onfinement potential on.the exciton
tron tunnel coupling of the left and right dotthe hole is spectrum. It was establishethat for stacked strglned trun-
entirely localized in the right quantum dot in both states Cat€d pyramids the ground state of the hole is completely
The dark energy level goes below the lower bright energy ocalized in- one of the dots, while the electron
level b, via a crossing. A crossing instead of anticrossing is(Noninteracting with the hole)still forms bonding and anti-
observed here because in thenergy level the hole is in the bonding states.
other (left) dot. The dark statey with a hole excitation Here, we simulate this type of localization assuming un-
crosses thé, level and goes below thb, level in a very equal depths of the quantum wells for the hole. The effect of
narrow anticrossing. the electric field on the spectrum of asymmetric coupled dots

For weaker tunnel coupling, i.e., fds=4 nm [cf. Fig.  for b=6 nm is presented in Fig. 4(&r the right dot deeper
1(b)]the two bright energy levels become degenerate alreadgy 3 meV for the hole. Two bright energy levels around
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FIG. 2. (a), (c) contour plots of wave functions at the axis0 of the system an¢b) probability density integrated over the lateral
degrees of freedorj“1(°)°dpp|)((p,ze,zh)|2 for different values of the electric field for barrier thickndss2 nm(a), (b) andb=7 nm(c). Lower
plots correspond to lower energies. Shaded area show the quantum wells for the electron and for the hole. Dashed line shows the n
surface of the wave function.

-563 and —560 meV are obtained. In the lowapper)of s just shifted by +2.5 kV/cm with respect to the spectrum
energy levels both the carriers are localized in the deepdpor the hole confinement asymmetfgf. Fig. 4(a)]. In the
(shallower) of the dots. The lowest dark energy level de-lower (upper)of the bright energy levels the electron stays in
creasing linearly in energy witR has the hole localized in the deepe(shallower)of the dots and the Coulomb interac-
the right dot[cf. Fig. 5(a)]so it crosses the higher bright tion binds the hole in the same dftf. Fig. 5(b)]. The
energy level with both the carriers in the left dot. The inter-crossing/anticrossing mechanism is the same as for the hole
change of the energy order of this dark state with the lowefonfinement asymmetry. _ _

bright energy level appears via an avoided crossing, since in For_smaller barrier thickness the_ anticrossings of the dark
both these states the hole is localized in the rigeeperdot ~ and bright energy levels become wider and as a consequence
[cf. Fig. 5(a)]. ForF <0 the hole in the lowest energy dark the region neaF =0 in which the wo lowest energy levels
state is localized in the shallower of the dots. For this reaso’%gelengg;%r':gaﬁgdbejz gf zlisngEgrr?:nvez;.rgr:j?s;?aeycet:jaiIlO::itgse
:ahneefgo;rl?j/ztl)g?]lggcr%r;(;:ags)/tlr?g(lacl)v?g?corr?:ses the higher brig (a) and 6(b), respectively. The two parallel energy levels

Let that the left dot is shall for th nearF=0 observed for weak tunnel coupling in Fig. 4 are
€t us now suppose that the Ieft dot IS shallower for €y, (see Fig. 6converted into a crossing at a small negative
electron(by 3 meV)and that the hole confinement is sym-

S i "~ F. This feature results in the cusp of the ground-state energy
metric. Figure 4(bshows the spectrum for this case. Surpris-renorted previousksfor a thin (1.8 nm)interdot barrier. For

ingly the spectrum for the electron confinement asymmetrye gjeciron asymmetry the spectra are still shifted to higher

1 . values of the field by about 2.5 kV/cm with respect to the

I hole asymmetry, like in the weak coupling case of Fig. 4.
/ The crossing of the bright energy levels still appears at

< 0. The reason of this similarity is that in the ground state at

F=0 the dipole moment induced by the electron and hole

asymmetry is the same in sign and not very different in size.

C.75¢

charge in the left dot [€]
(]
]

A For smallb the electron charge is smeared obeth dots. If
0.25 ¢ AN the right dot is deeper for the electron it bindmayer part of
\ 128 30 its charge. Consequently, thentire charge of the hole is

F k¥icm
TR 2IE[JW62'5I 30 pulled to the right dot. On the other hand, for the hole con-
F [kV/em] flnement gsymmetry the dot which is deeper for the hole
localizes its charge completely even for smilkince the
FIG. 3. Electron(dotted line)and hole(solid line) charge accu-  hole tunnel coupling is negligible. The localization of the
mulated in the left quantum dot as function of the electric field forhole in the right dot results in a larger localization of the
different barrier thicknesses. Inset shows the dipole moment aglectron in the right dot. In this way the asymmetry of the
function of the field. confinement for one particle is translated into an asymmetry

205316-5
praca 15A 160



SZAFRAN et al. PHYSICAL REVIEW B 71, 205316(2005)

-550 (a) F [kV/cm]
-20 -5 0 5 20
= -560 0. | o} 1@
£ . @ (o | 0| 0|0
o :
@ 570+ ‘ ‘ ;Ze -
i / % N @|o 9 0 |;
/o sEgte N ] o o ¥
-580 | 1 | L 1
20 <10 0 10 20
F [k¥/cm] ] 0 o o 0
0 0 © @
-850 —— go il
/ \ (b} z
%' -560
E (b) F [kV/cm]
& -25 -5 0 5 25
@ -570 ;
48] n : | 1
@ == Q A B g @ =
580 L | . . L Q @ t G)] ! . @ @
20 10 0 10 20 - -
F [k¥/cm) @ @ o @
4
FIG. 4. Stark effect for the asymmetric system of quantum dots @ @ @ 2
atb=6 nm. In(a) the electron confinement is symmetric and the left
dot for the hole is shallower by 3 meV. [b) the hole confinement @ @ @ @ 0
is symmetric and the left dot for the electron is shallower by 0
3 meV. The insets irfa) and (b) show a schematic drawing of the Jgng
vertical confinement foF=0. Z

h

FIG. 5. (a) Contour plots of the wave functions at the ayis
of the potential felt by the other particle via the Coulomb =0 corresponding to the energy levels shown in Fig)4b) simi-
interaction. Although it is possible experimentally to deter-lar as for Fig. 4(b). Higher plots correspond to higher energies.
mine which of the dots is deeper by looking at the electric-
field dependence of the bright energy levels one cannot de- [ T
duce from theF dependence of the exciton energy levels Her =~ ﬁ% - Z_mhgﬁ +Ve(Ze) + Vin(zn)
alone which of the carriers is responsible for the asymmetry.

= Veii(|ze = zi|) + ed(z) - eD(z) + 2hw,  (8)

with Vg4(2) the effective potentid? of one-dimensional in-

C. Frozen lateral degrees of freedom teraction given by
The exact separability of the center of mass used in the Vei(2) = Lerfcx(M/')’ (9)
previous calculations was possible because of the assumption 47 ee

of identical lateral confinement energies for the electron and

the hole. When the center of mass is not sepafétie exact \t,iv:: ; ﬁélég];:tilv/enﬁgrl;iijneia?((g;jtlioensct:(r)ibtzs ter:gegfefggg
calculations become much more complex. However, as lon

as the interest of calculations relies in a qualitative descripgppearlng in the growth direction at the expense of a simpli-

. . o e fied picture of the lateral motion.

tion of the influence of the electric field applied in the growth Figure 4 shows the comparison of the exact resisiid
direction the actual form of the lateral confinement is not;;\

essential. In this caS(gasone may try to integrate out the latera)ioyimate results calculated for frozen lateral degrees of
degrees of freedorif: Such an adiabatic approximation is freedom(dashed linesfor identical quantum dots separated
assembled quantum dots. Thus we assume that the electrefyy. 4(b). The approximate method reproduces the correct
and hole lateral wave functions can be identified with thequalitative shape of the energy lines. Also the recombination
ground-state of the harmonic oscillator. This assumption alprobability dependence on the electric field does not signifi-
lows us to integraf® over the lateral degrees of freedom and cantly differ. However, the approximation of the frozen lat-

es) obtained with the separated center-of-mass and ap-

arrive at the effective Hamiltonian for the vertical motion eral state eliminates the lateral excitations. The avoided
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> ment lengthgdotted line)for the parameters of Fig.(4).
E 560
= / . : N
o system is in the singlet state. The approximation of the fro-
@ -570 zen lateral wave functions will be used with the
quasione-dimension&lelectron-electrorfVeg) and electron-
580 L 1 X L . . . _ e _
760 40 20 0 20 40 &C hole_ mFeracthn potentidEqg. (9)]. Electr_on electrogg po
F [kV/cm] tential is obtained fom;, replaced bym, in formula(9). The

Hamiltonian for the trion reads

FIG. 6. Stark effect for the asymmetric hole confinement of Fig. 2/ 2 5 2 2
4(a)for b=4.5 nm(a) andb=3 nm(b). The area of the dots shows fo; —_ h_(_ + ‘9_) _ ﬁ_ﬁ_ +Vo(Zey) + Vel(Zeo)
the recombination probability. € 2m\dz2, dz%,) 2mwiz ¢
crossings of the bright energy levels with the dark energy + Vi(z) = Ve [Ze1 = 20]) = Ven(|7e2 = 20
levels with lateral excitations are therefore overlooked in the + Veip(|Zer = Zea|) + 6P(Ze1) + €D (2ep) — eD(7) + Jfiw,
present approximation[cf. avoided crossing atF (10)
=50 kV/cm missing for lines marked with dashed lihes
The accuracy of the approximate method is better for darkvhere z; and z,, are coordinates of the first and second
states with separated charge carriers than for the bright ef@lectron, respectively.
ergy levels for which the electrons and hole wave function ~Figure 8(a)shows the difference of the trion ground state
overlap3® The discussed approximation can be applied teenergy and the ground state energy of a single electron as
evaluate the qua"tative dependence of the br|ght energy |e\function of the electric field for different values of the barrier
els on the external field when lateral excitations are absenthickness and identical pair of quantum dots of width 6 nm.
In the following section we will use this approach to study The energy difference presented in Fig(aB can be
the effect of the external field on the negatively charged trioridentified? with the energy of the photon released when the
in coupled dots. hole recombines with one of the electroftalculated with

The dotted lines in Fig. 7 show the results of frozen-respect to the GaAs energy gap similarly as for the exgiton
degree-of-freedom calculations performed for the electrofrOr comparison the exciton ground state energy calculated
confinement unchanged but weakened hole confinement fa¥ith the same approximation of the frozen lateral states is
which the lateral confinement radii of the electron and thedlso shown by the dashed lines. In the absence of the electric
hole are equal. For weakened hole confinement the electrofield the recombination line of the negative trion has a lower
hole interaction energy is smaller, which leads to a blueshifenergy than the exciton recombination endigythe inset to
of the energy levels foF =0 with respect to the equa| con- Flg 8(&)] We found that the redshift of the trion line is
finement energies cagdashed lines in Fig. 7). The interac- smaller for smaller barrier thickness. This behavior as ob-
tion energy of the dissociated electron-hole pair is lesgained by neglecting the lateral correlations is in perfect
strongly affected by the change of the hole localizationqualitative agreement with extensive variational calculations
strengths. Figure 7 shows that the electric-field dependenciccounting for both vertical and lateral correlations in a
on the electric field is essentially not altered by the strengtiiearly exact way? Inset to Fig. 8(ashows that for highF
of the hole localization, which justifiea posteriorithe as-  the energy difference of the trion and exiton energy lines is

sumption of the adopted center-of-mass separability. an increasing function db. This is due to the fact that the
interaction energy between the electrons confined in the
IV. STARK EFFECT FOR NEGATIVE TRION same dot is larger than the Coulomb interaction between the

hole and electron separated by the barrier.
We consider the effect of the electric field on the ground For larger barrier thicknegsf. plots forb=6 and 8 nm in
state of a negatively charged trion in which the electron subFig. 8(a)]the recombination line of the trion is independent
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electron initially followed the hole for weak electric fields.

FIG. 8. (a) Difference of the ground-state trion energy and the The trion becomes dissociated around 13 kV/cm, when the
electron ground statérion recombination energy with respect to field moves the hole from the left to the right dot. The reac-
GaAs energy gap—solid lingand the exciton ground-state energy tion of the carriers on the electric field is the most complex
(exciton recombination energy—dashed linebhe curves are la-  for b=6 nm[cf. Fig. 8(b)]. We have illustrated this in Fig. 9
beled by the barrier thickneds in nanometers. Inset shows the py additional plots of the probability densities integrated
difference of the exciton and trion energy linés) Electron(dotted  gver the vertical coordinate of one the three particles. For
lines) and hole(solid lines)charge on the left side of the origin as zero electric field there is a nonzero probability of finding the
function of the electric field. Inset shows the dipole moment. electrons in different dot&f. the left plot forF=0 in Fig. 9),

- and the probability of finding an electron in a different quan-
of the electric field forF lower than about 13 kV/cm. The tum dot than the holéct. the right plot forF=0 in Fig. 9)is

flat part O.f thg plots corresponds to both.the electrons and thr%uch smaller. Fob>8 nm all the three particles are found
hole staying in the same quantum das discussed above for i, e same dot. The leakage of particles to the other dot seen
exciton). We can see that the ground state of the trion is morg, Fig. 9 is a result of the electron tunnel coupling which is
resistant to the dissociation by the electric field than theyready nonzero fob=6 nm. In contrast to the case of
exciton ground state. The exciton energy decreases fastelg nm, forb=6 nm a part of the electron charge stays in the
than the trion recombination line, which results in the reversight dot when the field is switched daf. the left plot for
sal of the order of the lines &=14 kV/cm forb=4 nmand  F=6 kV/cm in Fig. 9). When the hole is transferred to the
F=10 kV/cm forb=6 and 8 nm. For large values &ffor  right dot(cf. the plots forF=13 kV/cm, part of the electron
which the hole and the electron charges in both the excitorharge follows it, which results in a local minimum of the
and the trion ground states are completely separated, thelectron charge accumulated in the left dot féraround
trion and exciton energy lines for eabtrun parallel to each 13 kV/cm|[cf. Fig. 8(b)for b=6 nm|. For largerF the par-
other. ticles become separated. For stronger tunnel coupling be-
To explain the large stability of the trion ground state intween the dots, i.e., fds=5 and 4 nm the hole charge accu-
the symmetric coupled dots against dissociation by the eleanulated in the left dot depends on the external field
tric field we plotted in Fig. 8(bxhe hole and the electron monotonically [cf. Fig. 8(b)], and a part of the electron
charge accumulated in the left dot as a function of the eleceharge attempts to follow the hole when it leaves the left dot.
tric field for different barrier thicknesses. For largpethe  Therefore, for smalb the mechanism of the trion resistance
distribution of the electron and the hole charges between th& dissociation becomes similar to the one observed for the
dots before the dissociation of the trion is qualitatively dif- exciton (cf. Fig. 3). The present results show that for sym-
ferent than in the exciton casef. Fig. 3). ForF=0 the hole  metric quantum dots the trion becomes dissociated into a pair
(electron)charge in the right dot is 0.6l) due to the sym- of electrons in one dot and the hole in the other without the
metry of the system. For large barrier thicknébs8 nm) intermediate step consisting of an exciton confined in the
the electrons become localized in the left dot already underight dot and an electron in the left dot. This mechanism is
the influence of a weak electric field. The hole initially fol- more clearly pronounced for larger The Coulomb interac-
lows the electrons into the left détf. the local maximum of  tion of the electrons with the hole stabilizing the complex
the solid line forb=8 nm). We remind the reader that for the against field-induced dissociation without the intermediate
exciton an opposite behavior was observefl Fig. 3): the  step is two times larger than for exciton.
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seok Tl T @) - other hand the negative electric field removes abruptly the
i hole to the thinnest dot &< —-25 kV/cm. For thicker inter-
-582 1 - dot barrier the trion recombination energy develops a local
% 564l } maximum for positive electric fieldssee the plots fob=6,
E ) 8, and 10 nm in Fig. 10(a)]. Let us analyze the origin of
W 566 | - these maxima for the case lb£10 nm. For positive electric
568 _ field up to 50 kV/cm both the electrons are confined in the

E : right dot [cf. Fig. 10(b)]. Then betweeR=50 kV/cm and
40 _"2'0 o 20 40 5'5 30 F=55 kV_/cm one o_f the electrons is trgnsferreq to th.e right
F [kvicm) dot. In this electric field range the trion is dissociated into an
exciton confined in the right dot and a spectator electron in
the left quantum dot. The final state after the trion recombi-
nation, i.e., the ground state of a single electron, is localized
in the left quantum dot foF >50 kV/cm, i.e., for the same
value of the electric field which induces the transition of the
first electron from the trion state to the left quantum ¥ot.
After the trion dissociation the recombination energy almost
reaches the recombination energy of the excltcin dotted
line in Fig. 10(a)]. The slight redshift of the dissociated trion
ol . o, line with respect to the exciton in this electric field range is
4020 0 20 40 B0 80 due to the Coulomb perturbation of the exciton remaining in
F [kV/cm] the right quantum dot by the spectator electron in the left
guantum dot. The second electron is removed from the right
FIG. 10. (a) The trion recombination energies as functions of the 4ot petween 60 and 65 kV/cm.
electric field(solid lines)for a pair of coupled quantum dots. The Note, that the observed mechanism of dissociation of the
curves are labeled by the barrier thickness in nanometers. Right d?ltion into an exciton and an electron does not occur in the
has a width of 6 nm and the vyidth of the left dot is 4 nm. Dotted system of symmetric quantum dotsf. Fig. 8). For asym-
line shows t.he exciton recombination energy tizr10 nm. (b) The metric quantum dots the stronger confinement energy in the
electron(solid lines)and the hole(dashed linestharge accumu- hi f the dots prevents the second electron from enter-
lated in the right dot fob=4 and 10 nm t inner o prev . .
ing it simultaneously with the first one. In the asymmetric
Note that for the trioricf. Fig. 8(b)]the barrier thickness System the exciton becomes dissociated into an electron and
has the opposite effect on the sensitivity of the electrons and hole forlarger electric fields than the one inducing disso-
the hole to the electric-field induced localization. For smallerciation of the trion into an exciton and a free elect{ah
b the electric field is less effective in localizing the electronsFig. 10(b)]. On the other hand the exciton created in the right
in the left dot but more effective in localizing the hole in quantum dot after the trion dissociation is more resistant to
the right dot. The effect for the electrons is obviously due tothe electric field induced dissociation than the exciton. The
the strong electron tunnel coupling. For smaklea smaller  electron remaining in the right dot is less willing to pass to
F localizes the hole in the right dot because the energy of it¢he left quantum dot if it is already occupied by an electron.
interaction with electrons changes less drastically after the The recombination energy lines of the trion in the asym-
dissociation and the hole tunnel coupling is negligible. metric system of coupled dots present a positive second
The inset to Fig. 8(bshows the electric dipole moment derivative with respect to the electric field for a certain range
for the trion as a function of the electric field. For high  of F. Namely, forb=6 nm the second derivative is posi-
when the particles are separated into different dots the dipoltve for the electric field rangE € (61,71) F  (57,60) and
moment takes the valuee@v+b)/2 36 Note, that for a thick F e (50,52)kV/cm for b=6, 8, and 10 nm, respectively.
barrier the dipole moment develops a plateau for the region For symmetric dots the mechanism behind the trion dis-
of fields in which the hole accompanies the electrons to theociation into an electron pair confined in one dot and the
right dot. For a thick barrier the recombination enefgj hole in the other, without an intermediate step consisting of
inset of Fig. 8(a)]starts to change only when the secondan exciton in one dot, and the electron occupying the other
plateau of the dipole moment is reached. guantum dot, is easily explained when considering layge
We found a qualitatively different dissociation mechanismusing a simple reasoning in which the tunnel effect and the
of the trion in an asymmetric system of coupled dots. Supinterdot Coulomb interactions are neglected. In this model
pose that the right quantum dot has a thickness of 6asn the dependence of the energy of the trion on the external
anywhere else in the present pgpand that the left dot has field can be written agy-=-2E,,+E.—Fbe/2, whereEg,
a thickness of only 4 nm. Figure (@ shows the trion re- (E.J is the absolute value of the electron-hole interaction for
combination energies for different barrier thicknesses. Thehe particles localized in the same dot. The trion is localized
charge accumulated in the rigtwider) dot is plotted in Fig. in the dot in which the electron localization is favored by the
10(b). ForF=0 the three carriers stay in the right dot. For field. The lowest energy level corresponding to the exciton
strongly coupled dotéb=4 nm) the electrons resist strongly confined in one dot and the electron in the otherEis
to being removed to the thinnest dot. Fo+ 90 kV/cm less  =-E,,—Fbe/2, and the energy level corresponding to a
than one elementary charge is localized in the left dot. On theompletely dissociated system iEy=E.—3Fbe/2. For

charge in the right dot [e]
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Een<Eec the trion is bound aF=0 and at nonzero field the which the effect of the intrinsic dipole moment is negligible.
ground state energy equals eitligr or Ey. The energy split-  For comparison in the experiment the intrinsic dipole mo-
ting of Ex- andEy is not affected by the field which explains ment leads to a shift of the transition energy by about 5 meV
the absence of an exciton as an intermediate step of triofpr F=100 kV/cm?* Therefore, the intrinsic dipole moment
ionization. A similar simple reasoning can be used forshould not modify the qualitative features of the effect pre-

coupled asymmetric dots where the intermediate step of triofficted in the present paper. The second order effect of the
dissociation is now found. polarizability related to the electric-field induced deforma-

tion of the electron and hole wave function for the discussed
low electric field range should be even smaller. Similar
V. DISCUSSION mechanism of the exciton dissociation via an avoided cross-
) _ _ ) ) ing has been found for asymmetric d¢td. Figs. 5(a)and
As mentioned in the introduction previous ground-statesjy)]. The difference between the ideally symmetric system
calculation$® for the Stark effect in vertically coupled dots and the more realistic asymmetric one is that the bright state
detected a deviation of the energy dependence on the electijghich does not participate in the avoided crossing is shifted
field from the expected quadratic form obtained within theto a different energy, lower or higher depending on the di-
second order perturbation thedryThe inset to Fig. 1(a) rection of the electric field. The mechanism of the exciton
shows that for identical quantum dots this deviation, i.e., alissociation via an avoided crossing of a dark and a bright
cusp of the recombination energy in function of the electricenergy level described here has been recently confirmed
field, is due to a narrow avoided crossing of two lowestexperimentally® after the present paper has been submitted.
energy levels. In the absence of the electric field these two Second-order perturbation theory for a single nondegen-
energy levels are nearly degenerate. This near degeneragyate energy levélpredicts a nonpositive curvature of the
results from the smallness of the hole tunnel coupling beenergy level as a function of the electric field. Although the
tween the dots. For the case presented in Hig) these two ~ Curvature is mdee_d nonpositive in the gr_ound state, a positive
Fig. 2(a)for F=0]. The electric field easily mixes the two the presence of the avoided crossings with lower energy lev-
energy levels localizing the hole in the right don the els_[see Figs. 4(3)'(4)’ 9, and 10].‘ A nondegenerate pertur-
ground stateand in the left quantum ddn the first excited  2ation theory for a single levebbviously does not apply for

state). When the confinement potential is asymmetric the dist-helr:h\ﬁe?;irfga'qéevfés'gﬁr?gg&?s' the pronounced droo of the
cussed anticrossing of the two lowest energy levels are re- S P . P . p

) . g recombination energy for a bias voltage for which an elec-
placed by a crossingcf. Fig. 6). This is due to a nearly

lete localizati f the hole in left or right um d ttron is trapped in the quantum dotloser to the electron
compiete focalization of the nole in eft or right quantum Aot ogqr6ir can be understood provided that the recombination

in the two states. The cusp of the ground-state is produced hyjg ) in the observed range of wavelengths comes from this
two energy levels crossing or nearly crossing. Itis thereforgjor Otherwise, the charge of the electron trapped in the dot
clear that second order perturbation theory for a simgle-  cjoser to the reservoir would have a negligible influence on
degenerateenergy level givehifor a single quantum dot is  the energy of exciton recombination in the other dot sepa-
not applicable to the ground state in coupled quantum dotsated by a barrier of 12 nricf. the small energy spacing
There is therefore no reason for which the ground stat®etween the exciton recombination lines with and without a
should follow the quadratic formula and the deviation fromspectator electron in the other dot for=10 nm in Fig.
parabolicity does not really deserve to be called an anomalyl0(a)]. The drop would result from the electrostatics of the
In the present paper we have found another deviatiomegative trion in which the energy of the electron-hole attrac-
from the common quadratic Stark shift, also involving two tion is larger than the electron-electron repulsion due to a
energy levels. This deviation appears for an intermediate bagifference of the strength of lateral localization of the carri-
rier thickness and is due to an avoided crossings of a brighers (see the discussion given in Ref.)2Zrhe observed
energy level with both carriers in the same dot and a darigrowth of the recombination energy for the smaller absolute
energy with separated charge carriers. This unusual Stankalue of the bias voltage could be related to a passage of one
effect, shown in Fig. 2(cfor a symmetric dot, should be of the electrons to the upper dot. The presented calculations
visible in low-excitation PL spectroscopyThe observation for the trion were limited to the ground state. However, the
of the excited exciton states should be facilitated by a relaPL line observed in the experiment which we here attribute
tively weak tunnel coupling between the quantum dots. Into the trion recombination in thiswer of the dots does not
the corresponding PL spectrum, one of the lines should beorrespond to the ground state since the quantum dot in the
independent of the electric field in both energy and intensityupper layer ardarger. Therefore, in the experiment the dis-
The additional structure below and above the constantsociation of the trion localized in the lower dot could be
energy line should be observed in the form of an anticrossassociated with an avoided crossings with lower energy
ing. The intensity of the constant-energy line should be restates, which as obtained for the exciton, can produce a posi-
duced in the region, in which the anticrossing appears.  tive curvature of the recombination line over a wide range of
Real InAs/GaAs quantum dots exhibit a strain-inducedelectric field values.
intrinsic dipole moment aF=0.2* The intrinsic dipole mo-
ment has been neglected in the present calculations. How-
ever, the unusual Stark shift for the coupled dots is predicted We have studied the exciton and negative trion states in a
for quite small electric fieldglower than 15 kV/cm), for simple but exactly solvable model of vertically coupled

VI. SUMMARY AND CONCLUSIONS
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guantum dots allowing for a description of the effects relatedhan the exciton. The process of trion dissociation into an
to the modification of the electron-hole interaction by anexciton and a free electron that we obtain for the case of
electric field applied in the growth direction. The effect of asymmetric coupling leads to a positive curvature of the PL

the tunnel coupling between the dots and the confinemenine as a function of the electric field which has never been
potential asymmetry was considered. The mechanism of thghserved for the exciton ground state.
electric-field induced exciton and trion dissociation was de-

scribed.
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Abstract. A theoretical study of excitonic trions, X~ and X2, in semiconductor quantum dots
is presented. The model of a spherical quantum well of finite depth is applied to determine the
influence of the three-dimensional quantum confinement on the recombination energies of the
excitonic trions. A new type of variational wave function, expanded in a Gaussian basis, has been
proposed. It is shown that the blue-shift of the recombination induced by the quantum confinement
is much stronger for the positive trion X3 than for the negative trion X~

Excitonic trions (charged excitons) are electronic excited states of semiconductors, which
are created when an additional electron or a hole is bound to a pre-existing exciton. The
existence of negatively (X ™) and positively (X3) charged excitons in bulk semiconductors was
predicted theoretically [1-5] and observed experimentally in Ge [6], Si [7], and CuCl [8, 9]
bulk crystals. In the bulk crystals, the recombination energies of neutral and charged excitons
are very close. Moreover, the binding energies of charged excitons are small compared to
the thermal excitation energies. Therefore, the identification of the excitonic trions in the
bulk materials is rather difficult. In quasi-two-dimensional quantum wells (QWs), a strong
increase of both the binding energy of the charged excitons and the energy separation between
the neutral- and charged-exciton recombination lines has been theoretically shown by Stébé
et al [10]. The charged excitons have been experimentally observed in CdTe/CdZnTe [11]
and in GaAs/GaAlAs [12-14] semiconductor QWs. The negatively charged excitons have
been observed [15] in InAs self-assembled quantum dots (QDs). The binding energies of
charged excitons in pyramidal QDs have been calculated by Lelong and Bastard [18]. W¢js
and Hawrylak [19] have studied the X~ confined in a two-dimensional harmonic potential in
an external magnetic field. Itis well known that the quantum confinement results in a blue-shift
of the exciton-related photoluminescence lines [20,21].

In the present paper, we study the influence of the three-dimensional quantum confinement
on the recombination energy of excitonic trions X~ and X} in QDs. We take into account the
fully three-dimensional character of the Coulomb interaction, which has been recently shown
to be important even for quasi-two-dimensional QDs [22].

The effective-mass Hamiltonian for the confined negatively charged exciton (X ™) can be
written as follows:

o, o, W, et (1 1 1
H=-— (Vi+Vy) = —=V, + V. (r)) + Vo(r)) + Vpy(rp) + —| — — — — — (1)
2m* 2my e \r

where m} (m}) is the effective electron (hole) band mass, ¢ is the effective dielectric constant,
V. (V},) is the confinement potential for the electrons (holes), 1, 7, and r;, are the position
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vectors of the two electrons and the hole with respect to the dot centre, r|, 71, and ry;, are the
electron—electron and electron—hole distances. The energy of the electrons (holes) is measured
from the conduction band minimum (valence band maximum) of the QD material. We assume
that the effective masses as well as the dielectric constants are the same in the well and barrier
materials. The Hamiltonian for the positively charged exciton X3 can be obtained from (1) by
interchanging the electron and hole masses and the confinement potentials.

The confinement potentials result from the conduction and valence band offsets at the
QD/barrier interface. Therefore, we have approximated them by spherically symmetric
quantum wells of radius R. The barrier height is equal to V;; for the electrons and Voh for
the holes. The present model is fully three-dimensional and applies to confinement potentials
of finite range and depth, i.e., it is adequate for QD nanocrystals embedded in an insulating
medium, e.g., GaAs [23] and InAs [24]. Contrary to the usually applied harmonic oscillator
model potential [19,25], the quantum-well potential does not commute with the kinetic energy
operator of the centre-of-mass motion. Therefore, Hamiltonian (1) cannot be separated into
the centre-of-mass and relative-motion Hamiltonians. Hence, the ground-state wave function
for the trion confined in the spherical quantum well has to be dependent on the six distances
appearing in Hamiltonian (1). In the present paper, we propose the following variational trial
wave function for the singlet ground state of the X~ trion:

W(ry, T2, mp) = Yi(ry, 2, TR) + Y2 (T, T2, 1) )

where y| and v, are expanded in the following two Gaussian bases with N; and N, elements,
respectively:

Ny
2 2 2 2 h2
Y1 (1, m2, ) = exp(—bry, — bry,) (1 + Pra) E Ciyigis EXP(—0) 71 — i 15 — Q7)) 3)
i1izi3

and

Va(ry, 2, 7)) = exp(—a‘r — a’r; — a"r})(1 + Ppy)

N
x Z djljzjs exp(_yjlrIZZ - rszrlzh - ﬁj3r22h)' “)
J1J2J3
In equations (3) and (4), P, is the permutation operator interchanging the electron indices
1 < 25 Ciiiyiss djijnjss OF s ozl.h, Bj, vj, at, a”, and b are the variational parameters. The trial
wave function for the positively charged exciton X3 has been chosen in a similar way.

Trial wave function ¥ describes the trions in a strong-confinement regime [26], for which
the interparticle correlations are weak. In the weak-confinement regime (bulk limit) [26], the
correlations between the three particles are of crucial importance. They are described by
trial wave function v,. The choice of the double basis in formula (2) enables us to obtain
reliable energy estimates in both the limiting cases, i.e., in the strong- and weak-confinement
regimes. The applicability of the Gaussian basis to the few-particle problem for the spherically
symmetric quantum dot of finite depth has been discussed in detail by Bednarek er al [27].
The Gaussian basis was proved to be useful in the variational calculations of bulk and confined
exciton complexes [28,29]. Moreover, we have performed test calculations with the use of
variational wave function (2) and obtained a ground-state energy equal to —0.2611 (in double
atomic rydbergs: 2 Ryd = 27.2116 eV) for X~ in a bulk material with m} = mj. For
comparison, the ‘exact’ value obtained by Frost ef al [30] is equal to —0.2620.

The three-dimensional nanocrystals of nearly spherical shape were fabricated from GaAs
in organic solvents [23] and other three-dimensional GaAs/GaAlAs nanostructures were
experimentally studied by Ugajin et al [31]. In the present paper, we consider the excitonic
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trions in the spherical GaAs quantum dot embedded in the Gag gAly 2 As matrix. We apply the
GaAs effective masses and dielectric constant for the confined charged excitons and neglect
the discontinuities of both the parameters at the QD boundary. In our previous paper [32], we
have shown that the influence of effective-mass discontinuity on the ground-state energies of
electrons and neutral donor impurities is negligibly small for the spherical GaAs/Gag gAly,As
QDs. The neglect of the dielectric constant discontinuity is justified by the similarity of the
dielectric properties of the GaAs and Gag gAly,As materials. Throughout the present paper,
we use the following values of the barrier heights [33]: V§ = 140.1 meV for the electron
and V' = 105.7 meV for the hole; and the effective masses [34]: m?/mq = 0.0665 for the
electron and mj, /my = 0.34 for the hole, where m is the electron rest mass, and the dielectric
constant [35] ¢ = 12.5.

We have performed systematic test calculations with an increasing number of basis
elements in expansions (3) and (4). The results of table 1 show that convergence is nearly
reached for Ny and N, =~ 100. In the following calculations, we have used the trial wave
function with Ny = 75 and N, = 84 terms, which provides quite reliable estimates.

Table 1. Test of the convergence of the variational basis (equations (2)—(4)) with N; and N>
terms in ¥ and v, respectively. The results are given for the GaAs/Gag gAlp 2 As quantum dot
with R = 2 ap. The calculated ground-state energy of the X~ (X3) trion is quoted in the third
(fourth) column and the corresponding recombination-energy shifts are listed in the fifth and sixth
columns. In this quantum dot, the electron, hole, and exciton confinement energies are equal to
1.02177, 0.218 92, and 0.256 70, respectively. The energy is expressed in double donor rydbergs
(2Rp = 11.4 meV) and the length in donor Bohr radii (ap = 99.47 A).

Ny Ny E(X™) E(X3) AEXT) AEXD)

40 42 1.12290 0.37539  0.15556 0.10023
75 84  1.10928 0.36788  0.16918 0.10773
126 144  1.10230 0.36284  0.17616 0.11278
196 225 1.09914 035663  0.17932 0.11899

The energy estimates obtained with the use of only v or ¥, are quoted in table 2. These
results enable us to give a physical interpretation of both the trial wave functions. Wave function
Y yields the dominant contribution to the ground-state energy in the strong-confinement
regime, while 1, yields that in the weak-confinement regime. In the intermediate-confinement
regime, the contributions originating from the two wave functions are comparable. Table 2
also provides the test of the reliability of the present results for the intermediate-confinement
regime.

Table 2. Ground-state energy of the X~ complex confined in the GaAs/Gag g Alp 2 As quantum dot
as a function of quantum-dot radius R calculated with the use of trial wave functions 1, ¥, and
W, The units are the same as for table 1.

R/ap ¥ 13 v

20 —0.3087 —0.4220 —0.4308

10 —0.2937 —0.3676 —0.4054
5 —0.1615 —0.0907 —0.2609
2 1.2114 1.3021 1.0928
1 5.8065 8.2818 5.7016

We have determined the amount of energy released in an electron—hole recombination
process for the positive (X3}) and negative (X ™) trions confined in a QD. The recombination
energy is the difference between the energies of the initial and final states. The ground state of
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the trion is the initial state. The final state, after the electron—hole recombination, corresponds
to the confined hole (electron). Thus, the recombination energies are given by

/’ZVX; =€+ Exg — E (5)
/’ZVX— =€t Ex— — Ee (6)

for the positive and negative trions, respectively, where €, is the energy gap of the QD, Ex;
and Ex- are the ground-state energies of the confined charged excitons, E, and Ej, are the
energies of the confined electron and hole. The recombination energy of the neutral exciton
hvx = €, + Ex, where Ex is the ground-state energy of the exciton confined in the QD. We
define the recombination-energy shifts

AEX; = /’lVX — ]’lVX; (7)
AEx— = hVX — hVX—. (8)

The calculated energy shifts are shown in figure 1 as functions of the inverse square of the
dot radius R for the weak-confinement regime of the GaAs/GaAlAs QDs. In the bulk crystal,
i.e., for R — o0, the recombination-energy shift for the X3 is larger than that for the X,
which agrees with the results of the previous studies [3—5]. This results from the fact that
the binding energy of X3 is larger than that of X~ for m}/m} < 1. However, figure 1 shows
that the quantum confinement changes the order of the recombination-energy shifts for the dot
radius R ~ 12 ap, which—for small QDs—Ileads to the recombination-energy shift for the X~
being up to ~50% larger than that for the XJ. In figure 2, we have plotted the energy shifts
for a wider range of QD radii, which includes the strong-confinement regime. The energy
shift A Ex- for the negative trion increases with the decreasing QD radius. The behaviour of
the energy shift for the positive X3 trion is more complex. In the weak-confinement regime,

0.15 . .

D

energy shift/ 2 R

0.00 L l L l
0.00 0.05 0.10

-2 2
R[1/a]

Figure 1. Calculated recombination-energy shifts for the trions X~ and Xj confined in a
GaAs/Gag gAlp2As quantum dot as functions of the inverse square of the dot radius R in the
weak-confinement regime. The unit of energy is twice the donor rydberg (2Rp), the unit of length
is the donor Bohr radius (ap) for GaAs.
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D

energy shift/2 R

0 1 2 3 4
-2 2
R[1/a] ]

Figure 2. Recombination-energy shifts for the trions X~ and X;’ confined in a GaAs/Gag gAly 2 As
quantum dot as functions of the inverse square of the dot radius R in the intermediate- and strong-
confinement regimes. The units are the same as for figure 1. Solid (dashed) curves show the
variational (perturbation theory) results.

the energy shift A Ex; increases if the QD radius decreases. In the intermediate-confinement
regime (ap < R < 2 ap), this shift is almost independent of the dot size. In the strong-
confinement regime, i.e., for R < ap, AEx; decreases, which leads to the blue-shift of the X3
line with respect to the neutral-exciton line.

In order to get physical insight into this surprising behaviour of the confinement-induced
shift of the X recombination line, we have used the first-order perturbation theory. In the
strong-confinement limit, the Coulomb interactions between the charge carriers can be treated
as a perturbation when determining the qualitative properties of the confined electron—hole
systems [26]. According to the first-order perturbation approach, energy shifts (7) and (8)
result from the Coulomb interactions only and can be expressed as follows:

AEx; = Ve — Vi )
AEx- = Ve — Ve (10)
where V., Vi, and V,, are the Coulomb integrals
1
Ven = (%(rl)fﬂh(rz)lz|<ﬂe(r1)<ﬂh(rz)) (11)
1
1
Vi = (@h(’"l)‘ﬂh("zﬂEkﬂh("l)fph(’?)) (12)
and
1
Vee = (‘Pe(”l)fﬂe("zﬂa|§0e("1)¢e(”2))~ (13)

praca 16A 172



2458 B Szafran et al

Here, ¢, and ¢, are the exact wave functions of the electron and the hole confined in spherical
potential wells of depths Vjj and V(?, respectively. Integrals (11)—(13) can be evaluated in a
semi-analytical way. The localization of the hole in the quantum well is—due to the larger
effective mass—much stronger than the localization of the electron. This leads to the following
inequalities:

Vee < Ven < Vi (14)
and

AEx; <0 < AEx-. (15)
Finally, we obtain the following blue-shift:

hvx- < hvx < hvy;. (16)

The energy shifts calculated with the help of the first-order perturbation theory have been
plotted in figure 2 as dashed curves. We see that—in the strong-confinement regime—the
qualitative predictions of the perturbational and variational methods agree with each other. We
can therefore conclude that the predicted blue-shift of the X} recombination line with respect
to the lines for the neutral exciton and negatively charged exciton is caused by the strong
localization of holes in the QD.

Recently, evidence for both the X~ and X3 trions in CuCl QDs has been claimed by
Kawazoe and Masumoto [16, 17]. Due to the use of the donor units of energy and length,
the present results (figures 1 and 2) can also be applied to these QDs (although in a rather
qualitative sense because of the ionic character of these structures). The authors of [16, 17]
have argued that they observed the confined excitonic trions in CuCl quantum cubes embedded
in a NaCl crystal in a luminescence hole-burning experiment. The interpretation in [16,17] is
based on the application of energy-conservation formulae [16] to the measured recombination-
energy shifts [16]. Unfortunately, in the formulae used by the authors of [16], the energies
of the confined electron and hole have been omitted in the final states. If we include these
energies, which are necessary for the energy conservation, we obtain dramatic changes of the
slopes of the Stokes shift versus burning-energy dependence (cf. figure 4 in reference [16]).
The accurate slopes are 3.88 and 26.5 times greater than those calculated in reference [16] for
lines A and B, respectively. The correct application of the energy-conservation law leads to a
complete disagreement with the experimental data in [16] and to the change of order of the lines
attributed to the X3 and X~ trions. In view of the above arguments, the lines in [16, 17] cannot
be interpreted as resulting from the excitonic trions, but could be tentatively attributed to the
excited-state recombination of neutral excitons or neutral-exciton complexes [36]. Therefore,
experimental evidence for trions in these QDs awaits further research.

Finally, we briefly discuss the influence of different material parameters on the present
results. The change of the electron and hole confinement potentials fundamentally changes
the recombination energies. However, the recombination-energy shifts, calculated as energy
differences (7) and (8), change only slightly. The recombination energies of X, X~, and X}
tend to the same value if dielectric constant ¢ increases. For equal electron and hole band
masses, i.e., for m} = mj, the X~ and X3 recombination energies are equal to each other.

In summary, we have calculated for the first time the ground-state and recombination
energies for X~ and X excitonic trions confined in spherical quantum dots. We have predicted
a confinement-induced change of order of the X~ and X3 recombination lines and a strong
blue-shift of the X} recombination line.
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Excitonic trions in single and double quantum dots
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Excitonic trions in quantum dots with Gaussian confinement potential are studied by the variational method.
We show that the photoluminescence line associated with the negative trion is always shifted towards lower
energies with respect to the exciton line, and that this shift is larger for smaller dots. The qualitative behavior
of the photoluminescence line of the positive trion is the same only in dots which resemble quantum wells or
quantum wires. In other dots the size dependence of the positive-trion shift is more complex. In particular, we
show that the order of the positive-trion line and the exciton line can be changed. The present approach has
been generalized to the trion states in vertically coupled dots. We discuss the trion energy-level splitting
induced by the coupling between the dots, as well as the relation between the photoluminescence-line shift with
the binding energy of the trion in the double quantum dots.

DOI: 10.1103/PhysRevB.66.165331 PACS numbg(s): 78.67.Hc

I. INTRODUCTION QD’s. The present paper extends the previous @k the
problem of charged excitons.

The excitonic trions are charged exciton complexes com- The exciton PL peak, as well as peaks corresponding to
posed of either two holes and one electi@ositive trion ~ €xciton complexes are blueshiftede., shifted towards
X;) or two electrons and one hol@egative trionX~). higher energieshy the confinement in quantum wells, wires,
These complexes have been a subject of an extensivand dots” Here, we present a theoretical study of the exci-
theoretical 1" and experimental stud§:2*In bulk semicon- tonic trions confined in single and double QD’s. In particular,
ductors the excitonic trions are stable against dissociatio€ are interested in the confinement-induced shift of the ex-
into an exciton and a free carrier. However7 their bindingcitonic trion PL line with reSpeCt to the exciton line. This
energies in bulk materials are very small. The confinement o$hift is a basic quantity of experimental interest for the exci-
the trions in two-dimensional quantum wells increases thestoNic trions. The excitonic trion PL line is shifted with re-
binding energies by an order of magnitidd&he enhance- SPect to the exciton PL line by
ment of the trion binding energy in quantum wells allows for
experimental observatiéh of this complex. The excitonic Syr=hvy—hvy+=Ex+E,—Ex+ (1)
trions confined in quantum dot&QD’s) are observed in 2 z 2
charge-tunable nano;tructu?éi“ _ _ for the positive trion and by

The first observations of QD-confined charged excitons
were performed on ensembles of QB*sThe results of these
experiments were perturbed by the inhomogenous broaden-

ing caused by the variation of the sizes of the dots. Recentl;lé, h . . & h fthe tri i
measurements of the photoluminescerig&) spectra of or the negative trion. I5>0, the energy of the trion PL line

charged excitons from a single self-assembled QD werti.'S smaller than the energy Of the exc_iton Iir_le. Then, we speak
reportec?®® This technique, which allows for selection of a abo_ut th_e redshift of the trion PL I|r_1e with respect to the
single dot as a signal source, may be used in order to detefXciton line. If the energy difference is negatiie<0), the
mine the dependence of the trion PL lines on the size angl_on line is blueshifted with rgspect to the exciton line. We
geometry of the dots. A theoretical study of this dependenc®/ill shortly refer to energy difference€l) and (2) as the
will be useful in the interpretation of the experimental data.POSitive-trion energy shify: and the negative-trion energy
The aim of the present paper is to furnish this study. Theshift Sy-. In bulk materials, quantum wells and quantum
present work is also motivated by the measurements of theires, energy shift§1) and (2) can be identified with the
exciton spectra in coupled self-assembled Q©'sThe  binding energy of the trions. However, it is not the case for
present results for the splitting of the trion-energy levels in-QD’s™ (cf. a discussion of the binding energy Bf center
duced by the coupling between the dots should be useful fan the Q).

identification of the trion-related lines in the PL spectra of This paper is organized as follows. In Sec. Il we present
coupled dots. The present paper is a continuation of our pre¢he model of the single QD, introduce the variational wave
vious research on neutfiland charget? excitons. In Ref.  functions for the exciton and excitonic trions, and discuss the
15 we studied the exciton trions in spherical quantum doténfluence of the shape and geometry of the QD on the trion
with square-well confinement potential. Here, we generalizé’L line shifts. In Sec. lll we generalize the approach of Sec.
this study to more realistic cylindrical symmetry. In Ref. 26 Il to the trions in double QD’s. Section IV contains conclu-
we studied the neutral-exciton spectra in vertically coupledsions and the summary.

Sx—:th_th—:Ex+ Ee_ Ex— (2)

0163-1829/2002/686)/165331(9)/$20.00 66 165331-1 ©2002 The American Physical Society
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II. EXCITONIC TRIONS IN A SINGLE QUANTUM DOT TABLE |. Ground-state energiy (in meV) of the exciton con-

fined in the single QD calculated with wave functi@®) with M

=2, Ng=4, andN,=2 quoted for several numbers of exponents
In the present paper we adopt the Gaussian model of theescribing the relative electron-hole positionxity planeM.j, and

confinement potentig® which was successfully appli€tto  in z direction Ne,. The parameters of the QD ad&,=0.67, R

a quantitative interpretation of the exciton speﬁrm =24.9 nm, andZ=0.92 nm. The total number of basis elements

In,Ga, _,As self-assembled QD’s. The confinement potentiallN=MeXNeXNpXMepX Nep) is listed in the third column.

in In,Ga, _,As QD’s embedded in the GaAs matrix can be

A. Confinement potential and variational wave functions

derived from spatial distribution of indium concentration Men Nen N Ex
within the QD’'s® We assume that this distribution can be ; 1 16 26147
described by a cylindrically symmetric Gaussian functfon 2 1 2 —262.19
2 2 A —262.20
X(p,Zz;R,Z)=Xq exp( — p?IR?—7%/Z?), 3 3 2 B —262.23
3 3 144 —262.25
wherep?=x2+y?, Ris the radius of the QDZ is half of its
height, andX;, is the concentration of indium at the center of
the QD. In accordance with E(B), we take the confinement oo 72 v? 72 2 1 Ly Ry
potential for electrons X= T ome Ve 2my "N Amegerer e(pe,Ze;RZ)
Ve(p,z;R,Z)= —0.7AE4X(p,Zz;R,Z) (4) +Vh(pn,zn:R,2), (7)
wherer o,=|r.—ry|. The ground-state energy of the exciton
and for holes confined in the QD can be determined with the following
variational wave function
Vi(p,z;R,Z)=—0.3AE¢X(p,Z;R,2), 5) Me Ne Np Men Nep

qlg(l)(rearh):iz 2 2 21 Ciejejhiehjeh

whereAE, is the energy-gap difference between GaAs and e=Llie=1in=1ien=1jcp—

InAs. We assume that the band offset ratio is 70/30.

e 2 npe.2 n 2 sho2
Throughout the paper, we take the conduction-band mini- X exp(—aj pe— Bj Ze~ a'ph Bj Zy
mum of the barrier material as the reference energy level for h o2 h_o2
: i —ai pen— By, 2 (8)
the electrons and the barrier valence-band maximum as the ieneh Pigpeh/s

reference energy level for the holes. The calculations havsvhere 2 (X X0) 2+ (Yo V1) 2 Zar=Ze—2n, " and

been performed foAEy=1.11 eV*®and the material param- ™ - Pen=Xe™Xn)"T (Ye™¥hn)" Zen=Ze™2n, i,

eters of GaAs, i.e., the static dielectric constamt12.5, the Bj,, are the variational parameters, which describe the rela-

band mass of the electran,=0.0667, and the band mass of tive position of the electron and the holery plane andz

the holem,=0.5. direction, respectively. The other variational parameters in
In order to determine the trion-energy shifts we need toEq. (8) play the same role as in wave functi@). The con-

know the trion ground-state energy, as well as the groundvergence of variational basi{8) with respect to the number

state energies of the exciton, electron, and hole confined iof the Gaussians applied was verified for the valties

the QD. For this purpose we use the confinement potentialgarameters corresponding to ,Gg, _,As self-assembled

(4) and(5) and assume the effective-mass approximation folQD’s ?°i.e., X,=0.67,R=24.9 nm,Z=0.92 nm. The varia-

electrons and holes. The ground-state energy of a single eletienal estimates of the exciton ground-state energy obtained

tron and a single hole confined in a QD with radiRsand  with various numbers of terms in E(B) are listed in Table |I.

height 2ZZ is determined by the variational method with a We note, that the convergence of these estimates is very fast.

Gaussian trial-wave-function The results are not significantly improved if one introduces a
secondB®" exponent or a thirdr®" parameter. The electron
Nechy Me(h) and hole wave functions are stiffened Zrdirection due to
beny(Teqhy iR Z) = Izl 121 Cij exp(—aie(h)pz—ﬁf(h)zz), the strong confinement and react only weakly to the mutual

Coulomb interaction. The change of the one-particle wave

(6)  functions under the influence of the interaction is more pro-

nounced inx-y plane, where the confinement is weaker. In

where c;; are the linear variational parameteisi?(h) and  this paper we consider not only the QD’s in form of flat
B%M are the nonlinear variational parameters, which dedisks, but also QD’s of different shape and size. Therefore,

scribe the localization of the particles radial and vertical di-we have takeM .,,=N.,=3 in the following calculations.

rections, respectively. In this paper, we takg,=1, N, The results of Table | show, that variational wave function
=2, M.=2, andN.=4, which ensures that the one-particle (8) is an effective tool in the calculations for the confined
energies are determined with a precision of 0.1 meV. exciton ground state. However, this wave function is not suit-
The Hamiltonian of the exciton confined in the QD hasable for a direct generalization to the problem of trions, since
the form the number of basis elements grows very fast with the num-

165331-2
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TABLE II. Ground-state energfy (in meV) of the exciton  basis elements is much smaller and less memory consuming,
confined in the single QD calculated with trial functi¢®). The  so, it can be easily generalized to the problem of excitonic
parameters of the QD are the same as in Table I. In the first tw@rions.
columns, the number of elements taken in s@nis listed. In the The Hamiltonian for the negatively charged trign con-
third column, the energ§y calculated with the fixed variational fined in a QD has the form
parameterfRq =R and Zg, =Z is quoted. The number of basis

elements is equal tM X Ng,. The results in the fourth column 42 42 52
are obtained with optimized paramet®s;,, andZ . Hy-=— V- —Vy2_ ___y2

p p &h) e(h) X 2m. L 2mg 2 2m, M
Meh Neh Ek EX 1 1 1 1

-t — |+ ;

1 1 —-261.17 —-261.34 * dmege | Fan Ton 1 Ve(riRi2)
1 2 —261.17 —261.36 _ _
2 1 —261.93 ~262.19 FVelr2iR.Z)+Vh(rh:R.2), (10)
3 1 —262.03 —262.22

wherer,; andr, are the position vectors of the electrong,
determines the position of the hole,=|r;—r,|, rin=|r;

ber of particles. Therefore, we have elaborated another ap_—_rh|' andr,=|r,—ry|. The Hamiltonian for the positive

proach to the problem of the QD-confined trions, which welron X5 can be obtained from E¢10) by interchanging the
will first demonstrate on the example of the confinedindicese«h and ascribing the indices 1 and 2 to the holes.

electron-hole pair. The dependence of the wave function on " the negative-(positivefrion ground state, the electron

the relative interparticle positions will be referred to as the(hole) subsystem is a spin singlet. This means that the
“correlation between the particles.” In wave functigg), ~ 9round-state spatial wave function of the negatpesitive)

this correlation is directly described by the exponents withfion is symmetric with respect to the interchange of the po-
«°" and 8°. However, even if the parametes$" and g°" sition vectors of the electrondoles). Therefore, we apply

are set equal to zero, wave functié8) cannot be separated the following trial wave function for the negative trion
into a product of one-particle functions. Therefore, even

without a®" and 88" exponents, a part of correlation is indi- Wx-(r1,r2,)
rectly included in wave functio8). Now, we introduce an- — b(r+R. 7 rR..7 rRe 7
other trial wave function for the QD-confined exciton, which Pe(11iRe1Ze) Pel12iRe,Ze) (I iRn 1 Zn)
takes into account the correlation between the particles in the
direct way only, XE 2 Cili2i12j1j2j12(1+ Py
1112112 J1l2)12
V(reith) = delTeiRe,Ze) én(Tni Ry Zn) X exp— afply— af i — afopl)
Meh Neh
_ eh 2 _ neh2 X exp(— BeMz2, — B2, — Bee72). (11)
><iehz:1 iehE:1 Ci gy o EXPL— i Pen™ ), Zen) - it e Plage

©) The presence of the sum in wave functidd) introduces the
correlation for the three particles. In E€L1), the summa-
Trial wave function(9) is applied to the exciton confined in tions start from 1 and run tbl ., over indiced ;;, andi,, to
the QD with radiusk and height Z. It is composed of the N, overj;, andj,,, and toM,, andN;, overi;, andj 5.
ground-state wave functions of the electraf) confined in P, is the operator which exchanges the coordinates of the
potential (4) with effective parameter®, and Z, and the two electrons. The factor (£ P;,) ensures, that the electron
hole (¢y) confined in potential5) with effective parameters subsystem is in the symmetric spatial state and enables us to
R, andZ;,. The double sum in Eq9) describes the electron- reduce the number of the basis elements. Namely all the
hole correlation. The parameteRs,, Z,, R,, andZ, are  basis elements, for whichy,=j, andi,>i,; are omitted in
treated as variational parameters. In this way, the one-particlghe summatiorill). R,, Z., Ry, andZ,, are treated as varia-
wave functionsp, and ¢y, are allowed to change their spatial tional parameters like in wave functigq®) for the exciton.
extension under influence of the Coulomb interaction befor the positive trion we apply an analogous trial wave func-
tween the particles. tion. Similarly as in the case of the exciton confined in the
The results obtained with wave functidf) are listed in  flat QD, a single Gaussian is sufficient for the description of
Table Il, which shows that the energy estimates obtainedhe correlations iz direction. The convergence of the varia-
with the values of the variational parameteR§y), Zen) tional results with the increasing number of Gaussians de-
fixed at the physical values of the QD siR =R and  scribing the in-plane correlation is displayed in Table IlI. In
Zeny=Z converge to a value, which is larger by 0.2 meV the following section we discuss the influence of the size and
than the energy obtained with bas® (cf. Table I). How-  shape of the dot on the relative shifts of trion PL peaks. This
ever, if we perform the optimization with respectRgy and  discussion goes beyond the flat QD geometry, so the corre-
Zeny, We obtain results equivalent to those obtained withlation in z direction should be described with the same pre-
wave function(8). Although wave functior(9) does not re- cision as the in-plane correlation. The results presented in the
quire less numerical effort than functidB), the number of following section have been obtained with 90-element basis

165331-3
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TABLE Ill. Ground-state energ¥x- (in meV) of the negative 8
excitonic trion calculated with trial wave functiofil). The first
column shows the number of Gaussians taken for the description of
the electron-hole correlation iy plane. The number of Gaussians
describing the electron-electron in-plane correlation is listed in the
second column. In these calculations, a single Gaussian describing S
the correlation irz direction was applied. The third column shows = X=
the total number of basis elements. The parameters of the QD are @
the same as in Table |I. E S)(E

w

<
()
=

M, Ex s

—396.45 !
—397.91 !
—398.48 4
—398.59 i

—398.70 | l 1
—3098.71 0 50 108 150 20C

R=Z [nm]

AWNNNBR
AWWN R R
BRowo wer | Z

generated b op=Ng,=2 andM,=N;,=3. We estimate FIG. 1. Energy shiftsS of the trion PL line with respect to the

that the trion ground-state energies are determined with prLg_xciton PL line calculated for the spherical QD as a function of
cision of 0.2—0.3 meV. radiusR=Z for X,=0.67. The soliddashedxurve corresponds to

the negative-(positive{rion-energy shift 8- =Ex+E.—Ex- and
+=Eyx+Ep—Ex+).
B. Results SXZ e XZ)

Figure 1 displays the energy shifts of the PL lines for theX; energy lines in spherical QD'sS(+<0<S-). The re-
trions confined in a spherically symmetriR€Z) QD with  sults of the present calculations show, that the same effect
respect to the line of confined exciton. In bulk GaAs, theoccurs also for spherical quantum dots with the Gaussian
trion PL peaks are only slightly shifted with respect to thepotential profile.
exciton PL line Sx;~0.4 meV andSy-~0.25 meV#19. In The problem is more complex if the QD is anisotropic.

large QD's(with radiusR larger than~100 nm), the shift of Then, the strength and range of the confinement potential in
the positive-trion line is not significantly changed with re- X-y plane and the growth direction are different. We have
spect to the bulk-limit value. If the radius of the dot de- performed the calculations of the trion-energy shifts for dif-
creases below 80 nnX; PL line approaches the exciton ferent valqes oR andZ.' Figure 2 shows the calculgted trion-
line, i.e., S+ decreases to 0. F&=40 nm the recombina- energy shifts as functions a (half of the QD height)for

. . . . several values of the QD radils We have considered QD’s
tion of the electron-hole pair in the positive trion releases th

Sith very different height-to-radius ratios. The Igftight)

same amount of energy as the exciton recombination. I:Oénd of horizontal axis of Fig. 2 corresponds to the QD in a

R<40 nm Sy takes on negative values; so, the order of theg ) of 4 fiat disk(elongated cylinder). Each of the curves in
exciton andX; PL lines changes. The behavior of the Fig. 2 passes through the point, for which the QD has spheri-
negative-trion line is just opposite. The quantum confinemental symmetry. These points are marked by circles. The
shifts X~ line deep below the exciton line on the energy curves for the negative-trion exhibit the following simple
scale. The opposite behavior of the positive- and negativeregularity: the smaller is the QD, the stronger is the redshift
trion energy shifts was reported in our previous papen  of X~ PL line with respect to the exciton line. The depen-
spherical quantum dots with the square-well confinement podence of the positive-trion energy shift is more complex. In
tential. In the strong confinement limit this effect can beQD’s of large height, the movement of the confined charge
explained in the framework of the perturbation theory. In thiscarriers inz direction is nearly free. We can say that these
approach? the trion-energy shifts are expressed in terms ofQD’s resemble the quantum wires. We note, that the PL
the energies of the Coulomb interaction between the particleseaks of both the negative and the positive trions are red-
forming the trion complexes, as foIIow§X2+=Veh—th, shifted with respect to the exciton PL line if the radius of the
and Sy-=Vep—Vee, Where Vop,, Vee, and Vi, are the “wire-like” dot decreases. ForR=100 nm, the positive-

electron-hole, electron-electron, and hole-hole interaction erffion line is monotonously redshifted with the decreasing
ergies, respectively. The quantum confinement in the QD'§€ight of the QD. This dependence on the height is qualita-
leads to the localization of the charge carriers, which is mucfively the same as in the case of the two-dimensional quan-
stronger for the holes. Therefore, the absolute value of th&/M wells, in which both the positive- and negative-trion PL
Coulomb interaction energy between the holes increasd%‘?aks are redshifted with respect to the exciton peak, if the
more than the electron-hole and electron-electron interactiolidth of the quantum well decreasEsin contrast toSy;
energies, i.e V> Ven>Vee, Which explains the qualitative  shift for R=100 nm, the curve foR=50 nm is nonmonoto-
difference in the confinement-induced changesXof and  nous. WhernZ decreases below 120 nm tkg PL line ap-
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FIG. 3. Trion-energy shift$ calculated with respect to the ex-
citon PL line as a function of radiuR of the QD for several values

calculated as a func.tln o (half of the QD heightyfor several of Z (half of the QD height The solid(dashedurves correspond
values of the QD radiuR. The solid curves show the results for the . - . . .

: : to the negativépositive)trion. Open circles correspond to spherical
negative trion, and the dashed curves show the results for the po 5D's

tive trion. Open circles correspond to spherical symmetry of QD's.

FIG. 2. Trion-energy shift$ with respect to the exciton PL line

. C. Conclusions
proaches the exciton PL peak. The curve Rsr 50 nm ex-

hibits a flat minimum forZ between 50 and 80 nm. The
minima of the curves foR=25 and 15 nm are distinctly en

more.pronounced and appeathtlz_O andZ=10 nm, re- rPeak on the size and geometry of the QD’s. The obtained
spectively. We note, that these minima correspond to quarn- - 4 . i
results indicate, that the negative-trion PL peak is always

tum dots with nearly spherical shapes. The PL line of the ; : . : .
positive-trion confined in the QD with raditi®=50 nm has redshifted with respect to the exciton line. The stronger is the

smaller energy than the exciton line regardlesZ.ofn other confm.ement(the _;mallgr IS the QD)the Iar.ger' IS t'h|s
words, S, + is always positive foR=50 nm. This is not the redshift. The positive-trion line behaves qualitatively in the
2

same manner only in the cases, where the QD geometry re-
case of QD’s with smaller radii, for which the value of the y QP g y

; . . : sembles a quantum well or a quantum wire. For the “well-
shift can be negative. The PL peak of the positive-trion conltj7 q q

In this section, we have studied the dependence of the
ergy shifts of the trion PL peaks with respect to the exciton

fined in the dots with radius 25 or 10 nm can be blue shifte |k(_a QD's the redshift ofX, PL_I|ne IS Iarg:ar_for _the”sma}ll
or redshifted with respect to the exciton line depending o eight of Fhe_ quantum well, while for the W|re-I|ke_ QD's
the height of the QD. th<=T redshift is more prgnounce_d for the small radius of the
Figure 3 shows the shifts of the trion PL lines with respect Wire.” For the QD's with the diameter B comparable to
to the exciton line as functions of the radius of the dot forthe height Z, the size dependence of the positive-trion en-
fixed values of its height. The points for which the QD po- €rgy shift is more complex. This energy shift plotted as a
tential is spherically symmetric are marked by circles. Again,function of the radius or the height of the QD exhibits
the negative trion is redshifted more strongly for smallerminima neaiR/Z=1, i.e., close to the QD’s with the spheri-
QD's, while the dependence of the positive-trion shift iscal symmetry. If the values d® or Z are of order of 25 nm or
more complex. In Fig. 3, the QD with the radilR  smaller, these minima correspond to negative values of the
~150 nm can be treated as a quasi-two-dimensional quarenergy shift. Then, the order of exciton and positive-trion PL
tum well. In this QD, the redshift of the PL lines is largest for lines is opposite that in the bulk limit. The results presented
the lowest value of the height of the well. On the other handin this section are in a qualitative agreement with the present
the QD with the largest value of the heighif£100 nm)  knowledge on the trions in quantum well¥ and with the
looks like a quantum wire and the redshift of the PL |ineSprevious study of the trions in spherically symmetric Qﬁ's_
grows, when the radius of this “wire-like” QD decreases. Moreover, based on the present results for the “wire-like”
The curve forZ=50 nm shows a flat minimum aR  QD's, we can predict that the PL lines for both the negative
=30 nm. This minimum is more pronounced for QD’s with and the positive trions in quantum wires should be redshifted
smaller height. We note, that the minima $f+ can corre-  jth respect to the exciton line if the quantum-wire radius is
spond to negative values of the shift. decreased.
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[ll. EXCITONIC TRIONS IN VERTICALLY function (13) is a good approximation of the exact ground-
COUPLED QUANTUM DOTS state wave function for the studied range of the barrier thick-
A Th ness between the dots, i.e., fo=a—2Z2>2 nm. The
. Theory T
. . _ . ground-state energy of the electron-hole pair in the coupled
The energy shiftSy- andSy for the trions confined in a  dots is determined variationally with the following trial wave
single quantum dot cannot be identified with the trion bind-function:
ing energy!® However, if the QD is not single, i.e., if there is
another identical QD at a distance large enough to exclude 1 Mep
the coupling between the dots, the trion-energy shifts are V(o M) = E E i, ok, Pe
exactly equal to the energy needed to transfer one electron K ene
(for X™) or one hole(for X5) from the QD occupied by the

e’kh:0 Ieh:].

_ 1)k .
three charge carriers to the other empty QD. Let us assume, [pe.Zet(—1)(a/2);Re,Zc] bpy

that the charge.carrigrs hgve at their Qisposal two iggntical, [ph,znt (—1)*(al2):Ry,Z1]

remote QD's. Since in a single QBy- is always positive, - 5

the ground state of a system composed of two electrons and Xexp(—aj pen— B"Ze), (14)

one hole will always correspond to a state, in which all the
particles are confined within the same Qfhis is the : eh oeh
confined-trion state). However, this is not the case Xgr whereci, v, are the linear an®.,Ze Ry, Zn . aj . 5™ are

trion. For QD’s in which the energy shiﬁx; is negative, the the nonlinear variational parameters. This function is a direct

round-state corresponds to the electron-hole pair confine eneralization of trial wave functiof) for the exciton con-
g P P ed in an isolated QD witiN.,=1. In Eq.(14) the sum-

in one dot(confined excitonjand one hole confined in the mations overk, and K, take into account all the possible

other QD. I.f the QD’s are closer, 'Fhe coupling b_etween themdistributions of the charge carriers over the two QD’s. Zhe
can essentially change the energies of the exciton complex

€ . ) . s .
and the type of the localization of partici#The coupling direction correlation between the particles confined in the

. . same self-assembled QD is we&tf. Tables I-Il); so we
\E)Vtz[;vsgge\:sétéc?nlI¥hzta;)ch§d gg%;z’%;;fgj:ﬁg:gﬁ%ggﬁ neglect it almost totally in wave functiofi4). The interdot
. pec . . correlations are introduced via the two-center localization of
peaks as functions of the thickness of the interdot barrier. the products of the one-particle functiots
In this section we study the effect of the vertical coupling" <. P P (h) -

between the QD’s on the trion states. We assume that the We. have _qalculgted the !owest energy levels of the
. . ; negative-(positive)trion assuming that the electrofmole)
coupled dots have identical shapes and sizes, and possess ; S : .
ubsystem is the spin singlet. For the negative trion we use

; ; 5
common axis of the rotational symmetry. We apply the fol- the following wave function:
lowing confinement potentials for the electrons and the
holes:

‘I’c,(r r r)
X 1:125'h
Vg(h)(Pe(h) !Ze(h)) _Ve(h)(Pe(h) !Ze(h)_ a/Z,R,Z)

+Veh)(Pe(n) 1 Zeny T @/2;R,Z), => > Cili,iykokok (11 P12) én
kqkokp 10012
(12) )
. [on,znt (=1)"(a/2);Ry,Zy]

whereV, andV,, are the given by Eqg4) and (5), respec- )
tively, anda is the distance between the centers of the QD's. el p1,21 T (—1)"(a/2);Re, Ze] pe
The thickness of the barrier between the QD’s can be ex- Nk )
pressed in terms of the distance between the QD centers and [p2,2,+(—1)"2(a/2);Re,Ze]
the height of the QD as foIIowst:=a—22..We adopt the Xexq_a;%lhpih_a?zhpgh
values of the QD parameters corresponding tgsk _,As
self-assembled QD’sX0=0.§7, R=24.9 nm, Z=0.92 nm Xexp — “ielezpiz— ﬁehzih_ﬁehzgh), (15)
(same as in the test calculations of Sec. Il). The ground-state
wave function of a single-particle confined in potentia2) _
possesses an even parity with respect to the change of sign @here the summations ovég andky, run from 0 to 1, over
z coordinate. We calculate the one-particle ground-state erkz from 0 tok;, overiy, from 1 toMe,, and overi; andi,

ergy using the wave function from 1 to Mg,. The terms withk,=k, and i2>i_1 are ex-
cluded from the sum, because of the symmetrization of the
A (Pehy »Zetm) = Perm (Pechy » Ze(h — al2;R, Z) basis elements (£P;,). Basis(15) takes into account all
e(mEeth) 7l STem) el the possible distributions of the three particles between the
+ be(hy(Pe(hy 1 Zeny T @I12;R,Z), two QD’s. In the calculations, we takM =3 and M.,
(13) =2, like in the case of the trion in the single QD. In conse-

guence, basi§l5) consists of 60 elements. The trial wave
where ¢, is wave function(6) of the ground state of the function for the positive trion has been chosen in the same
electron (hole) confined in the single isolated QD. Wave way.
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t[hm] For a<14 nm both the degenerateandB energy levels

12 start to decrease, which is a signature of the tunnel coupling
i between the QD’s. The presence of the tunnel coupling
means, that in state& and B there is a nonvanishing prob-
ability of finding one of the particles in the other QD than the

400 A B remaining two charge carriers. However, the tendency of all
— the particles to occupy the same QD is still visible in these
@ states’® The degeneracy of the energy levalandB is lifted
E for a<6 nm. For a=4 nm (~2 nm) the QD’s are
> strongly coupled. In the strong coupling limit the trion wave
‘-Uo functions exhibit an approximate one-particle parity, i.e., par-

440 —

ity with respect to the change of the signotoordinate of
each of the particles separatéhyDue to the difference of the
electron and hole masses, the effective height of the barrier
between the dots is much larger for the hole than for the
electron. In consequence, the even-odd energy-level splitting
for the electron is considerably larger than the splitting for
-480 L ' the hole. BothA andB states correspond to an approximate
4 8 3 inm] 12 1€ even parity of both the electrons. Moreover in stAtethe
hole is in the even-parity state, whereas in sBtthe hole is
FIG. 4. Lowest-energy levels of the negative excitonic trion inj the state with an approximate odd parity. In both the ex-
the double Q_D as functions of the _distara:between the center_s of cited state€ andD, one of the electrons is in the even-parity
the QD's (thicknesst of the barrier between the QD'sSolid  gi416 and the other is in the odd-parity state. The correspond-
(dashed)lines correspond to the energy levels of the etafd-) ing C and D energy levels split foa<6 nm. Similarly as
parity states. Thin dottedX(+ €) line shows the sum of the ground- tatesA andB, state<C andD differ by the parity of the hole,

- ) . ’ .S
state energies of the exciton and the single-electron confined in the,”. . . . S
double QD. The meaning of symbolsB,C. andD is explained in Which is even inC state and odd i state. In the limit of the

separate QD’sC and D states have the same energy and
the text. . . : ,
correspond to the electron-hole pair confined in one of QD'’s,
B. Results while the second electron is confined in the other QD.
Figure 4 shows the four lowest-energy levels f6r The thin dotted line marked byX(+e) in Fig. 4, shows

states, in which the electron subsystem is the spin singlet® sum of the ground-state energies of the following two
The corresponding barrier thicknetsis marked on the upper Systems: the electron-hole pair and a single electron in the
horizontal axis. Since the confinement potential of thedouble QD structure. In the limit of large, this sum coin-
coupled QD’s(12) is invariant with respect to the reflection cides with the degenera@andD energy levels. The differ-
throughz=0 plane, the wave functions of the three-particle€nce between the sum of energieé+e) and the ground-
complex possess a definiteven- or odd-)parity symmetry ~ state energy of the trion is equal to the shiftof PL peak
with respect to the operation of a simultaneous change oWith respect to the exciton line, i.e., 8-. In the limit of
signs ofz coordinates for all the particles. The parity prop- separate QD's, the energy sh8- becomes identical with
erties of considered states result from the symmetries of ththe difference of the energies between the trion ground state
calculated three-particle wave functions, cf. the detailed dis¢A,B energy levelsand the excited stateC(D energy lev-
cussion of the parity symmetry for the electron-hole pair in€ls). Then, this difference can be interpreted as the binding
vertically coupled self-assembled QD’s given in Ref. 26. Theenergy of the trion in the double QD structure, i.e., as the
wave functions associated with the energy lewgland C ~ amount of energy needed to remove one of the electrons
(solid lines)possess even parity, while the energy levgls from the QD occupied by the trion and transfer it to the other
and D (dashed linesgorrespond to the wave functions with QD. On the other hand, in the strong coupling limit, the
odd parity. Fora> 14 nm all the energy levels are indepen- double QD can be treated as a single QD with enlarged
dent of the interdot distance. Then, the QD’s can be treatefieight(larger vertical extension). The trion energy sI8ft-

as separatéuncoupled). In this limit, the distribution of the decreases with the decreasing distance between the QD's.
charge carriers between the QD’s is a definite property of allhis effect is consistent with the results of the preceding
the eigenstates, i.e., in all the eigenstates, the charge carrigggction, which show that the negative-trion energy shift is
occupy with a 100% probability either the same QD or dif- larger for smaller QD’s.

ferent QD's?® At large interdot distance, the degenerate The results for the lowest-energy statesXgf trion are
statesA andB correspond to the trion localized in one of the displayed in Fig. 5. We restrict our study to the singlet states
QD’s. In these states all the charge carriers are confinedf the hole subsystem. The energy levels corresponding to
within the same QD. The energy of these states is equal tthe states with evefodd)total parity are plotted by the solid
the energy of the negative-trion confined in the single iso{dashed)lines. In the limit of separate dotdarge a), the
lated QD(cf. Table Ill). The ground state is twofold degen- ground state is twofold degeneratef. degenerate energy-
erate, because the trion can be located in one of the twievels marked byA andB). In the ground-state all the three
QD’s. particles occupy the same QD, while the other dot is empty.
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energy shiftSX; for R=25 nm andZ=0.92 nm is positive

but decreases if the height of the QD increases. In particular,
for 10<Z=<40 nm the energy shi1$x2+ is negative(cf. Fig.

2). As we have noted before, the coupled QD’s correspond to
a single dot with a larger height. This explains why the state
C, in which the holes tend to occupy different QD’s, be-
comes the ground state &f, trion under influence of the
interdot coupling. We note, that the change of ordeApB,

and C energy-levels appears for the specific value of the
height of the dot. In the limit of separate do@energy-level
should correspond to the ground state for these values of the
height for which the positive-trion shi$x2+ is negative(cf.

Fig. 2).

-380

s I
] ]

IV. CONCLUSIONS AND SUMMARY

12 16 We have presented the results of variational calculations
a[pm] for the excitonic trions confined in the single and vertically
coupled QD’s with the Gaussian confinement potential. We
the double QD as functions of the distarecbetween the centers of have propose_d the. trial wave function expanded n the
the QD’s. Solid(dashed}ines present the energy levels of the statesGau_SSIan ba_S|s, which takes mto_account. both the s!ngle—
with the even(odd) parity. Thin dotted K+ h) line shows the sum particle conflrjement _eﬁects and interparticle correlations.
of the ground-state energies of the exciton and the single hole cot:Veé have studied the influence of the shape and geometry of
fined in the double QD. The meaning of symbal®B,C, andD is  the confinement potential on the shifts of the trion PL lines
explained in the text. with respect to the exciton line. We have considered all the

geometries of the cylindrically symmetric QD from a very
, flat QD, which resembles the two-dimensional quantum well
In other words, for separate QD’s the ground state Core, o glongated wire-like QD. We have shown, that the
sponds to the positive trioX, localized in one of the QD’s.  pegative-trion PL line is always redshifted with respect to the
In the limit of the separate QD's, the first-excited state en-exciton line and that this shift is larger for smaller QD’s. The
ergy level C,D) is also degenerate. In the sta@andD, an  positive-trion exhibits qualitatively the same behavior only
electron-hole pair is confined in one QD and the second holi these QD’s, which resemble quasi-one-dimensional quan-
is confined in the other QD. For comparison, the sum of theum wire or quasi-two-dimensional quantum well. However,
ground-state energieX(+h) of the exciton and hole is plot- in the nanostructures with similar height and diameter, the
ted by the thin dotted line. For smaller values of the barriemositive-trion line can be blueshifted with respect to the ex-
thickness, the relative distribution of the charge carriers beciton line, if the linear size of the QD is sufficiently small.
tween the QD’s is uncertain as a consequence of the courhe limit cases of the present results are in a qualitative
pling. Nevertheless, even for the coupled QD'sArmndB  agreement with the results of previous studies of the trion
states, all the particles exhibit a tendency to occupy the sanféinding energy in quantum welfs;® and also with the shifts
dot, while in the excitec andD states, the holes exhibit a Of the trion PL lines found for the spherical QD$Based on
tendency to occupy different QD’s. thesg results we can e}lso f_ormulate pre(_jlct|ons about the
The degenerate excited-state energy le@l D) splits binding energy of the trions in quantum wires. Namely, the

for larger values of the interdot distance thak,B) level. present results indicate that the binding energy of both the

The electron inA, B, andC states possesses an approximateneg."’ltlve and the p05|t|\{e t.r|ons should increase when the
radius of the quantum wire is decreased.

2;’: : s g a“rt])é nt?ﬁéegoarﬁ.;??h.Cc?(r:zzzOggé?gaggggg;aﬁvﬂz de- Moreover, we have extended our study to the excitonic
w : ! trions in the vertically coupled hGa _,As self-assembled

electron has an approximate odd parity, and in f:ontrqst th’s. We have considered the low-energy spectrum of the
statesA,B andC, its energy grows when the barrier thick- gystem of two electrons and one hole, as well as the system
ness dec_reases. The st@teorresponds to both the holes in ot wvo holes and one electron in a couple of vertically
even-parity states. In the stafe(B) one hole(two holes)  stacked QD's. We have shown, that the shifts of the trion PL
occupies the odd-parity state. The degenerack, 8 energy |ines with respect to the exciton line obtained for a single
levels is lifted fora=6 nm as the result of the splitting be- isolated QD can be identified with the binding energy of the
tween the even- and odd-parity energy levels of the hole. Theion complexes for a pair of identical remote QD’s. We have
most interesting feature of the positive-trion spectrum is thestudied the splitting of the trion-energy levels under influ-
fact, that the energy of state passes below that AfandB  ence of the coupling between the QD’s. We have found, that
states foa<~ 10 nm. This change of order of energy levels the interdot coupling decreases the redshift of the negative-
can be understood in context of Fig. 2. In the single QD, thdrion PL line with respect to the exciton line. Moreover, we

4 8

FIG. 5. Lowest-energy levels of the positive excitonic trion in
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