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We study electron systems confined in anisotropic quantum dots at high magnetic fields using the
configuration-interaction scheme with a multicenter basis of single-electron functions centered around different
sites. Elliptical, triangular, and square quantum dots are investigated. We study the relation between the
quantum and classical charge density and conclude that at high magnetic field the quantum charge density
reproduces all the equivalent lowest-energy configurations of classical point charges. Quantum systems with a
classical counterpart of a unique lowest-energy configuration exhibit a smooth convergence of the charge
density to the classical limit at high magnetic field. In quantum systems with several equivalent classical
configurations the magnetic field induces discontinuous transformations of the ground-state symmetry associ-
ated with crossings of the corresponding few-electron energy levels. A linear combination of states with the
crossing levels yields a semiclassical charge density with a broken symmetry. At the magnetic field corre-
sponding to the level crossing this combination is an exact eigenstate of the Hamiltonian. For circular dots the
present findings give an additional insight into the properties of the magic-angular-momenta states and into the
physics behind the broken-symmetry mean-field solutions.

DOI: 10.1103/PhysRevB.69.125344 PACS numbgs): 73.21.—b, 73.22.Gk

I. INTRODUCTION Wigner molecule by a Gaussian impurity perturbation in an
isotropic confinement potential was recently studied by the
Quantum dots provide a convenient testing ground for quantum Monte Carlo approach'’

studying electron localization in potentials which can be, to a In this paper we perform a detailed study of the charge
certain extent, formed at will by proper etching techniques oflensity of two-, three-, and four-electron systems confined in
chosen geometry of the applied gate electrodes. One of th@Nisotropic potentials using an exact diagonalization ap-
most interesting problems in this field is the Wigner crystal-Proach. We consider elliptical, square, and triangular shaped
lization of the electron system induced by a high magneti@uantum dots and investigate the magnetic-field-induced
field. The problem of Wigner crystallization in cylindrical Wigner crystallization. A relation between the quantum and

quantum dof* has been widely discussed and at presenF:Iassical charge distributions in anisotropic structtités
8und. In particular we discuss the high-magnetic-field be-

seems to be well understood both quantum mechanically annavior of quantum systems whose classical counterparts pos
classically> Wigner crystallization, i.e., the separation of q ) Sy . erp P
sess several equivalent lowest-energy configurations.

electrons, in cylindrically symmetric potential appears in the A lot of attention was paféf to the problem of the se-

inner coordinates O.f t.he s_ystem "?‘”d the Ch"?“ges o_f sep_ara&%ence of the ground-state angular momenta after the maxi-
electrons are not distinguishable in the rotationally invariant, .o density droplé® (MDD) breakdown in cylindrical

electron density. Therefore, in cylindrical quantum dotSq,antym dots. The magnetic field increases the absolute
method§ based on charge-density measurements are not azjye of the angular momentum of the confined electron sys-

propriate for the observation of Wigner crystallization. How- tem, but only certain angular momenta with magic quantum
ever, such an approach is possible in structures of lower symyumperé®2°-??are realized. For the magic angular momenta
metry. Previous exact diagonalization studies of a threethe classical symmetry is reproduced in the inner coordinates
electron system in a triangular quantum ‘dand of a system  of the quantum systefrand the electron-electron interaction
of six electrons in an elliptical quantum doshowed that  energy as a function of the angular momentum presents local
Wigner crystallization can be observed in the charge-densityninima?® At the end of this paper we point out a relation
distribution of the electrons in the laboratory frame. More-between the magic angular momenta and the charge density
over, an exact study of the two-electron system has beeim the laboratory frame. We also consider the magnetic-field-
presented for triangular, square, and hexagonal quantuminduced parity transformations in elliptical dots which are
dots in the absence of a magnetic field and in an elliptical dokess thoroughly studied counterparts of the angular-
at zero magnetic fiell Wigner crystallization of few- momentum transitions appearing in circular dots.

electron systems in large polygonal quantum dots in the ab- To discuss the charge-density distribution the application
sence of an external magnetic field was studied usingf an exact diagonalization method is crucial since mean-
density-functional theoryt~° This theory was also applied field approaches may lead to an artifactal breaking of the
to evaluate the addition spectra in elliptical quantum dbts. symmetry of the confinement potentfalThe broken-
The addition spectra of elliptical dots have been studied witlsymmetry solutions present a semiclassical type of localiza-
Hartree-Fock methdd as well. The effect of pinning of the tion. On the other hand we fouffdrecently that in the

0163-1829/2004/622)/125344(15)/$22.50 69 125344-1 ©2004 The American Physical Society
praca 5A 68



SZAFRAN, PEETERS, BEDNAREK, AND ADAMOWSKI PHYSICAL REVIEW B 69, 125344(2004)

strictly infinite magnetic-field limit the energy of the broken-
symmetry solution with semiclassical localization becomes
equal to the energy of the exact solution. In this paper we
study the realistic case of high but finite magnetic fields and
extend our previous work to anisotropic confinement poten-
tials. In particular, we reconsider the problem of the symme-
try breaking at the exact diagonalization level and demon-
strate that a construction of the exact broken-symmetry
solution of the few-electron Schdmger equation is possible
for certain values of the magnetic field.
Some of the previous studies of Wigner crystaté’ and

Wigner molecules?42829sed a multicenter basis of the

single-electron lowest-Landau-level functions. However, 0' L s
these calculatio’d™2° used Hartree-Fock or similar ap- 0 5 1¢
proaches. In the present paper, we use the single-electron B(T]

multicenter basis for the construction of the configuration-

interaction approach which allows for an exact solution of FIG. 1. .The S'ngle'el.ewon.s‘)ewum CalCUIG‘.ted with the trial
wave function(3) for an isotropic quantum dot withw=3 meV

.the Schrfhnger eqL_Jatlon for few-electr.on Systems .Confmed(solid lines). Eleven centers have been used, one located at the
n pptentlals of arbl.trary Symmetry.' This approach IS a gen'origin and the others at the circumference of a circle with variation-
eralization of the smgAIgécon'flguratlonal multlcente( Hal’tee'ally optimized radius. Symbols show the exact Fock-Darwin energy
Fock (MCHF) method™ which we elaborated previously. levels corresponding to the lowegdots) and higher bands

The paper is organized as follows. The second sectiofgyosses). The dotted line shows the estimate for the ground-state
describes the multicenter-configuration-interaction method agnergy obtained when the center located at the origin is excluded
applied in this paper as well as presents test calculations f@fom the basis.

circular dots. Sections lll, IV, and V contain discussion of

results obtained for elliptical, square, and triangular dots, re- M

spectively. The conclusions reached for lower-symmetry v, (r)= 2 clir (1), (3)
structures are discussed in the context of circular dots in Sec. i=1 '

VI. Summary and conclusions are given in Sec. VII. with

II. MULTICENTER-CONFIGURATION-INTERACTION _ | * & 2 f _
METHOD e/fR(r)—\/zWexp{ 7~ RS (X=X)(y+Y),

We considerN electrons confined in a two-dimensional @)
(x,y-plane) quantum dot subject to a strong external mag-
netic field oriented parallel to the axis. We solve the whereM=N is the number of centel®=(X,Y). Next, the
N-electron Schrdinger equation with the Hamiltonian N-electron Hamiltonian(1) is diagonalized in a basis of
MI/NI(M—N)! Slater determinants constructed from the
N NON single-electron orthonormal eigenvectois, (3) with u
H=> h+> > —+BSg*us, (1) =1,... M. The position of the centel®;, «, and 8 are
i=1 =1 j>i T nonlinear variational parameters optimized for the total en-
ergy of theN-electron system. For three or more centers per
whereh stands for the single-electron Hamiltonian, electron the optimal value of the paramegetends toe B/:.
At high magnetic field the parameteralso takes this value
1 independently oM. For = 8=eB/i the wave function(4)
h=——(—iAV+eA)?+V(x,y), (2) is the lowest-Landau-level eigenfunction.
2m* The flexibility of the single-electron basis was verified for
an isotropic parabolic potentidl(x,y) =m* w?(x?>+y?)/2,
g* is the effective Landdactor, S, the z component of the  with Zw=3 meV. Solid lines in Fig. 1 show the magnetic-
total spin,B the magnetic fieldu.g stands for the Bohr mag- field dependence of the single-electron spectrum calculated
neton,k=e?/4meqe, € is the dielectric constant and* the  with the trial wave function(3) with ten centers located at
electron effective mass. We use the Landau gaége the circumference of a circle with equal angular spacings and
=(—By,0,0) and adopt material parameters for GaAs, i.e.the 11th center located at the origin. The radius of the circle
m*/my=0.067,e=12.9, andg* = — 0.44. was optimized variationally. The dots in Fig. 1 show the
We assume complete spin polarization of the electron sysexact Fock-Darwin energy levels corresponding to the lowest
tem by the external magnetic field. The multicenter-band which at high magnetic field converges to the lowest
configuration-interactiofMCIl) scheme is constructed in the Landau level. The crosses mark the energies of the higher
following way. First we diagonalize the single-electron Fock-Darwin bands. The present calculations with wave
Hamiltonian(2) in a multicenter basis function (3) reproduce the exact single-electron spectrum
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with a high precision. It is interesting to note that the basis 0 I I T
(3) constructed of the displaced lowest-Landau-level wave
functions (4) reproduces also higher Fock-Darwin bands.

Since we are using the Landau gauge the single-electron
wave functions(3) are not eigenfunctions of the angular-

momentum operator. However, for all the plots presented in
Fig. 1, the expectation values of the angular momentum cal-

1
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& axact

culated for the wave function($) reproduce exactly the cor- 15 . 2 cenzers
: =6 centers
rect eigenvalues. 12 centers

angular momentum [ #]
=)

The exact ground Fock-Darwin state wave function pos-
sesses the forrt¥) with X=Y=0. The dotted line in Fig. 1
shows the variational estimate of the ground-state energy ob- i
tained when the center at the origin is excluded from the
basis. The related overestimation of the ground-state energy
is nonzero only at low magnetic field&2.2 T). We have
found that the center located at the origin has no influence on
the energy estimates for the single-electron states with non-
zero angular momentum. Its contribution to the energy of the
exciteds states tends to zero at higher magnetic field simi-
larly as for the ground state.

We have performed further tests for the isotropic har-
monic confinement potential in order to verify the reliability 5
of the present configuration-interaction approach to the few-
particle states at high magnetic field. The results were com- | I I
pared with the standard exact diagonalization method with a 0.0 — 5 — '10' ! 1151 ! 120
basis constructed from the Fock-Darwin states of definite B
angular momenturfi3° The reference methét® assumes [T]

neither spin polarization nor the occupation of the Io_vvest FIG. 2. (a) Exact total angular momentum of the ground state of
Landau level and foN=4 allows for nearly exact evaluation e three-electron system confined in an isotropic quantum dot with
of the total energy. _ fiw=3 meV and the expectation values for the multicenter-
Figure 2(a)shows the comparison of the exact total angu-configuration-interaction wave functions using various number of
lar momentum of the three-electron system and the expect@enters.(b) The overestimation of the total three-electron energy
tion values obtained with the MCI wave function for various with the multicenter approach for different number of centers.
number of centers placed on a circumference of a circle with
equal angular spacings. The plot startsBer 3 T for which  most curve of Fig. 2(b)is a nonmonotonous function &.
the ground state is the spin-polarized MBDThe MDD  The oscillations are due to the fact that the energy estimate
decays aB=4.6 T [cf. black dots in Fig. 2(a)lo a nonpo- of MCI with M=N is a smooth function oB, while the
larized state with angular momentum5#4. For B>5.4 T  exact energy exhibits cusps at these valud3 fofr which the
the ground state of the three-electron system is spin polaground-state angular momentum changes. The envelope of
ized. Then, the angular momentum takes the magithese oscillations decreases to O in the infinite magnetic-field
value$22°-22and changes by as the magnetic field in- limit.>* Introduction of six centers reduces the overestimation
creases. of the total energy as long as the total angular momentum is
The present method witM =N uses only a single con- reproduced by the MCI method witkl =6 [cf. dashed line
figuration and at high magnetic field is equivalent to thein the upper panel of Fig.(2)]. At higher magnetic field, for
multicenter HF method® For M=N=3 the MCI method which the overlaps of function@) centered around different
reproduces the angular momentum of the MDD sfatie  sites vanish, the precision of the MCI method with=6
squares in Fig. 2(a)]. After the MDD decay, the expectatiordeteriorates to the one obtained wih=3, i.e., to the
value decreases linearly wiiin contrast to the exact step- MCHF method?® The method withVl =9 (12) centers gives
wise decrease. The MCI method with six centers reproducethe exact energy to a precision better than 0.15 n@@5
also the exact angular momentum of the first spin-polarizedneV) for 5.4<B<20 T, i.e., in the studied range of mag-
state after the MDD decay, and at higher magnetic fields inetic field after the MDD breakdown for which the adopted
starts to decrease linearly witB. For M=12 the MCI  assumption of spin polarization is fulfilled. Results of similar
method yields correct expectation values of the angular motest calculations foN=2 and 4 show that the corresponding
menta of all spin-polarized states in the entire consideredipper bounds for the precision of the MCI method with three
range of magnetic fields. centers per electrorM/N=3) equal 0.1 and 0.12 meV, re-
Let us now discuss the convergence of the energy estspectively.
mates obtained with the MCI method to the exact ground- Figure 3 shows the charge density of the three-electron
state energycf. Fig. 2(b)]. The overestimation of the exact system atB=6 T for three, six, and nine centers. In the
energy with a single configuratid =N=3, cf. the upper- single-configuration charge densityM&3) the circular

ny
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FIG. 3. MCI charge density obtained for the three-electron sys-g 20¢
tem with differentM for Aiw=3 meV andB=6 T. The darker the £ ©Of
shade of gray the larger the electron density. > 20
_40_
symmetry of the external potential is broken. For six centers 4o}
the cylindrical symmetry is approximately restored, although 5l ]
at a closer inspection the sixfold symmetry—a trace of theE o (B & | 12T
choice of centers—can be noticed. Rdr=9 the charge den- > g =
sity shows a perfect cylindrical symmetry. The present nu-
merical method restores the cylindrical symmetry in a man- 0
ner alternative to the rotated-electron-molecule approach o 49[
Yannouleas and Landman. — 20 = N
We conclude that the single-electron wave functi¢8s Eod @& @ > EE
used in the present MCI approach work similarly as the ™ -z0f =
Fock-Darwin functions with definite angular momentuch. a0t
Figs. 1 and 2). At high magnetic fields the precision of the I
MCI method is not worse than the MCHF metBddvhich in o |
turn gives exact results in the infinite magnetic-field lifit. & o ® & e
The applicability of the present configuration-interaction ap-< °f  * * o o ° b ol neheR:
proach is not limited to cylindrically symmetric potentials. 20 *
The MCI method allows for a flexible choice of the position ~ -40f

of centers which can be tailored to any smooth external po-

tential of arbitrary profile and symmetry. ]

x [nm]

-40-20 0 20 40 -40-20 O 20 40 -40-20 0 20 40

x [nm]

FIG. 4. Charge density of two-, three-, and four-electron sys-
tems for an anisotropic parabolic potential witlb,=3 meV and
fiwy=4 meV for different magnetic fields. The lowest panel pre-
sents the lowest-energy configurations of the classical point-charge
systems. FoN=3 the two energy-equivalent configurations are
marked with full and open circles.

Ill. ELLIPTICAL QUANTUM DOT
A. Wigner crystallization

In this section we applied the MCI method to analyze
Wigner crystallization in elliptical quantum dots with aniso-
tropic parabolic potentiaV/(x,y) = m* (wix?+ w7y?)/2 with

,>wy. Calculations were performed witkl = 12 centers counterpartgcf. lowest panel of Fig. ¥ which results from

) o the shrinkage of the Landau radius with growing magnetic
put on an ellipse symmetric with respect to thandy axes field. ForB=8 T a central hole in the three-electron charge

with equal angular spacings. .
Figure 4 shows the calculated charge densities for tWO_densny appears. The plots of the three-electron charge den-

three-, and four-electron systems at different magnetic field§Itles for 12 and 20 Tcf. Fig. 4)show an appearance of two

(the energies obtained are listed in Table I). The lowest paneﬁrnaller maxima of the.cha'rge density along yhexis. This
shows the position of the classical point charges in th s shown more clearly in Fig. 5 for the three-electron charge

lowest-energy configurations. The classical two- and four—denSIty atB=30 T. The two charge maxima at theex-

electron systems in the studied potential possess a unique ,
lowest-energy configuration. On the other hand the classical -I;AB:E. |. Total energy of the’;'?'ecnon Syslten;g (in mev\}
system of three electrons possesses two equivalent configggz ;Lna? ='2 ;r;\?nlsotroplc parabolic potential witlw,=3 me
rations(marked by “black” and “white” symbols in the low- Y '

est panel of Fig. 4). Existence of several equivalent classical

configurations will be referred to adassical degeneracy. B(M Ez Es E4
At relatively low magnetic field4 T) the electron puddles 4 15.35 30.33 49.29
look very similar and exhibit two maxima at their left and 8 20.99 39.02 60.71
right (x) ends. ForB=8 T the electrons in the two- and 12 27.20 48.20 72.94
four-electron systems start to become spatially separated. At 16 33.71 58.04 85.95
higher magnetic field the electron charge densities Nor 20 40.33 67.95 99.29
=2 and 4 tend to the charge distributions of their classical
125344-4
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sical system possesses a single lowest-energy configuration
for 3 meV<#iw,=5.1 meV with electrons situated along the
x andy axes. Forhiw, larger than 5.1 meV the electrons
leave the axes and as a consequence two equivalent configu-
rations appear. A8 w, is increased further the classical elec-
trons become localized on thxeaxis and the classical degen-
eracy is removed. Note that the classical system exhibits a
FIG. 5. Charge density of the three-electron system for an anzigzag transition as discussed in more detail in Ref. 18. The
isotropic parabolic potential withw,=3 meV,nw,=4 meV, and  classical configurations and the quantum charge distribution
B=30T. (cf. left panel of Fig. 6)are clearly related. In the absence of
classical degeneracyfifo,=5 and 9 meV)the quantum
tremities of the charge puddle are spread out alongythe charge density possesses four nearly equal maxima localized
direction into two distinct maxima. The results of Figs. 4 andclose to the positions of the classical electrons in equilib-
5 show that the density distribution for the system of threerium. The plot forfiwy=9 meV represents a nearly one-
electrons at high magnetic field tends to a linear combinatiogiimensional case of a Wigner molectdfejn which the
of the two distributions of the degenerate classical configucharge maxima at the ends of the puddle are slightly more
rations(cf. the lowest panel of Fig. 4). pronounced than the maxima in its interior. A trace of the
Evidence of Wigner crystallization in the four-electron classical degeneracy férw,=6 meV in the quantum charge
charge density is not always as apparent as in the case shoygnsity is the elongation of the central maxima in thei-
in Fig. 4. The left panel of Fig. 6 displays the charge densityrection. These central maxima fbro,=5.5 meV merge into
of the four-electron system &=20 T foriw,=3 meV and 3 single ringlike plateau with a hole in the center. For this
differentZiw, . The right panel of the figure shows the cor- special case the separation of electrons is not complete, since
responding configurations of the classical systéifhe clas-  the charges of the two central electrons occupy the same
island. We have found that in this case the separation of the

40 two electrons cannot be observed even in the pair-correlation
< functior? plots. Therefore, the four-electron system in this
z = — @) = ° = potential forB=20 T presents an interesting casepatftial
E o (48 g ° ° 0 Wigner crystallization.
= X - i
_20 4 8
= .
_40) B. Parity symmetry
40 s Let us now consider the spatial symmetry of the few-
n aEJ eIecFron wave funct_ion in an elliptical dot. In an _anisotropic
o N - ° i confinement potential the angular momentum is no longer
= R ) (M o e w0 quantized. However, the wave functions of the few-electron
2 20 Lk I systems in an elliptical dot have a definite parity with respect
g to the rotation bys angle. In cylindrical quantum dots the
-40 parity of the states is eveiodd) if the angular momentum is
40 an even(odd) multiple of 2. The MDD states for two, three,
» > and four electrons have angular momentum equal-to,
T ; = = — 3%, and—6#, respectively. Therefore, the two- and three-
E @O0 @ o 2 ¢ ® {c© electron MDD states are of odd parity and the four-electron
= .20 ('B'z, MDD state is of even parity. At magnetic fields above the
= MDD breakdown the angular momentum of the ground state
-40 takes the magic valug$2°-?2and changes bi#. As a con-
40 sequence the two- and four-electron systems in the MDD
20 > state and after its decay possess always the same fadidy
T _ E for N=2 and even foN=4), while for three electrons the
E e @ Ele o 0 o parity changes with each ground-state transformation.
- B Solid lines in Fig. 7(ashow the two lowest-energy two-
§ electron levels in the magnetic-field range corresponding to
-40 the MDD decay in a circular quantum dot. The displayed
40 -20 0 20 40 -40 -20 0 20 40 energyE’ is calculated with respect to the lowest Landau

% [nm] x [nm]

level, i.e., E'=E—N#(w:+S,g* ugB) =E—0.85(meV/T)
FIG. 6. Left panel: Charge density of the four-electron system at< NB. The two-elect_ron MDD decays 8=5.75T as the
B=20T for iw,=3 meV and different values ofw,. Right €nergy of the state with angular momentun3# crosses the

panel: Classical lowest-energy configurations. Fes,=55 and MDD energy level withL=—7%. The dashed lines present
6 meV two equivalent configurations are marked with differentthe magnetic-field dependence of the two lowest levels for
symbols. an elliptical quantum dot withiw,=3 meV and fiw,
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T e e e e S e B2 4.8 — — : : 0
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(a) aal oS j {bj | R
35.0 | 4 _ _
76 =3 = e X | . A =
. g 4.4 ‘\ﬁ(.l}y=3-5 meYy :- kf‘:‘yi 3.?.‘?’5“ 4
b, Roo, = 3126 eV — 348 £ ! | : ~
Z -\ N Z = as ) 1t 6
£ 74 v £ | Tt hoy=3meVv) v
W iU 348 3.2} B 8
 N=2 1 N=3
28 L. L L ! 40
e 34.4 4 5 6 7 84 6 8 0
' B(T] BI(T]
7.0 347 ) FIG. 8. Expectation value of the electron-electron interaction

6.0 6.5
BTl

energy in the two-electron systei@) and of the angular momentum
(b) in the three-electron circularw,=% w,=3 meV—solid lines)
and elliptical ¢wy=3, fiw,=3.5 meV—dashed lingsquantum

FIG. 7. Two lowest-energy levels of tw@) and four(b) elec- dot.

trons forf w,=3 meV calculated with respect to the lowest Landau

level as functions of the magnetic field. companied by a stepwise decrease of this quantity. The in-

_312 V. d of a level . b teraction energy for the two-electron elliptical dot presents a
=3.125 meV. Instead of a level crossing we observe an.,,,n gependence on the magnetic flefd dashed line in
avoided crossing. The avoided crossing is due to the fact th‘?—tig_ 8(a)]. In circular quantum dots the sharp breakdown of

the _Ztac:es mvplvedlare d of t?]e 'f/laE;nDe dOdd p.a”t)I'l'. A S'{nélarthe MDD is related with a level crossing leading to a sudden
avoided crossing related to the ecay In elliptica Otincrease of the electron-electron correlatfband formation

is observed for fo.ur glectror{sf. Fig. 7(b)]. Both thg ENEr9Y * of a molecular configuration in the inner coordinates of the
levels presented in Fig. 7(lgprrespond to even parity states. quantum systeri®2°%In the presence of the avoided cross-

Fpr bothN=2 _an_d 4, further avoideq cro;sings appear a'ings the formation of the Wigner phase becomes a continu-
higher magnetic fields. In the harmonic ellipsoidal quantumg o process.

dot .the (;enter-of-lmrgzssf mhot|on sep?rat?s'frorln thg rekl1at|ve In the three-electron system confined in an elliptical dot
motion eigenproblertt. If the energy levels involved in the ¢ magnetic-field-induced level crossings are still present

avoided crossing corresponded to different center-of-masge ase, like in circular dots, the subsequent ground states
states, the level crossing would still be observed in spite o ossess opposite parities. Figure 9 shows the two lowest-
the same parity of the'conS|dered few'—electron states. Th@nergy levels as function of the magnetic field. One of the

appearance of the avoided level crossingsNer2 and 4 14 |gwest-energy levels corresponds to the odd-parity state

indicates that these levels are associated with the SaMEjid line) and the other to the even-parity stattashed
(ground)state of the center of mass. In the two-electron sys-

tem the energy gaps between the anticrossing energy levels 29 s
[AE, cf. Fig. 7(a)] for the same degree of anisotropy i
(wy/w,) are about four times larger than in four-electron !
systems. The extent to which the anisotropy mixes the 201
magic-angular-momenta states of circular dots is a distinctly
decreasing function of the differences of their angular mo- 19-\
menta (N#). The appearance of the avoided crossings in -
function of the anisotropy of the elliptical confinement in I
absence of a magnetic field has been discussed for an elec- 18
tron pair in Ref. 10. [

The magnetic-field-induced ground-state transformations [
in the circular quantum dots are accompanied by cusps in the 17 N=3
energy as a function of the magnetic field and stepwise
changes of the angular momentum. Moreover, they appear 5 10
along with discontinuous changes of the average size of the

system?jo the eleCt,ron'eleCtron Interaction ane?ay’and FIG. 9. Two lowest-energy levels of a three-electron elliptical
abrupt transformat.|ons. of the charge densny. When t_h%lot (hwy=3 meV, fiw,—4 meV) calculated with respect to the
energy-level crossing is replaced by an avoided crossingyyest Landau level. The energy level plotted with saliished)
(like in two and four elliptically deformed dotshe changes jine corresponds to the state of otieven)parity. Dotted line shows

of physical quantities lose their sharp character and becom@e expectation value of the energy for the broken-symmetry state
continuous. As an illustration, a plot of the interaction energy[cf. Sec. Il C and Eq(5)]. The inset presents half the energy spac-
in the two-electron system is presented in Figa)§or cir-  ing between the two energy levels, i.e., the energy overestimation
cular (solid line) and elliptical(dashed linepjuantum dot. In by the expectation value of the Hamiltonian calculated for the
the circular dot the interaction energy grows with magneticbroken-symmetry statef. Sec. Ill C). Signs “— and “ + " corre-

field between the ground-state transformations which are aspond to odd and even parity of the ground state, respectively.

{EprokerEexagt [M3¥] 4
° ]
L,v]

l+ I- T
S 16 15 20 257
BT

E' [meV]

broken

20 25

15
B[T)
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FIG. 10. Phase diagram for the parity of the three-electron spin-

polarized ground state in an elliptical quantum dot fbw, for the three-electron system confined in a circular dbt|
=3 meV. The parity is even in the region marked by a plus sngnzhwy=3 meV) in the MDD phaséupper panel cf. point marked

bounded by the solid line and odd outside of it. The dotted IineIO A" in Fig. 10) and in th d state with— — 67 .
shows the position of the avoided crossing of the lowest two odd- :,hi h:enr nlwil ne)tiznfiellglovse?r();:el Sc? ec\)/;/rllt ;arkedagpgf?ril:g
parity energy levels. The insets show schematically the qualitativ; : 1% The %sition of one of tFt)1e elect.rcf)ns in the PCE ylot marked
picture of the charge density in the different phases. For the verticatl) ) P P

g
dashed lines and the symbols, see text. y X is fixed at poinx=0, y=21 nm.

FIG. 11. Charge densitfleft panel)and PCHright panel)plots

) o also resembles a similar effect appearing in circular ddts
line). In the three-electron elliptical dot the changes of phys"right panel of Fig. 12). The charge-density plot for the same
cal properties conserve their stepwise character as functi%ase at a higher magnetic fiel88 T—point “E” in Fig.

of the magnetic field due to the parity transformations. F|g-1o) was presented in Fig. 4. A qualitative change in the

ure 8(b)shows the expectation value of the angular momengparge density is observed at higher magnetic fields when the
tum for the three-electron system. Although, the angular mog, oyt phase border is crossed. In the odd phase above this

mentum in an elliptical dot is not quantized, its expectationborder’ the two local maxima of the charge density appear at

value presents discontinuous changes. For higher values g y axis (cf. Fig. 4 for B=12 T andN=3). At higher

w, the angular momentum is quenched to zero as the conuagnetic field the charge density tends to reproduce both the

flr]enjent potential starts to resemble a quaS|-one-dmensmnalwenerate classical configuratidog discussion of Fig. 4).

W|re!|ke dot. , ) Figure 10 shows that with increasing anisotropy of the
Figure 10 shows the phase diagram for the parity of th&qnfinement the even-parity phase is pushed to higher mag-

spin-polarized three-electron system as a function of theqvic fields and finally forkw,>4.4 meV it is eliminated
strength of they confinement and the magnetic field for Y

hwy=3 meV. The ground state is of even parity in the cen-

tral region bounded by the solid line and marked by the’“+ 40

sign. The left vertical dashed line corresponds to circular 20 = x

symmetry of the confinement potential. The changes in the = ————\ _
charge density occurring at the crossing of the border be- S i (;;I =
tween the odd and even phases along this line are illustrated -20

in Fig. 11. The upper panels of Fig. 11 show the charge .40

density (left panel)and the pair-correlation functioPCF)

(right panel)corresponding to the MDD phase in the point &

marked by “A’ in Fig. 10. The lower panels correspond to _ 20

the point marked by “Bin Fig. 10. Results of Fig. 11 show E o 6.4T
that the MDD decay is accompanied by the formation of a >

hole in the charge-density centéand a distinct growth of &9

the electron separation in the inner coordinates presented at -40

the PCF plots. Figure 12 displays the charge density and the -40 20 0 20 40 -40 20 0 20 40
PCF plots at the crossing of the border between the odd- and o] 2 Lo
even-parity phases for elliptical dot withw,=4 meV (cf. FIG. 12. Charge densitffeft panel)and PCHright panel)plots

the points marked by “Cand “D" in Fig. 10). The charge  for the three-electron system in an elliptical ddtaf,=3 meV,
density in the even-parity ground state has a hole in the CeMrw,=4 meV). The uppellower) panel corresponds to the odd-
ter, similarly as for the even-parity state in the cylindrical dot(even-)parity state in the point marked byC” (“D”) in Fig. 10.
(cf. Fig. 11). An increase of the electron-electron correlationThe position of one of the electrons in the PCF plot markeckbig
appearing at the crossing of the borders between the phast&d at pointx=0, y=20 nm.
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FIG. 13. Charge density for the three-electron system in an el- 40 (C) (d)
liptical dot (iw,=3 meV, iw,=5 meV) for B=6 T. The plot
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from the phase diagram. The charge-density plot presented in g1 14. Charge density of the broken-symmetry three-electron
the upper panel of Fig. 12 for point “Cin Fig. 10 Shows  states[cf. Eq. (5)] in an elliptical dot (w,=3 meV, fw,

that the odd-parity state forms a charge-density maximum in-4 mev) forB=6.3 T (a,b), 14.125 Tc), and 25 T(d). For the

the center of the dot. The stroiygconfinement prevents the chosen fields the plots correspond to exact ground states.
formation of the even-parity statghe lower panel of Fig.

12) in which this central charge-density maximum is re- 14(a)and 14(b)correspond to “black” and “white” degen-
moved. The right vertical dashed line in Fig. 10 marksyhe erate classical configurations depicted in the lowest panel of
confinement energy above which the zigzag struéfogthe Fig. 4. Plots 14(aand 14(b)have been obtained with oppo-
classical three-electron systgof. lowest panel of Fig. lis  site sings ot in formula(5), so they correspond to orthogo-
suppressed to theaxis. Figure 13 shows the electron chargenal wave functions. Figures (&), 14c), and 14(dshow that
density plotted forzwy,=5 meV andB=6 T (the point as the magnetic field grows the charge density of the broken-
marked by “F’ in Fig. 10). The observed three charge- symmetry state converges to one of the degenerate classical
density maxima at higher magnetic field shrink and tend toconfigurations of point charges.

ward the single nondegenerate classical configuration. In the The expectation value of the energy calculated for the
quasi-one-dimensional regime of stroggconfinement the  broken-symmetry statiEqg. (5)], independently of the phase
convergence of the three-electron charge density to the clasf c, is equal to the arithmetic average of the two lowest-

corresponds to the point marked b¥™in Fig. 10.

sical limit is not accompanied by any level crossings. energy levels. It means that this expectation value overesti-
mates the exact ground-state energy by half of the energy
C. Broken-symmetry states spacing between the two lowest levéts. inset of Fig. 9).

or the magnetic fields corresponding to degeneyatand

The preceding results show that the quantum systems Wltﬁz stateqcf. Eq. (5)], i.e., to the energy-level crossings pre-

classical degeneracy at high field contain all the classicall ented in Fig. 9, the broken-symmetry statsk are exact
degenerate configurations. As a consequence, the corre-

sponding charge density does not resemble any single CIag_round eigenstates of the Hamiltonian. The magnetic fields

! o hosen in Fig. 14 correspond to these level crossings. There-
sical charge distribution. One has to break the symmetry o o A

o ore, the charge densities presented in this figure correspond

the external potential in order that the quantum charge der‘l—

sity reproduces one of the degenerate classical configura. the exact ground-state solutians of the Sdimger equa-
Iy TEp 9 MU on. Conversely, for an arbitrary value of the magnetic field
tions. Let us construct such broken-symmetry statgsin

form of a linear combination of the two lowest-eneray few- the exact ground-state wave function can be constructed
electron statesy, and respectively) gy from a superposition of the wave functions of two broken-
X2 P Y) symmetry states with semiclassical electron localizafain
Yos=(x1+ Cx2)/ 2, (5)

Figs. 14(a)and 14(b)].
where|c|?=1. Usually, the charge density of a state con- IV. SQUARE QUANTUM DOT
structed in this way does not reproduce the symmetry of the _ ) ) .
confinement potential. We constructed such broken- N order to verify the conclusions concerning the high-
symmetry states for the system of three electrons in an ellipfagnetic-field evolution of the charge density in elliptical
tical dot with #w,=3 meV and%w,=4 meV (cf. Fig. 9). dots we performed a study of Wigner crystallization in quan-
We have found that the broken-syrynmetw charge density exium dots with square and triangular confinement pot_entials.
hibits three maxima. For a properly chosen phase of the cd-°" the square quantum dot we used a smooth confinement
efficientc in Eq. (5) the positions of these maxima coincide POtential with a square profile,
with the position of the electrons in one of the degenerate Lk 2002\ ,2
classical configurationg&f. the lowest panel of Fig. 4). Fig- VOGy)=zm7w (X +yT)[ 1+ cod44)/5], ®©)
ure 14 shows the charge density of the broken-symmetrwhere ¢ is the angle between the position vectary) and
states for different values of the magnetic field. Plots in Figsthe x axis. We takei =3 meV. The potential is illustrated
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FIG. 15. Equipotential lines for the square confinement potential 4
(6). The different types of symbols mark the position of the elec- . _ & &
trons in one of the four energy-equivalent configurations for the & 10 % ,@ <
three-electron system. £ - 207
>-10 fic] ey : =
. = g gy
in Fig. 15 along with the degenerate classical lowest-energy  -30
configurations of three electrons. On the other hand for two -30 -10 10 30 -30 -10 10 30 -30 -10 10 30
electrons there are only two equivalent configurations in x [nm] x [nm] x [nm]

which the electrons reside in the opposite corners of the ) _ _

square3,4 and forN=4 the classical system is nondegenerate FIG. 17. Pair-correlation function for the two-, three-, and four-

with electrons occupying all the corners. electron system in the square quantum dot. The cross marks the
The MCI calculations for potential6) have been per- Position of one of the electror{ —12,12), (-17,17), (-20.20)

formed with 12 centers placed on the circumference of 4°" N=2: 3, and 4, respectiveln nanometers)].

square with equal spacings along its sides. The size of th L -

square was optimized variationally. The obtained charge de fot er'eﬂ or(;_e of thel eliCtL(?nﬁ IS flxéd(.)ssfllr;dﬁg. 17?'”&%

sity is presented in Fig. 16. In the system of four electrons‘inze 0 ctj i ﬁgonartls. ; '9 hmaglnetlc 1€ bt € potls Ir q

the charge density becomes distinctly separated into four 2 and 4 show that the other electrons become localize

single-electron islands. Fdi=2 and 3 the formation of the semiclassically at th(_a COMErS ol t_he Square. On ihe other

charge maxima at the corners of the square appears with Phand the two remaining electrons in the thrgae—el_ectron Sys-

pronounced delay in magnetic-field strength with respect tgem are smea(ed OUI. over '.[he two opp03|_te sides of the

the four-electron system. square and their localization is weaker than in the two- and

The PCF plot presented in Fig. 17 gives an additior]afour-electron systems. This weaker localization is related to
insight into the electron distribution in the square quantumthe degeneracy of the cIa_SS|caI three-electron system an_d to
the fact that the electrons in the degenerate classical configu-

N=2 N=4 rations occupy nearby positions.
i Table Il shows that the present MCI approach gives a

decent convergence of the energy estimates even for the

g (G=0) ©® © three-electron system whose localization in the square quan-
S ¢ [ [ Oﬂ |||; =\ 4T tum dot is rather vicious.
20 = -\-'L'—T":—'/” (@) ||1®:|

) The gathering of the electron density at the corners of
-40 the square dot that we observe at high magnetic field is
4 in qualitative agreement with previous exactand

. - density-functional-theory*? results for large quantum dots

20 5 . o
= i in the absence of magnetic field.
ﬁ i &0 = 12T The symmetry of the electron states in square quantum
20 = 2 s dots is higher than in elliptical dofS.In the symmetric
-40 gauge the Hamiltonian eigenstates are also eigenstates of the
40
20 = @ & TABLE Il. Convergence of the total energyn meV) for the
e e ol %’ three-electron system in the square quantum(@ibas function of
E, 0 5 = a i i
= & & & -6 - = the number of centers used in the wave func{i®n
20 2 2 9 20T
-40) M
40 20 0 20 40 -40 20 0 20 40 -40 20 0 20 40 B(T) 4 8 12 16
x [nm] x [nm] x [nm]
4 28.51 28.08 27.99 27.98
FIG. 16. Charge densities of two-, three-, and four-electron12 48.87 46.38 46.27 46.26
systems in the square quantum dot for various values of th@Q 70.22 66.35 66.12 66.08

magnetic field.

praca 5A

125344-9
76



SZAFRAN, PEETERS, BEDNAREK, AND ADAMOWSKI PHYSICAL REVIEW B 69, 125344(2004)

10-'“.”64““'”“'”” N7 7
1 1 , sl ]
] isE % s
L E
yooow 02p 1 ]
= 18R\, 4 .
e I el 1]
i 3 ]
7 20
16} .
F N=3 ]
;I...-I----I....I.---: L ——
4 8 12 16 2C 5 10 15 26
BTl FIG. 19. Two lowest-energy levels of the three-electron square

FIG. 18. Two lowest-energy levels of the two-electron squarequantum dot calculated with respect to the lowest Landau level. The
guantum dot calculated with respect to the lowest Landau level ﬂd-_(evetn-)pantyt e?hergr)]/ II?vefItls plotted with sph(ﬂssthed]ln?r.] i

functions of the magnetic field. Both energy levels are of odd parity. € |r;se pres;sn SI € hall of the energy spacing between the two
The inset shows half of the energy spacing between the two Iowes{gWes “energy levels.

energy levels. obtained by rotating the coefficiewtby /2 in the Gauss

7/2 rotation operator corresponding to eigenvalued plane. It is interesting to note that a linear combination of the

(even-parity statesand =i (odd-parity states). Since we are two lowest-energy states can yield all four semiclassical

using the Landau gauge, in which the Hamiltonian does nofharge distributions. On the other hand any pair of the four
commute with ther/2 rotation operator, we cannot discuss broken-symmetry states is sufficient to reconstruct the exact

these symmetries propef§.However, we have found that 9round state. The broken-symmetry states corresponding to
the ground state of two electrons for the MDD and the othefh€ classical configurations marked by squares and open dots

spin-polarized ground states at high magnetic fields is alwaygUII dots and crossesh Fig. 15 are mutually orthogonal.

of odd-parity-like in circular and elliptical quantum dots. W'th increasing magnetic field the charge maxima presented

Figure 18 shows the two lowest-energy levels of two-In Fig. 20 shrink to the classical point-charge distributions.
electrons in a square quantum dtste lowest excited state is | "¢ €nergy overestimate of the broken-symmetry state

also of odd parity). Contrary to the case of elliptical dots the(half of th? energy spacing between the lowest Ig)v&*.s
crossings between the odd-parity energy levels are n&resented in the insets of Figs. 13 an.d 19, respectively. We
avoided. Thus we can conclude that the interchanging twohotice that the envelope of the oscillation of the energy over-

electron energy levels presented in Fig. 18 correspond t stimate is a decreasing function of the magnetic field. Simi-
orthogonal eigenstates with eigenvalues of the =/2 rota- & decreasing tendency can be noticed for the three-electron
tion operator system in an elliptical ddfcf. inset of Fig. 9), but in that case

For three electrons the oscillations of the ground-stat hg parity of the grounq state has a visible influ.ence on the
parity with magnetic field are observed like in circular and eight Qf the local maxima of the' energy overestlmate due to
elliptically deformed dotscf. Fig. 9). The two lowest-energy th_e shrlnk_age of th? stability region of t_he even-parity phase
levels forN=3 are presented in Fig. 19. with growing y-confinement energgcf. Fig. 10).

The two- and three-electron systems in square quantum

dots are similar to the three-electron system in an elliptically 40

deformed dotwith comparable confinement energies in the .20 = -

andy directions)in three points. First, all these systems ex- E o = B

hibit classical degeneracy. Second, their energy levels exhibit > o )

crossings as function of the magnetic fi¢dd. Figs. 13, 18, an (a) (b)

and 19). Third, it is possible to extract a single semiclassical

broken-symmetry charge distribution as a linear combination )

of the two crossing lowest-energy levels. — 20] @ s
Figure 20 shows the charge density of a superposition of E 0 \

the two lowest-energy states of two- and three-electron > o0l ; ]

square do_t calculated using E&,). The other semlclass_lcal 40 (C) (d)

configuration of the two-electron system corresponding to 4020 0 20 40 4030 0 20 20

electrons gathering at the other diagonal of the square can be x [nm] .

obtained by changing the sign afin Eq. (5). The three-

electron charge density plotted in Figs.(@0and 20(d)cor- FIG. 20. Charge density of the broken-symmetry solutiaris

responds to the classical charge density marked by squaresHu. (5)] of the two- (a, b) and three-electron square quantum dot,
Fig. 15. The three other equivalent configurations can béor B=5 T (a), 12 T(b), 8 T(c), and 16 T.

125344-10
praca 5A 77



ANISOTROPIC QUANTUM DOTS: CORRESPONDENE. . . PHYSICAL REVIEW B 69, 125344(2004)

40 —
_ 2 _[®
E o @ (| v
> .20 —\@
-40
40
_ 20 sl @
E : = =
E 0 o @ © 19T
>
20 @ &
FIG. 21. Equipotential lines for the triangular confinement po-  -40
tential (7) with #w=3 meV. Different symbols show the three de- 40 N
generate classical lowest-energy configurations for the two-electror 5 @ & b
system. E ) @ e > @ 20T
. . . > 20 & =
The four-electron spin-polarized ground state in a square ' . i
dot is of even paritylike in circular and elliptical dotsand -40
no level crossings as function of the magnetic field are ob- “40-20 0 20 40-40-20 0 20 40 -40-20 0 20 40
x [nm] x [nm] X [nm]

served. In this respect the four-electron system confined in a
square quantum dot is similar to the two- and four-electron £ 25 charge densities of two-, three-, and four-electron sys-
systems in elliptical dots as well as to three-electrons ingms in a triangular quantum d6t) with %w=3 meV for various
strongly deformed wirelike quantum dotsf. discussion of yaues of the magnetic field.

Fig. 10). Another feature common to almost all these systems

is that their classical counterpart is nondegenerate. The onharge maxima at the corners of the triangle appears with a
exception is the four-electron system for elliptical dots withvisible delay and the localization of electrons along the sides
wy/ oy ratio corresponding to the zigzag classical configurais observed like in the three-electron system in the square
tion (cf. Fig. 6). We did not obtain level crossing for this quantum dotcf. Fig. 16).
system, although for certain magnetic fields the excited odd- The three- and four-electron systems in the triangular dot,
parity state can closely approach the even ground state.  for which their classical lowest-energy configuration is non-
degenerate, do not exhibit any level crossings as function of
V. TRIANGULAR QUANTUM DOT the magnetic field, but the two-electron systéctassically
degeneratefloes. The crossing lowest-energy levels are pre-
The confinement potential for a triangular dot is takeh assented in Fig. 23. The electron systems in the triangular con-
finement potential do not possess a definite parity. However,
V(x,y)=zm* 0’(x*+y?)[1+2c0$3¢)/7],  (7)  (in the symmetric gaugethe Hamiltonian eigenfunctions

i i should also be eigenstates of the/3 rotation operator cor-
with #w=3 meV. Classical three- and four-electron systems

in this potential are nondegenerate; the electrons occupy all 8.0
the corners of the triangle, and one of the electrons in the
four-electron system resides in the center of the triaffyle.
On the other hand the classical two-electron system is three-
fold degenerate. The profile of the potential and the positions
of electrons in the degenerate two-electron classical configu-
rations are presented in Fig. 21.

The calculations were performed with 12 centers situated
at the circumference of an equilateral triangle with equal
spacing along its sides. For four electrons an additional 13th i
center was introduced in the center of the triangle. As in the 6.01
preceding calculations, the size of the triangle was optimized - N=2
variationally. The obtained charge density is plotted in Fig. S A S R W
22. In systems of three and four electrons the magnetic field 5 10 15 20 25
induces the formation of single-electron islands around the BIT]
positions of classical electrons in the nondegenerate lowest- g 23, Two lowest-energy levels of a two-electron triangular

energy configurations. The clear localization of electrons foiy,antum dot calculated with respect to the lowest Landau level. The
N=3 and 4 resembles the one for four-electrons in thensets present the charge density of the broken-symmetry solutions
square quantum ddtf. Fig. 16)as well as the plots foN  obtained for the subsequent energy-level crossings appearing at
=2 and 4 in the anisotropic confinement potential presente¢hagnetic fields 5.9, 12, 18.3, and 24.4 T, respectively. The bar in

in Fig. 4. On the other hand fdd=2 the formation of the the inset shows the length scale for the charge-density plots.

7.5}

7.0F

E' [meV]

6.5F
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FIG. 24. Two lowest-energy levels of the two-electron system in
circular dot withiw=3 meV calculated with respect to the lowest
Landau level. The numbers-(1, —3, —5, —7, and—9) give the
angular momenta of the two lowest-energy stdtes: units).

FIG. 25. Broken-symmetry charge densities of the superposition
of two lowest-energy states ff=2 for a circular dot. Plotsa—d
correspond to magnetic fields 6, 11.5, 17.5, and 25 T, respectively.

responding to eigenvalues equal to three complex cubic roof@0se to the level crossings presented in Fig. 24. At the level
of 1. It may be expected that each level of the crossing pair§fossings the broken-symmetry states are exact ground
presented in Fig. 23 corresponds to a different eigenvaluéstates. The corresponding charge densities shrink to pointlike
Similarly as in the dots studied in the preceding part of thedensity distributions with growing magnetic field. The modi-
paper the energy spacings between the two lowest levels efication of the phase afin Eq. (5) results in a rotation of the
hibit oscillations decreasing with the external field. Formulabroken-symmetry Wigner molecules, which can be pinned at
(5) still successfully produces the semiclassical charge@h arbitrary angle for a properly chogen phéisie s a strik-
density distributions. The insets of Fig. 23 show the plots ofnd feature of the quantum superpositidty. (5)] that for an

the broken-symmetry solutions drawn for the magnetic fieldgrbitrary magnetic field the exact ground state with circularly
corresponding to the level crossings. The presented charg&mmetric charge density can be reconstructed from the
densities correspond to the classical configuration marked byyave functions of two broken-symmetry Wigner molecules
crosses in Fig. 21. We have verified that the other two semiPinned at any two different angl¢sf. also the discussion in

classical distributions can be obtained by rotatiomof Eq. ~ connection with Figs. 20(cand 20(d)].
(5) by 27/3 in the Gauss plane. The energy levels of the three- and four-electron system

(cf. Figs. 26 and 27¢xhibit the same qualitative behavior as
for N=2. The envelope of the lowest-energy-level separa-
VI. EXACT BROKEN-SYMMETRY STATES tion presented foN=2, 3, and 4 electrons in the insets of
FOR CIRCULAR DOTS Figs. 24, 26 and 27 exhibits very similar dependence on the
From the present findings for anisotropic dots we ma magnetic field, hoyvever ‘the frequency” of these oscilla-
o ; X .“Jtions grows fast with the number of electrons. The broken-
WonQer W_hether It Is also possible to ob_taln the CIaSSICaLymmetry charge densities in the neighborhood of the
configurations for circular dots. The classical electron sys-
tems in circular dots are infinitely degenerate with respect to
rotation over an arbitrary angle. From the point of view of BT
the preceding discussion, the cylindrical symmetry of the
exact charge density can be considered as a superposition of i
all classically degenerate configurations. Like most of the 18
classically degenerate systems discussed in this paper, the
electron systems in circular quantum dots exhibit level cross-
ings as function of the magnetic field.

The two lowest-energy levels of the two-electron circular
dot are displayed in Fig. 24. For an arbitrary magnetic field
the ground and the first excited states correspond to adjacent 161
magic angular momentggiven by numbers close to the [ N=3
curves in Fig. 24). The inset shows half of the energy spacing [ T
between the lowest levels. The superposition of the two 15

o
w0

[E2- E1 | 42 [mev]
@
M

o

171

E'meV]
[
o

75
| T S S T T SN S TN B S A

lowest-energy states calculated according to(Bygive the S 10 B[T] 15 2

broken-symmetry semiclassical distributions which are dis-
played in Fig. 25. The magnetic fields chosen for Fig. 25 are FIG. 26. Same as Fig. 24 but fo¥=3.
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FIG. 27. Broken-symmetry charge densities ffoe 3 for a cir-
cular dot. Plotga—d correspond to magnetic fields 4.9, 7.5, 15, and  FIG. 29. Broken-symmetry charge densities b4 for a cir-
18.4 T, respectively. cular dot. Plot§a—d correspond to magnetic fields 4.75, 6.5, 11.5,
and 16 T, respectively.

ground-state level crossings fbi=3 and 4 are displayed in

Figs. 27 and 29. The charge density presented in Fi(r)27 momentum eigenstates, since they form a complete basis.

has been obtained as a superposition of states with angulpfowever, a superposition of more than two states would

momenta—37% and —6#4. The charge densities of these never give an exact value of the ground-state energy, since

states in the neighborhood of their energy-level crossingshe ground state in spin-polarized circular dots is at most

were shown in Fig. 11. twofold degenerate. The subsequent magic angular momenta
The present broken-symmetry charge densities, which argorrespond to states which exhibit ground-state level cross-

constructed from the superposition of the exact dlagonallzamg (each of the crossing levels corresponds to the ground

tion solutions,_are very similar to charge densities obtaine.c\g,tate at its side of the level crossinghe level crossings

by the unrestricted Hartree-Fock method, e.g., compare Figy o\, the semiclassical laboratory-frame charge distribution

27#?;&;61”? ﬁ;gﬁ; grgc;vides an insight into the problemto appear as a realizable feature of the exact ground state at
of the magic angular momerd&2°-22A linear combination the magnetic field corresponding to the crossing. We have to

of any pair of states with different angular momenta pro—nOte here that this conclusion has been reached for systems

duces a broken-symmetry charge density. The exception%omam'ng a small number of electrons and we cannot ex-

feature of the states with adjacent magic angular momenta ude a different behavior for largé.

that their superposition reproduces the semiclassical Char%ﬁeMse?:r_r?eetqu i?%%aggﬁf{ngﬁgff S&Zﬁ?ﬁ:}?“&ggfgﬁ%he

density, which at the infinite magnetic-field limit tends to one I ty yf i fter th MFI)DDd yAIth yh thi

of the degenerate classical point-charge distributions. It i§ ectron wave function & eét. e ecay. Although, this
effect is a notorious artifact,it is generally believed that

obvious that any charge distribution, including the sem|clas-Phere is some deeper physics behind it. The exact solutions

sical one, can be reproduced by a superposition of angulashow a rapid increase of the electron-electron correlation af-
ter the MDD breakdown. This increase appears in the inner
coordinates and can be observed in the PCF gldtsFigs.

11, 12, and Ref. 30). Since the mean-field theories cannot
1 ] give a complete description of the inner-coordinate space,
'. A 17 they tend to account for the electron-electron correlation in
i} A . the externallaboratory)frame of reference, which results in

' 1 the symmetry breaking.

The energy overestimates obtained with the broken-
symmetry solutions exhibit oscillations with amplitude de-
creasing with the magnetic field. The precision of the
ground-state energy estimates obtained by the HF wave func-
tion with semiclassical localizatidhalso possesses an oscil-

i latory dependence on the magnetic field with minima at the
gl A magnetic field corresponding to the exact ground-state trans-

B[T) formations. Contrary to the broken-symmetry solutions ob-
tained in the present paper at the exact-diagonalization level
FIG. 28. Same as Fig. 24 but for=4. the HF energy overestimates take on nonzero values at their
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minima?* The present paper shows that the fact that the HFhand, cusps related to spin or parity transformations should
broken-symmetry solutions overestimate the exact groundemain sharp.

state energy at the fields inducing its transformations is not Quantum Wigner molecules in anisotropic quantum dots
due to their broken symmetry, but to their mean-field charare related with the lowest-energy configurations of their
acter. The broken-symmetry states constructed from the délassical counterparts. At high magnetic fields the quantum
generate exact solutions presented in this paper contain @arge density tends to simultaneously reproduce all the de-
complete description of the inner-coordinate space. Due t§enerate lowest-energy classical configurations. Classical de-
this fact they provide the exact ground-state energy for finitéeneracy occurs when the lowest-energy configuration is of a
values of the magnetic fields corresponding to the grounddifferent symmetry than the confinement potential. We found
state transformations. The HF broken-symmetry :~3olutionﬁj{at the quantum charge density is a superposition of all
account for the separation of the electron charges but the re ese degenerate classical configurations. Consequently, the

: . guantum-mechanical charge-density reproduces the symme-
of the correlation effects, most probably the reaction of ar}ry of the confinement potential. We conclude that the obser-

electron on the actual positions of th.e e"?CtFO”S inside th%ation of Wigner crystallization through its charge-density
other charge puddies, is mlsse_d. Th|§ mISSing part'of_th istribution will be facilitated in low-symmetry quantum
correlat_lon is squeezed to zero in the !nf|n|te magnetic fieldyots for which the symmetry of the classical configuration
for ‘which the charge puddles shrink to point-charge;qoniorms with the symmetry of the external potential, i.e., in
distributions” systems which do not exhibit classical degeneracy.
Moreover, we have found a relation between the occur-
VII. SUMMARY AND CONCLUSIONS rence of the magnetic-field-induced level crossings and clas-

We presented a detailed study of the magnetic—field—Sical degeneracy. None of the studied quantum systems .With
induced Wigner crystallization of the two-, three-, and four- nondegenerate classical counterpart exhibit such crossings.
electron spin-polarized systems in quantum dots. The 0bThe formation of Wigner phase in these systems is a continu-

tained results, although limited to small numbers of0US process. For majority of the studied quantum systems

electrons, cover several symmetries of the confinement pdl_\llth degenerate classical counterparts these crossings are ob-

tential. We studied quantum dots of elliptical, square, trian-S€7V€d- The only exception is the four-electron system for

gular, and circular symmetry. In the present study, we devel(_alliptical dots for which the classical configuration has a zig-

oped a configuration-interaction scheme which was based g form- We have shown that in the presence of the cross-

single-electron wave functions expanded in a multicenter bal'9S & superposition of the two lowest-energy states produces

sis. The method, verified for the well-known case of an iso-2 broken-symmetry state whose charge _density reproduces
one of the degenerate classical configurations. These broken-

tropic harmonic-oscillator potential, can be applied to the q for th .
case of any smooth confinement potential with arbitrarys.ymmGtry states are exact ground states for the magnetic
Ids for which the crossings appear and for which the

symmetry. The arbitrariness in the choice of centers in basige d . fold d h 4 q
(3) allows us to achieve a high accuracy and flexibility of the3round state is twofold degenerate. The ground-state degen-

present MCI method accompanied with its relatively simpleeracy allows the semiclassical broken-symmetry charge dis-
applicability to low-symmetry nanostructures tribution to be a realizable property of the quantum system.

We have studied the parity transformations in the Spm_‘l_'hls conclu5|_on holds a_lso for circular dots. The superposi-
tion of the adjacent magic-angular-momenta states allows the

polarized electron systems confined in elliptical quantum fth in the lab
dots and found anticrossings between the energy levels of tH{Bner symmetry of the quantum system to appear in the labo-

same spatial symmetry. The experimental identificafigh ratory frame of reference.
of the magnetic-field-induced ground-state transformations
for the N-electron system in a cylindrical quantum dot is
based on detection of cusps of the chemical potential, i.e., This paper has been partly supported by the Polish Min-
the difference of the ground-state energy of theand N istry of Scientific Research and Information Technology in
—1 electron system. Based on the present results we expettte framework of the solicited grant PBZ-MIN-008/P03/
that the ellipsoidal deformation of the quantum dot potential2003, the Flemish Science FoundatidfWO-VI), the
results in a smoothening of the cusps of the charging 4ines Concerted Action progranflUAP), and the University of
corresponding to the ground-state transformations betweefintwerpen(VIS and GOA). One of u¢B.S.)was supported
states of the same spin and parity symmetry. On the othdsy the Foundation for Polish ScienGeNP).
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Abstract

Wigner molecules formed at high magnetic fields in circular and elliptic quantum dots are studied by exact
diagonalization (ED) and unrestricted Hartree—-Fock (UHF) methods with multicenter basis of displaced lowest
Landau level wave functions. The broken symmetry states with semi-classical charge density constructed from
superpositions of the ED solutions are compared to the UHF results. UHF overlooks the dependence of the few-
electron wave functions on the actual relative positions of electrons localized in different charge puddles and partially
compensates for this neglect by an exaggerated separation of charge islands which are more strongly localized than in

the exact broken-symmetry states.
© 2004 Elsevier B.V. All rights reserved.

PACS: 73.21.La; 73.20.Qt

Keywords: Quantum dots; Wigner molecules

At high magnetic fields the electron systems in
circular quantum dots form Wigner molecules [1,2]
in the internal structure of the system. Deforma-
tion [3,4] of the circular symmetry allows the
molecules to appear in the laboratory frame only
[4] when the classical counterpart [5] of the
quantum system possesses a single lowest-energy

*Corresponding author. Universiteit Antwerpen, Campus
Drie Eiken, Departement Natuurkunde, Antwerpen 2610,
Belgium.

E-mail address: bartlomiej.szafran@ua.ac.be (B. Szafran).

configuration. Otherwise the charge density at
high field is a superposition of equivalent semi-
classical densities and the quantum system under-
goes symmetry transformations when the magnetic
field is increased [4]. These transformations are
associated with level crossings at which the ground
state is two-fold degenerate. Superposition of the
states of the degenerate levels allows [4] to extract
the semi-classical broken-symmetry charge density
into the laboratory frame. On the other hand, the
unrestricted Hartree-Fock (UHF) produces [1]
broken-symmetry states for Wigner molecules. In

1386-9477/$ - see front matter © 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j. physe.2004.08.059

praca 6A

83


www.elsevier.com/locate/physe

B. Szafran et al. | Physica E 26 (2005) 252-256 253

the infinite magnetic field limit UHF gives exact [6]
results for the total energy. At finite magnetic
fields for which exact broken-symmetry eigenstates
exist the artifactal symmetry breaking cannot be
blamed for the inaccuracy of the UHF [4]. In this
paper, we look for the effects neglected by UHF
comparing the ED and UHF solutions for
elliptical and circular dots.

We assume a spin-polarization of electrons at
high magnetic field (0, 0, B) oriented perpendicular
to the quantum dot plane and use the Landau
gauge. In the ED, described in detail in Ref. [4],
the single electron wave functions used for
construction of the Slater determinants are
obtained via diagonalization of the single electron
Hamiltonian in the multicenter basis [7-9] of M-
displaced lowest Landau level wave functions

M
()= > e expl—al(x — x)* + (v — y)’1/4
k=1

+ ieB(x — xi)(v + y;)/2h}, (1)

where « is treated as a variational parameter. In
the present UHF approach one-electron orbitals
(1) are optimized self-consistently. We study up to
N =4 electrons, use the material data of GaAs
and a basis of 12 centers (xx, ;) put on an ellipse
with a size determined variationally. The basis (1)
of displaced lowest Landau level wave functions
reproduces [4] also higher Fock—Darwin bands.
Contrary to previous multicenter HF calculations
[6,9] using a single center per electron, the present
HF approach produces results which are exact in
the UHF [10] sense.

Classical system of three electrons in an elliptical
confinement potential with #Aw, =3meV and
hw, =4meV possesses two equivalent lowest-
energy configurations (cf. inset of Fig. 1) and the
quantum system undergoes parity transformations
[4] with the magnetic field (cf. Fig. 1). Super-
position [4] of the two lowest-energy eigenstates

5UBS = (lPeven + eid) 'Podd)/\/i (2)

yields a broken-symmetry (BS) charge density with
a distinct electron separation. Fig. 1 shows that in
contrast to the exact ground-state energy the UHF
energy estimate is a smooth function of the
magnetic field.
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Fig. 1. Energy of the lowest even (dashed curve) and odd parity
(solid curve) levels, the broken symmetry state (dotted curve)
and UHF energy calculated for N =3, fiw, =3meV and
hw, = 4meV. Inset shows the two equivalent classical config-
urations.

The charge densities of considered states are
shown in Figs. 2(a) and (b) for two magnetic field
values corresponding to the even—odd energy
crossing presented in Fig. 1. The phase ¢ in the
BS state is chosen such that the electrons are
localized at the classical Wigner molecule posi-
tions. Notice that in the UHF the separation of
electrons is more pronounced than in the exact BS
states. Fig. 2(c) shows the pair correlation function
(PCF) [2] for the UHF and the exact BS state
corresponding to the charge density of Fig. 2(a)
with the position of one of the electrons fixed at
two different locations: in the center and on the
edge of the central charge puddle. In contrast to
the exact BS state in the UHF wave function two
electrons are insensitive to the actual position of
the third electron in its charge puddle. This is a
consequence of the single-determinantal form of
the UHF wave function, and can be easily
explained for two electrons. In the spin-polarized
two electron Wigner molecule the UHF spatial
wave function is given by W.(r))¥s(r) —
¥4(r1) ¥, (r2), where |¥,|* and |¥|* are the charge
densities of separate charge puddles o and . Wave
functions ¥, and ¥y are orthogonal due to the
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B=8.75T

odd

100 nm

@

odd B=17.25T

(b)

UHF

(d)

Fig. 2. (a) The charge densities for the even, the odd, the
broken-symmetry (BS) state and the UHF for N =3,
ho, =3meV, ho, = 4meV at B=8.75T. (b) Same as (a) at
B =17.25T. (c) Pair correlation function plots for UHF and
BS state for an electron fixed at (0,13.4nm) (left panel) and
(—=3nm,10.4nm) [right panel] marked by crosses. (d) BS states
for given shifts of phase ¢ (Eq. (2)) with respect to the BS plot
in (b). Plots (a), (b) and (d) have the same scale given by the
length bar in (a).

vanishing overlap between the puddles. The
calculation of the PCF gives (up to a constant)
PCF = |W,(r) 21 W5(rs)> + |¥olr) 2| P5(r,) %, For
r, inside puddle f the second term of the sum

praca 6A

vanishes and the remaining one signifies that the
probability of finding an electron in point r, inside
puddle « is independent of the actual position of
the second electron in puddle f.

The UHF self-consistency is reached only in one
of the two classical orientations (cf. inset of Fig. 1)
in which the UHF energy is minimal. On the other
hand, the exact BS states can be oriented under an
arbitrary angle (cf. Fig. 2(d)) by modifying the
phase ¢ in Eq. (2). Moreover, since the BS state is
constructed with states of opposite parities, all the
plots in Fig. 2(d) correspond to the same value of
the kinetic, potential and electron—electron inter-
action energies equal to the arithmetic average of
the expectation values for Woqq and Weyen states.

Fig. 3 shows the two lowest energy levels and
the UHF total energy calculated with respect to
the lowest Landau level for the elliptical dot with
hw, = 3meV and hw, =4meV. For these values
the classical counterpart of the four-electron
system is unique and conform with the symmetry
of the confinement potential, so that the Wigner
crystallization is visible in the exact quantum
ground-state for an arbitrary magnetic field after
the MDD decay. In this case, the MDD decay is a

38

w
[«2)

E [meV] -2 hw,

w
N

32

BIT]

Fig. 3. Lowest energy levels for N =4, hw, = 3meV and
hw, = 4meV (solid lines) and total UHF energy (dotted) line.
Inset: Charge density calculated in the UHF (two upper plots)
and the ED (two lower plots) for B=8T (left side) and
B =20T (right side).
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continuous process and appears at the anticrossing
around 6 T.

The inset to Fig. 3 shows the charge densities
calculated with the UHF and ED methods. In ED
the charge density in between the charge maxima
takes on larger values than in UHF in which the
separation of electrons is more distinct.

The average radius of the charge puddle as
obtained for the two-electron ground state in the
circular quantum dot (hw, = hw, =3 meV) is
displayed in Fig. 4. The ED and UHF values are
similar below the MDD breakdown (B<5.6T).
The exact value has discontinuities at the angular
momentum transitions. After the MDD decay the
UHF value is close to the average around which
ED and BS results oscillate, but at higher fields it
becomes an upper bound for these oscillations.
The inset of Fig. 4 shows the exact BS and UHF
charge density for B = 11.8 and 28.9 T. BS charge
densities for the two values of the magnetic field
have been obtained from superpositions of the
degenerate states with angular momenta —5,—7
and —9, —11 (in # units), respectively. The charge

25
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Fig. 4. Average radius of the charge puddle [(<r? +r}> /2)1/2]
for two electrons in a circular quantum dot
(hwyx = hw, = 3meV). Dotted, dashed and solid lines corre-
spond to UHF, BS, and ED results. Inset: charge density
obtained in the UHF (two upper plots) and in the exact broken-
symmetry state (two lower plots) for B=11.8 T (left side) and
28.9T (right side).
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maxima in the exact BS solutions are less strongly
separated. For B =289T the charge density
islands of the exact BS have a crescent shape
while the UHF charge puddles are more oval and
the distance between them is larger.

The difference in shape of the separated charge
islands in circular dots is largest for N = 2. For
larger NV the charge puddles in the exact solutions are
less spectacularly spread. Fig. 5 shows the compar-
ison of the exact BS and UHF charge densities for
N =3. The BS plots for N =3 correspond to
degeneracy of states with angular momentum —9%,
—12h for B="7.5T and —12h, —15h for B=15T.

In summary, we have presented a comparison of
the UHF and the ED results for the charge density
of Wigner molecules in circular and elliptical dots.
For the comparison we have used the broken-
symmetry states obtained from the superposition
of the exact eigenstates. We have found that the
UHF exaggerates the separation of the electron
charge densities in the laboratory frame. In this
way, the UHF method partially compensates for
the overlooked correlations related to the reaction
of electrons on their actual position in the
separated charge density islands. This reaction is
of smaller importance for larger magnetic fields,
for which the charge density islands shrink to
points, which explains the vanishing of the UHF
energy overestimation in the infinite magnetic field
[6]. Due to the exaggerated electron separation the
charge islands forming Wigner molecules calcu-
lated in the UHF shrink with the magnetic field
faster than in the exact broken-symmetry states.

100 nm

Fig. 5. Charge density for N =3 electrons in a circular
quantum dot (hwy = hw, =3meV) calculated with UHF
(upper plots) and for exact BS states (lower plots) for
B ="7.5T (left plots) and B = 15T (right plots).
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PACS. 73.21.La — Quantum dots.
PACS. 73.20.Qt — Electron solids.

Abstract. — Pinning of magnetic-field-induced Wigner molecules (WMs) confined in parabolic
two-dimensional quantum dots by a charged defect is studied by an exact diagonalization ap-
proach. We found a re-entrant pinning of the WMs as a function of the magnetic field, a
magnetic-field-induced re-orientation of the WMs and a qualitatively different pinning be-
haviour in the presence of a positive and negative Coulomb impurity.

Low-density electron systems in bulk may form an ordered crystalline phase called Wigner
crystal [1] in which electron charges are spatially separated. A similar collective type of
electron localization in quantum dots (QDs) is called Wigner molecule (WM) [2]. WMs may
be formed in large QDs [2] or be induced by a strong magnetic field [3] in the quantum
Hall regime. Wigner localization is observed in the inner coordinates of the quantum system
whose charge density conserves the symmetry of the external potential [4]. Therefore, in
circular QDs [4,5] the charge density will be circular symmetric even in the Wigner phase.
However, a perturbation of the potential may pin [6] the charge density at a fixed orientation
in the laboratory frame which should allow for the experimental observation [7] of Wigner
localization. Pinning of the magnetic-field-induced WMs by the anisotropy of the potential [8]
or by an attractive Gaussian impurity potential [9] in the absence of a magnetic field have been
studied previously. Here, we will show that the WM pinning is qualitatively very different in
the presence of a positive and negative impurity.

We consider WMs induced by a magnetic field in a two-dimensional harmonic QD. A
strong magnetic field polarizes the spins of the confined electrons and leads to the formation
of a so-called maximum density droplet (MDD) corresponding to the lowest Landau level
filling factor v = 1. Stronger fields induce the MDD to decay into a molecular phase with
v < 1, for which the distribution of electrons in the inner coordinates resembles the equilibrium
configuration of a classical point-charge system [10]. The external magnetic field increases the
absolute value of the angular momentum of the confined electron system inducing its changes
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between certain “magic” [11] values for which the classical distribution of electrons in the
inner (“rotating”) frame of reference can be realized.

In this letter we investigate the way in which the potential of a charged defect (donor
or acceptor ion) situated outside the QD symmetry axis stops the “rotation” of the electron
system and freezes the WM at a fixed orientation. We use the configuration interaction
approach which allows for an exact solution of the few-electron Schrédinger equation. We
found that at magnetic fields inducing the angular-momentum transitions the exact ground
state can correspond to broken-symmetry charge density with semi-classical localization in
the laboratory frame. Broken-symmetry charge distributions were previously obtained as
artifacts of mean-field methods [4]. The existence of exact broken-symmetry states makes the
WDMs susceptible to pinning by an arbitrarily distant charge defect (donor or acceptor ion)
at the angular-momentum transitions. Consequently, a distant defect induces re-entrant WM
pinning as a function of the strength of the magnetic field. We show that the orientation of
the pinned WMs can change with the magnetic field and demonstrate an essentially different
pinning behavior for a positive and negative impurity.

We assume that the system of N electrons is spin-polarized by the external magnetic field
and that the electrons are confined to move in the z = 0 plane. The present configuration
interaction approach is constructed in the following way. The single-electron Hamiltonian for
the considered system reads

h = (—ihV + eA)?/2m* + m*w?(2® + y*) /2 + Bs.g" up £ €* /Amecorea (1)

where m™* is the electron band effective mass, fiw is the confinement potential energy, € is the
static dielectric constant, (0,0, B) is the magnetic-field vector, s, is the z-component of the
electron spin, g* is the effective Landé factor and r.q is the distance between the electron and
the charged defect. The sign in the last term of eq. (1) is — (+) for a positively (negatively)
charged defect. We apply the Landau gauge A = (—By,0,0) and adopt GaAs material
parameters m* = 0.067mg, € = 12.9 and ¢g* = —0.44 as well as fiw = 3meV. Hamiltonian (1)
is diagonalized in a multicenter basis ¥, (r) = Zi\il g, (r) with

Yr(r) = Vaexp[—a(r — R)*/A+ieB(x — X)(y + Y)/2h] /V2r, (2)

where R = (X,Y). The single-electron wave functions ¥, are subsequently used for the
construction of M!/N!(M — N)! Slater determinants —the basis set for diagonalization of
the N-electron Hamiltonian. « and the positions of the centers R; are chosen such that
they minimize the total energy. Function (2) with o = eB/h is the lowest Landau level
eigenfunction. The basis set of displaced functions (2) allows for a very precise determination
of the exact Fock-Darwin [4] energy levels, including higher Fock-Darwin bands, which at
strong magnetic fields tend to excited Landau levels. We have verified the accuracy of the
present approach comparing its results with the standard exact diagonalization method [12].
We have taken 12 centers placed on a circle. Above the MDD decay (B > 5.8, 4.85 and
4.65T for 2, 3 and 4 electrons) and below 20T, the overestimation of the exact energy for
2, 3 and 4 electrons is lower than 0.01, 0.06 and 0.12meV, respectively. Few-electron wave
functions calculated in the Landau gauge are not eigenfunctions of the angular momentum,
but using the gauge-independent expectation value of its operator we can look at the angular-
momentum transformations of the confined system. The precision in the determination of the
critical fields inducing ground-state transformation is better than 0.15T. Previously, displaced
Landau level functions (2) were used in the investigation of the WMs with approximate
approaches, i.e., single-determinant of non-orthogonal wave functions [13], Hartree-Fock [14],
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Fig. 1 — (a) Two lowest-energy levels of the 4-electron unperturbed circular QD calculated with respect
to the lowest Landau level. Numbers denote L - angular momentum in % units. Insets (A), (B) and
(C) display the charge densities of the states for B = 4.6 T corresponding to L = —6, —10 and broken
symmetry, respectively (the darker the shade of grey the larger the density). (D), (E) and (F) show
the charge density of the degenerate states with L = —18, —22 and broken symmetry for B = 11.2T.
(b) Same as (a) but for 3 electrons. (A), (B) and (C) plotted for B = 4.2'T correspond to L = —3,
—6 and broken symmetry, respectively. (D), (E) and (F) show the charge density of degenerate states
with L = —9, —12 and broken symmetry for B = 11.2T.

and rotated-electron-molecule approach [15]. Due to the arbitrariness in the choice of centers
the present configuration interaction approach can be easily applied to potentials without
circular symmetry. In the calculations for the perturbed QDs, we used 12 centers placed on
an ellipse, the size and its center of gravity were optimized variationally.

Figure 1 shows the two lowest 4- (a) and 3- (b) electron energy levels calculated with
respect to the lowest Landau level (E' = E— N x 0.85 (meV/T)) as functions of the magnetic
field. E’ at high field tends to the potential energy of a classical point charge system [13]. At
lower magnetic fields, the ground state is the MDD with angular momentum —N (N —1)h/2.
At larger magnetic fields, the angular momentum decreases by N7 [4,5,11]. The ground-state
charge density after the MDD decay has a ring-like shape with a pronounced minimum at the
center of the dot. At each ground-state transformation, the central local minimum becomes
wider and the size of the charge puddle exhibits a stepwise increase. Between the ground-
state transformations, the magnetic field compresses the charge density which shrinks in a
continuous fashion [12].

At the angular momentum transformations, the ground-state charge density is twofold
degenerate. Consequently, each linear combination of the degenerate ground states ®; and
®, is also an eigenstate. Consider the following combination: ®p, = (®1 + ¢®3)/v/2, with
lc|> = 1. Since the angular momenta of degenerate ground states differ by Nh, the angular
momentum in state ®p is not defined and Py possesses a broken-symmetry charge distribu-
tion (cf. insets (C) and (F) in fig. 1). The charge density of the ezact broken-symmetry states
resembles the approzimate mean-field broken-symmetry solutions [4]. The broken-symmetry
charge distributions at high field tend [14] to the classical lowest-energy distribution of point
charges [10]. Superposition ®p,s extracts the inner symmetry of the magic-angular-momenta
states into the laboratory frame of reference. The broken-symmetry charge distribution can
be oriented at an arbitrary angle depending on the phase of c.
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Fig. 2 — (a) Two lowest-energy levels of the 4-electron system in a circular QD perturbed by a potential
of a positively charged defect situated at (20, 0,40) nm. The insets show the ground-state charge den-
sities and the lowest-energy configuration of the classical system. (b) Same as (a) but for 2 electrons.

Let us now suppose that at a certain distance of the quantum dot plane there is an
impurity ion located off the symmetry axis of the dot. In vertical quantum dots [16] for which
the harmonic approximation of the potential is justified [17], and in which the MDD decay
has been observed [16], ionized [17] donor impurities are present at a distance of 20-30 nm
from the QD plane. The defect potential perturbs the QD circular symmetry and mixes the
angular-momentum eigenstates. Level crossings are replaced by avoided crossings. Figure 2(a)
shows the two lowest-energy levels and the ground-state charge density for 4 electrons with a
positively charged defect situated at point x = 20, y = 0, 2 = 40nm. The energy gaps in the
avoided crossings are very small (~ 1073 meV). At the avoided level crossings (see insets for
B = 4.9 and 6.86 T) Wigner crystallization in the laboratory frame (i.e. WM pinning) can
be observed. The positions of the pinned charge density maxima coincide with the position
of classical electrons in the lowest energy configurations (cf. lowest inset of fig. 2(a)). The
charge density plots for the magnetic fields outside the avoided level crossings resembles the
unperturbed circular densities (cf. fig. 1(a)), although an increased density at the right end of
the charge puddle is visible. Since the “momentary” pinning is a consequence of the existence
of the exact broken-symmetry states, it appears for an arbitrarily far situated defect.

Figure 2(b) shows that the effect of the defect on the 2-electron spectrum and the charge
density is much stronger (energy gaps are about 5 x 10~2meV). The oscillatory character of
the pinning as a function of the magnetic field is visible. At avoided level crossings separation
of the electron charges is particularly pronounced (see insets for 6.2 and 18.8 T). The effect
of the negatively charged defect at this rather large distance from the QD is similar, although
the molecules become pinned at different angles.

The pinning effect is stronger when the defect is closer to the QD plane. In the rest of the
paper we consider a defect located at (20, 0,20) nm. Figure 3 shows the results for 2 electrons.
An attractive impurity (fig. 3(a)) enhances the harmonic QD potential which results in a
stronger charge localization and, as a consequence, shifts the anticrossings to higher values
of the magnetic field. The energy gap between the lowest levels is larger for repulsive defect
(fig. 3(b)). In both systems, an anticrossing related with the MDD breakdown is visible (~ 7T
in (a) and ~ 5T in (b)). Both systems present smooth non-oscillatory convergence to the
lowest-energy configuration of their classical counterparts.
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Fig. 3 — Two lowest-energy levels of the 2-electron system in a QD perturbed by (a) positively and
(b) negatively charged impurity situated at (20,0,20) nm. The insets show the ground-state charge
densities as well as the classical configurations on a background of potential profile (the equipotential
lines are spaced by 3meV).

Figure 4 shows the plots for an attractive impurity with N = 3 (a) and N = 4 (b). For
both N = 3 and 4, the energy gaps between the anticrossing levels remain small (around
0.01 meV (0.04 meV) for N =4 (3)) and the pinning of the WMs exhibits anew the oscillatory
dependence on the magnetic field. The distribution of charge maxima in the WMs pinned
at the MDD breakdown (5.8 T for N = 3 and 5.3T for N = 4) differs from their classical
counterparts. In classical systems, a single electron is trapped under the attractive impurity.
In the WM pinned at the MDD breakdown, 2 electrons fit in the local minimum of the
potential induced by the defect. At higher fields (9T for N = 3 and 10.15T for N = 4) the
pinning fixes the charge maxima near the equilibrium positions of classical electrons. Thus,
an interesting rotation of the pinned WM is found as a function of the magnetic field. The
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Fig. 4 — (a) Two lowest-energy levels of the 3-electron system in a QD perturbed by a positively
charged defect situated at (20,0, 20) nm. The insets show the ground-state charge densities as well as
the classical lowest-energy configuration. (b) Same as (a) but for 4 electrons.
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Fig. 5 — (a) Same as fig. 4(b) but for a negatively charged defect. (b) Average value of the total
angular momentum for 4 electrons without the defect (solid line), in the presence of an attractive
(dotted lines) and a repulsive (dashed lines) defect at (20nm, 0, zq).

change in the charge distribution in the WMs between the MDD decay and the classical limit
is similar to the magnetic-field-induced transformations of the WMs in circular dots for larger
N [14]. At high magnetic field, the 3-electron charge density acquires the semi-classical charge
distribution even between the anticrossings (cf. plots for 11 and 15.4T in fig. 4(a)). This is
not observed for N = 4 in the studied magnetic-field range.

The results for 4 electrons in the presence of a repulsive defect are shown in fig. 5. The
ground-state energy is a smooth function of the magnetic field and oscillations appear only in
the excited state. A continuous MDD decay appears around 4 T. The charge density tends in
a non-oscillatory way to the classical limit of point charges.

The influence of the charged defects on the average value of the total angular momentum
for 4 electrons is shown in fig. 5(b). In the presence of a defect, the average values of angular
momentum take non-integer values and their dependence on the magnetic field becomes con-
tinuous; however, much of the stepwise character of a pure QD is conserved for the positive
impurity as well as for a distant negative defect. For the positive (negative) defect, the elec-
trons become localized closer to (further from) the origin which results in a decrease (increase)
of the absolute value of the angular momentum with respect to the unperturbed case. For a
negative defect closer to QD plane the average value is a smoothly decreasing function of the
magnetic field. This fast increase of the absolute value of angular momentum is related to the
localization of the charge density near the classical equilibrium points (cf. fig. 5). Results for
3 electrons for this position of the negative defect are qualitatively the same as for 4 electrons.

Comparing the results for an attractive with those of a repulsive defect (cf. figs. 4 and 5)
shows that the pinning is much more effective in case of a repulsive defect. The attractive
defect enhances the confinement potential of the QD, decreases its size and hinders the Wigner
crystallization itself. Moreover, it binds one of the electrons in its neighborhood. The potential
of the bound electron and the defect potential partially cancels and, as a consequence, the
other electrons see a nearly circular potential and the system in the external magnetic field
behaves essentially like a N — 1 electron system. On the other hand, the potential of the
repulsive defect is not screened, so it breaks the circular symmetry of the potential felt by
each of the electrons in a more pronounced manner.
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In conclusion, magnetic-field-induced WMs in circular dots are from their very nature
susceptible to pinning by the potential of an external charged defect at the angular-momentum
transitions. Our results can be summarized as follows: 1) At large distance between the QD
plane and the defect, the pinning has a re-entrant character, i.e., it appears only at the
energy level anticrossings, which are situated near the angular momentum transition fields of
the unperturbed system. 2) For an impurity placed closer to the QD plane, the pinning by
the repulsive defect is more effective and leads to a non-oscillatory convergence of the charge
density to the classical limit at high field for all N. The pinning effect of a positively charged
defect is strong only for two electrons. For larger numbers of electrons it is weakened by a
partial screening of the defect potential by an electron trapped in the defects neighborhood
so that the re-entrant pinning behaviour is conserved. 3) For a positively charged defect close
to the QD, a magnetic-field—induced re-orientation of the WM is predicted.
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Exchange energy tuned by asymmetry in artificial molecules
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Laterally coupled asymmetric quantum dots occupied by two electrons are studied using the exact diago-
nalization approach. It is shown that the asymmetry enhances the exchange energy, i.e., the triplet-singlet
energy difference for finite magnetic fields. At high magnetic field, electrons enter the deepest dot more easily
if they have parallel spins.

DOI: 10.1103/PhysRevB.70.205318 PACS numbsss): 73.21.La

The spins of an electron pair in coupled quantum Hotscoupled dots. At high magnetic fields a small asymmi&try
were proposedto serve as a basis of a quantum gate for aurns out to be irrelevant for the exchange energy which
solid-state quantum computer. The coupling between th@anishegwhen the Zeeman spin effect is neglectddg to a
spins can be realized in the orbtalegrees of freedom ex- complete localization of electrons in different dots.
ploiting the spatial symmetry of the singlet and triplet wave  Asymmetry of the confinement potential in existing de-
functions. The strength of the coupling is quantified by theyjces containing laterally coupled d&€ is the rule. In fact
exchange energy definéas the energy difference of the symmetric coupling appears only for voltages along the
lowest triplet and the lowest singlet states. The value of th%liagona?io connecting the triple points at the honeycomb sta-
exchange energy depends on interdot tunnel coupling. In Velility diagram?® Although vertical coupling of asymmetric

tically stacked dofs**®the coupling is fixed by the process 14 pas been considered in the context of the exchange
of the growth which determines the composition and th|ck—energy mosti213 of the theoretical work on laterally

ness of the interdot layer. The interdot barrier can be mor . . : .
conveniently controlled in laterally coupled db$-15 by Eéoupled dots dealt with pairs of identical dots. Only recen'FIy
Was the effect of the asymmetry on the few-electron charging

potentials applied to gate electrodes. But there are possib idered. The infl f ¢ th h
difficulties with the control of the exchange energy resulting®0"S!0€red. The influénce or asymmetry on thé exchange

from the fact that electrostatic confinement potential in gate@N€'dy in laterally coupled dots was addressed in Ref. 3
quantum dots is usually wedRIn such quantum dots with Where the effect of the electric field was studied in the
weak confinement the dominant electron Coulomb repulsiofii€itler-London approximation assuming single occupancy of
leads to the formation of Wigner molecutefor which the  the dots with a neglected dependence of the single-electron
ground state becomes degenerate with respect to the spiyave functions on the magnetic field. This neglect |éads
This is due to the vanishing overlap between the singlemagnetic-field-independent shift of the exchange energy,
electron wave functiond!” Therefore for a pair of large which is in disagreement with the exact diagonalization re-
quantum dots the exchange energy may remain negligiblgults presented below.
small even if the interdot barrier is totally removed. Conse- We consider a two-dimensional double quantum dot in a
quently, the exchange energy risks to be too small to be aperpendicular magnetic fiel8=(0,0,B and neglect the
practical use for spin control. spin Zeeman effect, which does not influence the orbital
The exchange energy can be controlled by an externalvave functions, and which can be trivially accounted for as a
magnetic field4712-14Byt jts value is maximal in the ab- shift linear inB to the exchange energy.The Hamiltonian
sence of the field*7"1>-14The application of a magnetic field of the pair reads
diminishes the interdot tunnel coupling due to an increased s s
localizatiort® of the electrons in each of the dots. A high H=H]+H3+ e/4meery, (1)
magnetic field results in a large effective interdot barrierwheree is the dielectric constant artd® the single-electron
leading to a vanishing exchange enérgye to the separa- Hamiltonian
tion of the single-electron wave functions. This is similar to
Wigner crystallization appearing in a single large quasi-one- HS= (=% V +eA)?2m* + V(Xy), 2
dimensional quantum détlj In a si_ngle CiFC“'ar quantum - ik ni the electron band mass andx,y) the potential of
dot the magnetic field induces singlet-triplet oscillatibns . 5503
. . . . two Gaussiaf??3 dots
which when the Zeeman spin effect is neglected, continue to
?nfinity. In coupled quantum do_ts the magnetic field us_ually V(xy) = -V, e—[(x+d/2)2+y2]/R2_Vre—[(x—d/2)2+y2]/R2, (3)
induces at least one singlet-triplet transitigh12-14remi-
niscent of the singlet-triplet oscillations in a single dbt, whereV, andV, are the depths of the left and right dots,
before the exchange energy is eventually reduced to zero. respectivelyd is the distance between the dot centers, Bnd
In the present paper we show that at zero magnetic fielés the radius of each of the dots. It was recently fodrbat
the exchange energy can be strongly enhanced by an asyfte confinement energy as generated electrostatically in a
metry introduced in the confinement potential of laterallygated two-dimensional electron gas is largest when the po-
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tential has a Gaussian shape. The single-electron eigenfunc- R T B L B N B
tions of Hamiltonian(2) are obtained in the Landau gauge RN t !
A=(-By,0,0) using a basislf#(r):Ei"ﬂlc{‘wRi(r) of the low- -221 1
est Landau level eigenfunctions centered around pdits 2
:(Xi ,Yi):18,25—27 E 24+ =. -
>
— 26107/ .
Y (1) = Vaiexpt- ai(r - R)%4 ay
+ieB(x - X)(y + Y)/2h}\ 2. (4) 2%0 40 20 0 20 40 &0
x [nm]
Two-electron eigenfunctiong(r,,r,) of Hamiltonian(1) are 20—
subsequently calculated in a basis of symmetri@edisym- SRS "'
metrized) products of single-electron wave functions 24+ .
W, (r)W,(rp) for the singlet(triplet) two-electron states. Ex- &
tensive discussion of the exact diagonalization with wave E-za— .
functions(4) is given in Ref. 18. Here we just remind the > o1l
reader that the displaced lowest Landau wave functions also B2 L AN I
reproduce higher Fock-Darwiistates. We use 14 centdRs % (D)
i.e., 7 centers per dot, one in the center of each dot and six on -3 :

6 l ¢ 1 2 | ¢ 1 3 |
a circle surrounding it. Radii of both circles as well as pa- 00 40 -20 O 20 40 6C

rametersy; responsible for the localization of the wave func- X fom]
tions (4) are optimized variationall§® Comparing the results 20011
for the magnetic field dependence of the exchange energy "‘ !
presented in Fig. 4 of Ref. 13 with the results of the present 22k i
method applied to the model potential used thefaive find =
a nearly exact agreement with differences that do not exceed 2 24t i
5 peV. However, contrary to the present approach, the basis > A S - ]
used in Ref. 13, consisting of wave functions localized 28T [0 A 5 7
around the origin, is bound to be slowly convergent for larger (N
interdot distances and/or high magnetic fields. 28 TN
We use the material data of GaAss12.9,m*=0.067, -60 -40 -20 O 20 40 8C

X [nm]

and take the potential parametersR=30 nm,V,
=25 meV,d=52 nm(unless stated otherwise), and the value
of V, is varied to induce the asymmetry. For a single quantum
dot (V,=0) the energy spacing between the ground and first
excited single-electron energy levels is 6.6 meV and between
the first and the second excited energy levels the spacing
equals 5.2 meV.

For the explanation of the results presented below we find
it useful to introduce the single-electron basis consisting of

lowest-energy states, s, p;, pr, wheres(p) stands for the gl 11 N

0(-%) angular momentum states and the subsd(iptdenote -60 40 -20 & 20 40 6C

the localization of the state in the lgftight) dot. Figure 1 X Inm]

shows the confinement potential for a symmetfiy, FIG. 1. Confinement potentigdotted line)and singlet(solid

=25 meV)pair of coupled dots and for a pair with a small line) and triplet (dashed line)xcharge density plotted in arbitrary
asymmetry(V,=32 meV) For B=0 the asymmetry-induced units aty=0 axis forV,=25 meV anda)V,=25 meV and3=0, (b)
shift of the charge density to the lgitleeper)dot is visibly V=32 meV and B=0, (c) V,=25meV andB=10T, (d) V,
stronger for the singlet stafsee Figs. 1(aand 1(b)]. AtB =32 meV andB=6 T.
=0 the exchange energy for the asymmetric system of
coupled dots presented in Figh) equals 0.32 meV and is |owest-energy wave functions localized in the left and right
three times larger than in the symmetric case of Fig)tbr  dot
which AE=0.1 meV(see below).

At high B the singlet and the triplet charge densities be- X(r,ro) =5(ry)s(ry) £s.(rys(ry), (5)
come identica[Figs. 1(c)and 1(d)]for both the symmetric
and asymmetric coupling. At high magnetic field for which with a + sign for the singlet state and — for the triplet state
the probability of double occupancy of each of the dots van{this function is not normalized The charge density is ob-
ishes(see belowpoth lowest-energy singlet and the lowest- tained by integrating the two-electron probability density
energy triplet wave functions can be described using th@ver coordinates of one of the electrons

205318-2
praca 8A 96



EXCHANGE ENERGY TUNED BY ASYMMETRY IN ... PHYSICAL REVIEW B 70, 2053182004)

EQ L
p(r) = f dralx(r,ro)[? < snged=sonm /1,
§
2 2 * * 2 g
=[si(N)]* + [s(r)] iZRe[sr(r)s(r)fdrza (r)si(ra)]. = '/ - I
= H triplet d=50 nm
@ & Fif .
(6) = i) singlet d=52 nm
3%
As the magnetic field increasgsands, wave functions be- N I(?I)
come more strongly localized.Finally, the overlap integral e 00 16 20 30 40 50

between these functions appearing in E).vanishes lead- V,ImeV]
ing to identical charge densities for the singlet and triplet
states(see Fig. 1)and to the singlet-triplet degeneratsee
below). Similarly the singlet and triplet charge densities be-
come indistinguishable in large quantum dots without the
external magnetic fielél. Note that the external magnetic
field reduces the effect of the asymmetry on the charge den-
sities[see Figs. 1(band 1(d)]due to an increased depth of
the effective potential well at the electron localization posi-
tions.

Figure 2(a)shows the charge accumulated at the left of
the origin 2%, dx, /. dy; [dr,|x(r;,r,)[? as a function of the
depth of the left quantum dot fd8=0. For the symmetric
system(V,=25 meV) the charge is equally distributed be-
tween the dots. Fod=52 nm near the symmetric point the B
charge in the left dot for both the triplet and the singlet is 4
approximately a linear function of,, but the slope of the

straight line for the singlet is more than twice steeper indi- % 3f
cating that the triplet state is more robust against the inbal- E [
ance (V|/V,). For larger barrier thicknes&d=60 nn) the < 2_

curves acquire a more stepwise character. 1 )

The probability of finding both electrons at the same 'd=60nrr;-.,.“' {e)
side of the origin (f2.dxdx 7. dydy,|x(ry,r2)[? e

o - e 0 10 20 30 4¢ 50
+ [oax 0% [, dy;dy,| x(r1,12)|?), quantifying the double oc- v, [meV]
cupancy of the dots, is plotted as function\gfin Fig. 2(b) !
for d=52 nm andB=0. For the symmetric system the double G 2. (a) Charge accumulated at left of the origin for
occupancy probability in the singlet state is almost twice as-52 nm andd=60 nm in the singlegsolid lines)and triplet(dotted
large as the one in the triplet state. When the left dot is 1/3rgines) states as function of the depth of the left quantum well
deeper or shallower than the right dot the probability that thebata ford=52 nm are marked with squareg$) Probabilities that
deepest dot is double occupied is roughly 50% in the singleboth electrons are on the same side of the origin for the singlet
but only 10% in the triplet state. (solid lines) and triplet (dotted lines)states ford=52 nm. (c)

The dependence of the exchange energy on the asymmsinglet-triplet energy difference as function \gf. The values for
try for B=0 is presented in Fig. 2(c). The exchange energy is1=48, 52 and 60 nm are plotted with dashed, solid and dotted lines,
minimal for the symmetric syster(i.e., V,=V,=25 meV). respectively.

For a thick interdot barriefd=60 nm) between symmetric

dots the exchange energy is 0 due to the negligibly smallite to the triplet state due to the Pauli exclusion. The double
tunnel coupling and complete charge separation. The exsccupancy in the triplet state can be realized by admixtures
change energy becomes nonzero only when the charge of statesp,=A{s.(r)p:(r,)} andé=A{s(ry)p/(r,)} (A stands
both electrons in the singlet state starts to occupy the deepefsir the antisymmetrizer). Tripletgh, and ¢, correspond to
dot [see Fig. 2(a)]. For thinner barriefsee plots ford=52  maximum density dropletsconfined in the right and left
and 48 nm in Fig. 2(c)even a small asymmetry increases dots, respectively. In absence of the magnetic field these
the exchange energy. states have larger energies tha(r,)s(r,) and s,(rq)s:(r,)

The results of Figs. 2(a)-2(@an be explained in the combinations resulting in a smaller double occupancy prob-
following way. In symmetric systems and in systems with aability for the triplet state. In the presence of the asymmetry
small® asymmetry the two-electron singlétriplet) states the singlet combination with a doubly occupisdenergy
consist mainly of the symmetrize@ntisymmetrizedprod-  level of the deepest dot has the lowest single-electron energy,
ucts given in Eq(5). In the singlet state the double occu- which increases the double occupancy probability in the sin-
pancy is introduced mainly by symmetric combinationsglet state. The probability of the double occupancy in the
5(r)s(r,) ands.(r)s(r,), which, however, do not contrib- triplet state also increases with asymmefsge Fig. 2(b)],
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FIG. 3. Probability that both electrons are on the same side of F!CG- 4. Exchange energy as function of the magnetic field for
the origin for singlets(solid lines)and triplets(dashed linesfor ~ Vr=25 meV and various values bf for which the electrons at high
symmetric (V=25 meV} and asymmetridV,;=32 meV} quantum B occupy_dﬁferent_do_ts. Inset: Exchange energy Ypr 18 meV
dots as function of the magnetic field. Curves for the symmetricS@me as in the main figurend forV,=15 and 38 meV. For the two
case are marked by squares. Inset: Same bB#di0 T as function  lattér values the deeper dot is doubly occupied at Iigh
of V.

| est triplet becomes localized in the deepest dot for smaller
but more slowly, since in the triplet state theexcited state asymmetry than the lowest singlet.
of the deepest dot has to be occupied. Therefore, the asym- The magnetic-field dependence of the exchange energy is
metry lowers the energy of the singlet with respect to thedisplayed in Fig. 4. The magnetic field inducing singlet-
triplet which explains the exchange energy enhancement blyiplet transition increases with the asymmetry, which is
the asymmetry observed in Fig. 2(c). more effective forV,>V, because of the increased strength

Figure 3 shows that the double occupancy probabilityof the confinement in the lefdeeperyot which weakens the
changes as a function of the magnetic field for a symmetricelative effect of the external field. For largethe exchange
double dot and a double dot with a sm&lasymmetry. In  energy tends to zero as long as the carriers are localized in
both the symmetric and asymmetric dots the probability forseparate dots at the high-magnetic field lirfsee inset to
the singlet decreases monotonically to zero with increasingig. 3). This is not the case for strongly asymmetric poten-
field. A similar high-B limit behavior is observed for the tials for which both electrons stay in the same dot and for
triplet state. However, surprisingly, as the magnetic field iswhich the singlet-triplet oscillations continue to higher mag-
switched on the probability for the triplet initially increases. netic fields(see plots fol,=15 meV andv,=38 meV in the
This is because in the subspace of states with both electromsset of Fig. 4).
in the deepest dot the lowest-energy-state undergoes singlet- In summary, we have studied the effect of the asymmetry
triplet oscillationd as in the single-dot problem. Above a on the lateral coupling of quantum dots in a perpendicular
critical value of the magnetic fietd the maximum density magnetic field using a numerically exact method. We have
droplet statesp, and ¢, acquire lower energy than the sin- shown that atB=0 the exchange energy is minimal for a
glets built of products o8 single-electron states confined in symmetric system of laterally coupled dots, and that the
the same dot. This explains why beyond a certain value odsymmetry promoting double occupancy of the deepest dot
the external field the probability of finding both electrons inin the singlet state can enhance this by a factor of 4. If for
the same dot is larger in the triplet than in the singlet statepractical reasons a stronger coupling between the dots was

The discussed singlet-triplet energy crossings for theneeded and the dots could not be made any smaller the so-
states confined in the single dot has a striking effect on théution is to make one of them even larger. We showed that
capacity of the deepest dot to bind both electrons for l1&fger for high magnetic fields localization of both electrons in the
asymmetry. The inset of Fig. 3 shows the probability thatdeepest potential minimum is easier if the electrons have
both electrons are in the same dot B 10 T. Usually inthe  parallel spins and explained this effect in terms of singlet-
triplet state the electrons avoid each another more efficientlyriplet oscillations in the lowest-energy state with both elec-
than in the singlet state due to the Pauli exclusion principletrons in the deepest dot.

However, contrary to the case BE=O0 [see Fig. 2(b)for B This paper was partly supported by the Flemish Science
=10 T (see the inset of Fig. 3jounterintuitively, the elec- Foundation(FWO-VI), the Belgian Science Policy, the Uni-
trons in the triplet state occupy the same dot more eéfsity  versity of AntwerpenVIS and GOA), and the Polish Minis-
smaller asymmetryjhan in the singlet state. At high mag- try of Scientific Research and Information Technology in the
netic field the lowest singlet and triplet energy levels correframework of the solicited Grant No. PBZ-MIN-008/P03/
sponding to electrons occupying separate dots are degener&@03. B.S. was supported by the Foundation for Polish Sci-
[see the discussion after Eq®) and (6)] but the lowest- ence (FNP) and by the EC Marie Curie IEF Project No.
energy state with both electrons in the deepest dot is th®MEIF-CT-2004-500157. We are grateful to M. Stopa and J.
triplet maximum density droplet. As a consequence, the lowAdamowski for useful discussions.
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Three electrons in laterally coupled quantum dots: Tunnel vs electrostatic coupling,
ground-state symmetry, and interdot correlations
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The phase diagram for the ground-state symmetry of three electrons confined in a pair of laterally coupled
dots is determined as function of the interdot distance and the magnetic field. With a few exceptions the
ground-state spin and parity symmetry sequence of a circular harmonic quantum dot is conserved. Reentrant
behavior of some energy levels as ground states is found as a function of the magnetic field. The disappearance
of interdot tunnelling due to a strong magnetic field leads to ground-state degeneracy of the even and odd
parity energy levels. It is shown that at a high magnetic field the system can be closely approximated by a
two-electron system confined in one dot and a spectator electron localized in the other. Broken-parity eigen-
states with a classical charge distribution are constructed and used to discuss the interdot electron-electron
correlations.

DOI: 10.1103/PhysRevB.71.245314 PACS numbgs): 73.21.La

I. INTRODUCTION The three-electron system in laterally coupled dots is

Electrons confined in coupled quantum dotsform sys-  More intgzrstting than the extensively discussed two-electron
tems commonly referred to as artificial molecules withProblent?~tfor at least two reasonsi) In the two-electron
single-electron wave functions forming bonding and anti_syste_m the electron chargﬁe localized in each of the identical
bonding orbitals similar to those known from the quantumdOts is exactly equal te.> On the other hand, the three-
chemistry of covalent molecules. Artificial molecules are€l€ctron system possesses two equivalent classical configu-
formed by verticallf~2! coupled dots or by dots coupled rations with two electrons in the left or right dot. We show
laterally}2-25 The electronic properties of two-electron sys- that the three-electron parity operator eigenstates can be con-
tems in verticallj~” as well as lateralf#16 coupled dots structed as superpositions of the states corresponding to both
have been extensively studied by exact methods that for twolassical configurations. The charge density distribution in
electrons are particularly convenient due to the separation dhe parity eigenstates is nonclassical; with one and one-half
the spatial and spin degrees of freedom. The two-electrorlectron charge confined in each of the dots. Due to tunnel-
studies were mainly motivated by the propc®e@alization ling each attempt to localize two electrons in one of the dots
of a quantum gate based on the spins of the electrons comvill result in the formation of a nonstationary state. The clas-
fined in coupled dots. For larger electron numbers the measical charge distribution can only be obtained when the tun-
field method$318-21are more commonly used. The mean nel coupling between the dots disappears. The previous mean
field approaches give reliable estimates for the ground-statiéeld analysis of the charge distribution and symmetries dealt
energy and are useful in simulatirig®1927of devices but  mostly with an even number of electréf=? for which the
they possess several shortcomffgdue to an approximate problem of nonclassical charge distribution, likely to result
treatment of the electron-electron correlations, which resultén an artifactal spatial symmetry breaking, is abséat.The
in artifactal symmetry-breaking effects leading to an over-evolution of the two-electron ground state ends in the
simplified picture of Wigner crystallization, to the appear- singlet-triplet degeneraéy ' when the tunnel coupling is
ance of spin-density waves, etc. removed by an external magnetic field. On the other hand, in

The exact solution of the few-electron Schrédinger equathe three-electron system at high-magnetic field, spin oscil-
tion possesses a rich literature for circular two-dimensionalations should be expected to continue in the two-electron
quantum dotg®3° Less work has been done in subsystem perturbed by the Coulomb potential of the elec-
noncirculaf®4?and vertically coupled quantum ddétstIn  tron confined in the other dot and the electrostatic interdot
this paper we present the exact diagonalization results for theoupling should piff=#> the magnetic-field induced two-
three-electron system in quantum dots coupled laterally. Welectron Wigner molecules, extracting them from the internal
are unaware of any previous exact diagonalization calculacoordinates of the two-electron system to the laboratory
tions for a pair of laterally coupled dots with more than two frame of reference.
electrons. While in vertically coupled dots the interdot tun- In this paper we study the spin and parity symmetry of the
nelling makes the problem intrinsically three dimensional,three-electron ground state, the electron-electron correlation,
but with conserved axial symmetry, in the laterally coupledthe Wigner crystallization, and the extinction of tunnel cou-
dots the physical interesand technical implementation dif- pling in the limit of high magnetic field. The high-magnetic
ficulties) are related to the two-center nature of the electrorfield spectra are explained using a single-dot two-electron
localization. model, including the Coulomb potential of an electron local-
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ized in the other dot. The interdot electron-electron correlaelement. For a single quantum dot the multicenter b@bis
tions accompanying the electrostatic interdot coupling, areeproduce® also the Fock-Darwin eigenfunctions of the
studied using broken-parity eigenstates. The results praiigher Fock-Darwin bands that tend to excited Landau levels
sented in this paper have been obtained by the multicentext a high magnetic field. Therefore, for a single quantum dot
configuration interaction method described in detail in Ref.the present scheme works as efficient as the ones employing
41. This method was previously applied to problems ofthe Fock-Darwin single electron basdtks3848Since the cen-
Wigner crystallization in low-symmetry quantum détsto  ters can be chosen quite arbitrarily the multicenter method is
pinning of Wigner molecules by an external Coulombsuitable to treat any low-symmetry smooth confinement
defect?® and to the effect of the asymmetry on the exchangeotential?! In the present calculations we use 14 cent@rs
energy in two-electron laterally coupled défs. per dot). The set of centers corresponding to the right quan-

The present paper is organized as follows. In Sec. Il waum dot is chosen in the following way. A single center is
present the theory, Sec. lll contains the results, summary andcalized in the pointa,0). Six additional centers are put
conclusions are given in Sec. IV. around this point on a circle of radid& The position of the

centers for the left dot are obtained from the set associated
Il. THEORY with the right dot by a change of the sign of tkecoordi-

We consider three electrons bound in a two-dimensionahates. The basis is optimized by takiRga, and« as varia-

system of laterally coupled dots that is described by thdional parameters that are chosen to minimize the energy of

Hamiltonian, the three-electron system.
3 3 3 The three-electron Hamiltonigi) is diagonalized on the
H=> hﬁEE , 1) basis of Slgter d_etermman_ts constructed from the smglie-
- o1 i Ameegry; electron spin orbitals obtained as products of the spatial
wave functions expanded in the baéis and the eigenfunc-
with the single-electron energy operatodefined as tions of thez component of the single-electron spin. Eigen-
1 states of Hamiltoniar{1) are also eigenstates of the parity
h= o (—ih V +eA)?+V(x,y), (2 operator as well as of the operators of #f@omponent of the

total spin(with eigenvalueS4) and of the square of the total
wherem’' is the electron effective band mass aads the  Spin (S(S+1)#%). Of all 3276 three-electron Slater determi-
dielectric constant. We apply the model potential for laterallynants that can be constructed of the 28 spin orbitals we retain
coupled dots used previously by several autft#§;20.22 only those with the require§, and parity eigenvalues, which
gives a basis of 182 basis elements &+ +3/2 and 637
(min{(x- d/2)?, (x+ di2)2 +y?),  (3) basis elements fo,=+1/2. Thequantum number of the
2 total spinS is identified for each energy level by its multi-
plicity (2S+1—the degeneracy of the given energy level
with respect td5,). In the following the everiodd) symmetry
States are denoted b (50).

* 2
mwo

V(xy) =

wherefwg is the confinement energy amtlis the distance
between the centers of the two dots. Fb+0 this model

potential reduces to a single circular quantum dot with
harmonic oscillator confinement potential.

We use the Landau gaude=(-By, 0,0, GaAs material
parameterd m'/m,=0.067, €=12.4, and choosefiw,
=3 meV for the confinement potential energy. We include A. Energy spectra
only the orbital effects for the ground-state spin and spatial
symmetries, but we neglect the spin Zeeman effect. The Ia&-h
ter can be trivially taken into account as a shift lineaBito

the calculated energy levels. At a high magnetic field the spir?rgles calculated with respect to the lowest Fock-Darwin en-

. _ J’ 2 2
Zeeman effect removes the nonpolarized states from thgraY level, i.e., we subtracte =3 X fiywy+ w/4 from the

ground-state  symmetry  sequence, as discusse%igenvalues of Hamiltoniafl). In the absence of the mag-

; 8,37,38 netic field the ground state corresponds to —1 angular mo-
previously” tum(in % units). Th d-stat | t
We first solve the single-electron Schrédinger equation ir{nﬁn um gn units). € ground-staté gggubarlmomeln um
a basis of displaced lowest Landau level takes subsequent negative integer val(ml absolute value
. ; 45-48 of the angular momentum of the states is given in the figure
eigenfunction&! AR ;
as the magnetic field increases. Ground states with angular

Ill. RESULTS

Figures 1(a)and 1(b)show the low-energy spectrum of
e three-electron single quantum ddt0). We display en-

M momentum quantum numbers being multiples of 3 are real-
W,(r) = 2 clr(r), (4 ized by the spin-polarized stat@3374%At lower magnetic
=1 field the intervals corresponding to subsequent ground state
where symmetries have distinctly different lengthsee Fig. 1(a)].
— _— In particular, a larger stability of the ground state with odd
Yr,(r) = Naexpt-a(r —Ry)74 +ieB angular momentum quantum numbers up to -7 is observed.

v : o The results of Fig. 1(agre in perfect agreement with the
XX =Xy +Yi)l2hilN 2, ®) results of Mikhailov and Savostiano¥a(cf. Figs. 1(a)and
andR;=(X;,Y;) is the center of localization of thigh basis 2(a) of Ref. 37,7iwy=3 meV corresponds to the interaction
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FIG. 1. (Color online) Magnetic field depen-
dence of the three electron spectra for different
values of the interdot distanck Energy levels of
120, 320, 12E, and ¥’E symmetry states are
plotted in blue, black, green, and red, respec-
tively. Numbers in the energy levels labels given

11.50
o in (a) and (b) stand for the absolute value of the
8 10 12 14 16 angular momentum i# units. Dotted and dashed
B[] lines in (e—g) show the singlet and triplet energy

levels in a reference two-electron system con-
: fined in the potential given by Ed6). Crosses
R4 T and squares ifg) and(h) mark the energy levels
of spin-polarized states of even and odd parity,
respectively. Numbers 0, 1, 1/2, and 3/2 in Figs.

10.5H!

ATy AN __ i 1(e)-1(h)give the spin quantum number of the
X 2 1232 plotted energy levels. For clarity, the two-electron
R spectrum in(g) and (h) was shifted by +0.1 and

7 +0.25 meV, respectively.
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(9)

parameteh =1.988). At higher field$cf. Fig. 1(b)]the states symmetry differ by their angular momentum and cross. No-
with increasing angular momentum become the ground statiice that in the coupled dots these crossings are replaced b
in intervals of nearly constant length in magnetic field. A anticrossings. Apparent crossings $fO and Y20 energy
similar feature has previously been observed in the spinlevels around 5.5 and 7.5 T visible in Fig. 1@pe in fact
polarized three-electron system in the Wigner crystallizatioranticrossings of width Z.eV. The spectrum conserves the
regime?® same sequence of the ground-state spin and parity symme
Figures 1(c)and 1(d)present the spectrum for coupled tries of the single dot cadef. Figs. 1(a)and 1(b)]. The only
dots with centers separated by a distancé=o26.736 nm. In  difference is that the’’E state(the ground state fod=0
a single circular dot energy levels of the same spin and paritaround 5.67 is replaced by thé’?0 energy level stemming
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from the mixture of states which in circular quantum dotsquantum dot, but we neglect this shift for simplicity. Two
possess -5 and -7 angular momenta. ¥A® energy level electron calculations were performed with the multicenter
is particularly stable as the ground staté. Fig. 1(a)]and configuration interaction method with eight centers put on a
exhibits reentrant behavior. At higher magnetic figdde Fig.  circumference of an ellipse and the ninth one in its center.
1(d)] the ground-state changes almost periodically vBth Position of the ellipse center as well asxt&ndy sizes are
like in the single dot case presented in Fig. 1(b), only theoptimized variationally. In Figs. 1(e)-1(lhe lowest singlet
length of the magnetic field corresponding to subsequengnergy level and the two lowest triplet energy levels are plot-
states of the sequence becomes shortened from abot#d with dotted and dashed lines, respectively. The width of
1.1t0 0.9 T. At high magnetic field the energy differencesthe presented avoided crossings of the spin polarized energy
between the energy levels of different parity becomedevels can be considered as a measure of the potential devia-
smaller with respect to the single dot case presented in Figion from circularity; as discussed in Ref. 45. In the circular
1(b). For bothd=0 andd=26.736 nm the energy difference quantum dot limit of infinited, the avoided crossings are
between the lowest even and odd spin-polarized energy leveplaced by crossings of the magic angular momenta eigen-
els possesses a local maximum nBarl2 T. Ford=0 this  states corresponding to the semiclassical Wigner distribution
difference is around 0.25 me¥f. Fig. 1(b)]while for d  of electrons in the inner coordinates. The larger the deviation
=26.736 nm it is only 0.05 meVcf. Fig. 1(d)]. of the potential from circularity the stronger is the mixing of
Figure 1(e)shows the spectrum fod=40 nm. ForB  the states corresponding to neighbor angular momenta from
<10 T the ground-state-symmetry sequence of fthe the magic sequence, and, consequently, the wider the
=26.736 nm case is reproduced. Near 8.5 T both the spiranticrossindg”® The width of the anticrossing appearing near
polarized and spin-nonpolarized energy levels become de&s T decreases from 0.7 meV fai=40 nm to 0.3 meV for
generate. For larger barrier thickness the ground state b@=60 nm and to 0.2 meV fod=80 nm. A comparison of
comes degenerate with respect to parity around 7, 6 and 4 Figs. 1(e)-1(h)shows that the singlet-triplet oscillations in
for d=50, 60, and 60 nm, respective[gee Figs. 1(f)-1(h)]. the two-electron system have the smallest amplitude for the
The magnetic field leads to an increase of the electron locakmalestd for which the perturbation of the harmonic poten-
ization in each of the dots, enhancing the effective barriejg| js the largest. This finding is consistent with the recent
height and leading finally to vanishing interdot tunnel cou-gy,4\52 of the magnetic field effect on the two-electron an-
pling. This is at the origin of the even-odd degeneracy, simisg,onic quantum dots showing that the amplitude of the
larly as in the single electron problem. singlet-triplet oscillation® disappears with increasing de-

For an interdot separation af=40 nm, the low-energy o . s
spectrum collapses into a narrow energy range for large ma ree of asymmetry and is finally replaced by the singlet

netic fields. FoB>12 T the difference between the lowest riplet degeneracy in the quasi_ one-dimensional Ii58,51]
energy levels becomes smaller than 0.02 rhgaé Fig. 1(e)]. of thg extreme anisotropy. In circular quantum dots the states
But, for a larger interdot distance we notice, e.g., tor ©f higher angular momentum are less strongly localized.
=50 nm([cf. Fig. 1(f)] above 8 T distinct spin-related oscil- Magnetic field increases the glectror! quallzatlon and conse-
lations of the ground-state energy. Up to 10.5 T and betweeﬁu_e”“y the electron-electron interaction in each of the s_tgtes.
13.5 and 17 T the two Spin_po'arized ground states of Oda-h|s |eadS to the ground'state angular momentum transitions.
and even symmetry are degenerate with two nonpolarizeffor two electrons the ground-state of the center-of-mass cor-
states of both spatial symmetries. Between 10.5 and 13.5 Tesponds to zero angular momentum so that the entire angu-
the ground state is nonpolarized. The amplitude of these spilar momentum is carried by the relative electron-electron
oscillations decreases with magnetic field but increases witmotion. The relative-motion states with oddven) parity
interdot distance. For instance, the local maximum of theangular momentum quantum numbers are spin triglEts
energy splitting between the lowest spin-polarized and nonglets). Therefore, the increase of the angular momentum is
polarized energy levels near 12T is 0.03, 0.04, andaccompanied by singlet-triplet oscillatiofisMagnetic field
0.06 meV ford=50, 60,[see Fig. 1(g)hnd 80 nmsee Fig.  evolution is different for strongly anisotropic quantum dots
1(h)], respectively. in which the two electrons occupy the opposite extremities of
B. Two-electron subsystem and a spectator electron the q“"’!m“m dot potential_an(_:i the external magnetic field

in the other dot simply increases the localization of each of the electrons

) . leading eventually to the disappearance of the overlap of
One may expect that in the absence of a tunnel effect, i.eyheir wave functions which results in the singlet-triplet

for largerd and high magnetic _flt_ald,_the system can be re'degenerac"y‘ (vanishing exchange eneigyAs the interdot
duced to a spectator electron sitting in one d(.)t an_d two elecdistanced increases, the potential becomes more circular
trons confined in the other dot. In order to verify th_|s hypoth—WhiCh is the reason why the amplitude of the singlet-triplet
esis, we have performed two-electron calculations for aenergy oscillations becomes larger.

single dot with harmonic oscillator confinement potential The three-electron spectra presented in Fige)-1L(h)
perturbed by the Coulomb potential of the electron sitting Indisplay a striking similarity to the reference two-electron cal-

the other(left) dot, namely, for the external potential we took culations at a high magnetic field. Therefore, at high mag-
m*wﬁ 5 e 1 netic field the system is indeed separable into two sub-

Vs(xy) = > (x—di2)"+ dmee Vs 2P+ 2 (6)  systems confined in different dots. The single electron
0v(X Fry confined in one of the dots does not participate in the mag-

Obviously, in the presence of the Coulomb interdot couplingnetic field evolution of the spectrum and its only role is to
the spectator electron will be shifted off the center of the leftperturb the circular symmetry of the confinement potential
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C. Phase diagram for the ground-state symmetry

Our results for the ground-state symmetry and the extinc-
tion of the interdot tunnel coupling is summarized imd-&8
phase diagram presented in Fig. 2. TH&E ground state
around 6 T disappears far>14 nm. Similarly, the ground
state of’E symmetry around 2 T located between
and®?0 ground states disappears abdvwe70 nm. The bor-
der of the white region of the phase diagram corresponds to
negligible tunnel interdot coupling and was determined as
the line beyond which the energy difference between the
ground state and the lowest excited state of the same spin but
opposite spatial parity is smaller than 0.02 meV.

0 20 40 60 80 100
d [nm]

FIG. 2. (Color online) Magnetic field-interdot distance phase
diagram for the ground-state symmetry. Blue, green, black, and red
regions correspond to a ground state wWitt0, *°E, ¥?0, and®’E
symmetry, respectively. The white region corresponds to a negli- 1he evolution of the ground-state charge density as a
gible interdot tunnel coupling and a near degeneracy of the grounédnction of the external magnetic field is presented in Fig. 3
state with respect to spatial parity symmetry. for d=26.736 nm. The charge density exhibits two maxima

nearx=+28 nm. In each of the subsequent ground states,

localization of electrons in the left and right dots becomes
felt by the two electrons in the other dot. Obviously thestronger. For low magnetic fields the shape of the charge
three-electron system can be spin polarized only if the twodensity is similar to the one of the three-electron ellipsoidal
electron subsystem is spin polarized, which explains the spiquantum dot(cf. Fig. 4 in Ref. 41). Nevertheless, at higher
dependence of the three-electron low-energy spectrum atraagnetic field the three-electron charge density in the ellip-
high field[cf. Fig. 1(e)—1(h)]. The discussed spin oscillationssoidal dot develops two maxima along thexis* related to
in the three-electron system have a somewhat larger amplthe position of one of the electrons in the two classically
tude that is due to an exaggerated anisotropy of the externdegenerate configurations. Figure 3 shows a different behav-
potential in the two-electron reference calculation. The poinior: the electron charge density is removed from ytexis at
charge assumed in potentiéd) deforms the quantum dot which the barrier potential energy is maximal. Note that in
circular potential more strongly than the real charge of thehe state®2E at 5 T [cf. Fig. 3(I)]the central hole in the
spectator electron, which is in fact diffuse and displaced tacharge density is larger than in the ground states for the

D. Charge density evolution

the left (see below)¥rom the center of the left dot. neighboring range of magnetic fieldsf. Figs. 3(e)-3(h)].
€0
oT "o hsT "2g Jo’5T %0 3757 T2g
40 o i 1
— 20
E,
>
-20
-40
€0
40
_ 20
E
>
-20
-40
60 112, 12 4
o 1T 20 13T E 16T Of 5T E (excited)
20 '
E
-3
=20
-40 i 1 -
2 0] () 1 (k) 0]
60 -40 20 0 20 40 60 40 20 O 20 40 -60 40 20 O 20 40 -60 40 20 0 20 40 60
x [nm] x [nm] x [nm] x [nm]

FIG. 3. Contour plots of the charge density tb¥26.736 nm and various magnetic fields. The platsk) correspond to the ground state.
Plot (I) atB=5 T corresponds to an excited state>6E symmetry.
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60 -pari i i i
o p= i =oT E. Broken-parity solutions and interdot correlations

5 For the parity operator eigenstates discussed so far one

cannot tell in which of the dots the two electrons are local-

A = ).
g0 o ' L)‘=”(/ @"\ ized. Let us now consider constructfdrof the stationary
20 T = — states with a classical charge density distribution with two
- (a) (b) (©) electrons confined in a specified left or right dot.
606040 20 0 20 40 60 40 20 0 20 40 60 40 20 0 20 40 60 In single quantum dots the classical degenefacg., the
x[om) X [pm] X [nml existence of more than one classical lowest-energy configu-

ation of electrons, is accompanied by crossings of levels of
ifferent symmetries. Superpositions of the two states corre-

sponding to the crossing levels allows us to exffache of

the classical configurations. Here we use a similar manipu-

This is the reason why this symmetry is replaced by'{f@ lation, constructing a superposition of otid) and even(E)

FIG. 4. Charge density contours for the lowest-energy state o
320 symmetry for various values of the magnetic field ahd
=26.736 nm.

symmetry[cf. Figs. 1(c)and 2]in the ground state. parity wave functions,
Increasing the magnetic field leads to an increased elec- _
tron localization in each of the states. For a given magnetic X=(E+ expli¢)0)/\2. (7)

field the subsequent states in the ground-state symmetry se-
guence correspond to weaker electron localization. In ordeFhe state described by the wave functdris not an eigen-
to keep the interelectron distances approximately constant agate of the parity operator but at the even-odd degeneracy
the magnetic field increases, the system has to change tipoints appearing at the level crossings, or for negligible tun-
symmetry of the ground state. The mechanism for groundrnel coupling, it is still stationary, i.e., it is still the energy
state symmetry transformations is therefore the same as tlegenstate.
one in circular quantum dotsee Sec. Il B). Between the Ford=26.736 nm neaB=8.75 T, level crossings of odd
avoided level crossings, the increased localization in each aind even parity energy levels appéeft. Fig. 1(d)]for both
the states induced by increasing the magnetic field is usuall$=1/2 andS=3/2 states. We use this degeneracy to illus-
not accompanied by any pronounced quantitative change dfate the properties of the broken-parity Hamiltonian eigen-
the shape of the charge density droplet. An exception to thistates. Figure 6 shows the charge accumulated on the right-
rule is observed for thé?0 state. Figure 4 shows the charge hand side of thg=0 axis as a function of the phagein Eq.
density of this state for magnetic field values for which this(7). Notice that in the singlet broken-parity state the right dot
state is no longer the ground state. For 4 T a “bridge” of arcan contain up to 1.64 of the elementary charge. For the
increased density along tlxeaxis appearfcompare Fig. 3(c) triplet the maximum value is 1.89&he maximum value of
and Fig. 4(a)]. Just before the narrow avoided crossing nedhe charge localized in the right dot reacheq e the curve
5.1 T [cf. Fig. 1(d)], a third charge density maximum is for d=80 nm only when the tunnel coupling is completely
formed in the barrier around the oridisee Fig. 4(b)]. In this removed by the application of a high magnetic field and/or
way the system forms a quasi-one-dimensional Wignefor a large barrier thickness.
molecul@®51-54with all charge maxima situated along tke The charge density of the degenerate-energy spin-
axis. Recently, it was provéhthat the spatial parity of the polarized states a8=8.75 T is displayed in Fig. 7(ahe
spin polarized three-electron state must be odd in order teven parity stateand Fig. 7(b) the odd parity state). Figure
allow the state to form such a one-dimensional Wigner mol-7(c) shows the broken-parity state constructed of the two
ecule. After the anticrossing of spin polarized odd parity en-spin-polarized parity eigenstates for the phase in(Egfor
ergy levels near 5.1 T, the lowest state of this symmetrywhich the charge localized at tixe>0 semiplane is maximal
possesses a central charge density ficleFig. 4(c)]. The [cf. Fig. 6]. Figure 7(cshows that in spite of the leakage of
shape of the charge density of this state, when it becomes thibe two-electron charge through the barrier to the region of
ground state, is displayed in Fig. 3(h). negativex, the charge of the third electron is distinctly sepa-
Let us now look at the magnetic-field dependence of theated. Such a separation is not visible in the singlet state
electron-electron correlations. Figure 5 shows the contouplotted in Fig. 7(d). According to Eq7) both odd and even
plots for the pair correlation functiShwhen the position of parity states can be reconstructed from two broken-parity
one of the electrons is fixed at the poi#28 nm,0) For  states with two electrons localized in the right and left dot.
B<6 T the two other electrons are simply shifted to theThis is visible in the pair-correlation function plots presented
right-hand side of the double quantum dot potential. Only forin Figs. 7(e)and 7(f)for the odd-parity spin-polarized state.
B>6 T the two distinct centers of electron localization in the Depending on the choice of the fixed-electron position a con-
right quantum dot appear. Wigner localization around thesdiguration with two electrons in the lefitf. Fig. 7(e)]or right
centers, which coincide with the position of classicaldot [cf. Fig. 7(f)] appears in the pair-correlation function
electron® in the lowest-energy configuratidh, becomes plots. This property of the parity eigenstates makes it diffi-
more pronounced at higher magnetic fields. Fid) Shows cult to visualize the interdot correlations between the elec-
the excited®?E energy level. Besides a larger central chargeron positions: instead of the reaction of the charge localized
density holgsee Fig. 3(I) this state exhibits also a stronger in one dot to the position of an electron in the other, switch-
electron-electron correlation than the ground sfafeFigs.  ing between configurations is observed. However, the effect
5(e) and 5(f)]in this magnetic field range. of interdot correlations can be conveniently visualized using

245314-6
praca 9A 105



THREE ELECTRONS IN LATERALLY COUPLED.. PHYSICAL REVIEW B 71, 245314(2005)

60

1.5T 2elo 5T 3.75T 2

404
20

y [nm]

0
-20

-40

(c)
-60

6.5T L7.5T

y [nm]
[=]

@t ()]
H1T 20 HaT "2E HeT 2015T ¥2E (excited)

y [nm]
[=]
X

) 0! ®) )

x [nm] x [nm] x [nm] x [nm]

FIG. 5. Pair correlation functions fod=26.736 nm and various magnetic fields. One of the electrons is fixed at the position
(=28 nm, 0) indicated by the cro3sAll the plots(a—k)with the exception of the pldt) for the staté’’E atB=5T correspond to the ground
state.

the pair correlation plots for the broken-parity stafes Let us now look at a spin-polarized broken-parity state for
Figs. 7(g)and 7(h)]. For the electron position fixed in the d=40 nm andB=8.4 T, i.e., in the neighborhood of the bor-
center of the left dofsee Fig. 7(h)], the two other electrons der of the phase diagram of Fig. 2, beyond which tunnel
are more firmly localized in the right dot than in the odd coupling is negligible. This specific value of the magnetic
parity stateFig. 7(f)]. In the broken-parity state, a displace- fie!d has peen chosen because it corresponds to a crossing of
ment of the fixed position electron to the position of one ofSPIN polarized even and odd energy levels. Although the tun-
the two charge maxima occupied in the configuration withn€lling of the electrons from the right to the left dot is not
two electrons in the left dot induces a rotation of the elec-isible in the charge density plgFig. 8(a)]the pair correla-
trons in the right dofcf. Fig. 7(g)]. Note that due to this tion plot [Fig. 8(c)] shows that it is not totally absent. Fig.
rotation the electron charge localized in the lower part of thes(b) shows the _Iowes_t triplet s_tate for the refe_rence two-
right dot tunnels through the barrier to the left of the0 gLe;ggg g?{ﬁ:l?\}\'{gne}’;gnfr?steong'cﬁ%lggethseeﬁg[}?taour;g{utge dot
'?vi/(:asén':&r:agtes .Ts?’itﬁllnrc\ft_n%;ﬁg-irbggeulj:rilge;)couplmg be- in the reference calculation is stronger than in the three-
n e electron plot of Fig. 8(a).
Figure 9 shows the results fa=60 nm andB=8.5T

2.0 R deep inside the region of vanishing tunnel coupling on the
phase diagram presented in Fig. 2. The ellipsoidal deforma-
o 18 tion of the charge confined in the left dot is visibly smaller
o. .| than in the preceding plotksee Figs. 7(cand 8(a)]. The
p186 charge density confined in the right quantum féy. 9(a)]
‘fm' is more similar to the reference two-electron calculations
= [Fig. 9(b)] than for d=40 nm. No tunnel coupling is ob-
4, served either in the charge density or in the pair correlation
' plots. After the disappearance of the tunnel effect, the Cou-
lomb coupling of the charge in both dots is still accompanied

-
(=]
=] 1

2 ¢ 4 & by quantum interdot correlations in the electron positions
[compare Figs. 9(cand 9(d)].

FIG. 6. Charge accumulated in the right quantum dot for the For d=80 nm andB=8.5T, the charge density in the
broken-parity Hamiltonian eigenstates as function of the phase ofight quantum dofFig. 10(a)]becomes identical to the two-
the superpositioffEq. (7)] for S=1/2 (dashed line)and S=3/2  electron quantum dot perturbed by an external Coulomb po-
(solid line) at d=26.736 nm and for the spin-polarized statedat tential[Fig. 10(b)]. The same shape is also reproduced by the
=80 nm(dotted line). pair correlation function for an electron placed in the left dot
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FIG. 5. Pair correlation functions fod=26.736 nm and various magnetic fields. One of the electrons is fixed at the position
(=28 nm, 0) indicated by the crogsAll the plots(a—k)with the exception of the pldt) for the staté’’E atB=5T correspond to the ground
state.

the pair correlation plots for the broken-parity stafes Let us now look at a spin-polarized broken-parity state for
Figs. 7(g)and 7(h)]. For the electron position fixed in the d=40 nm andB=8.4 T, i.e., in the neighborhood of the bor-
center of the left dofsee Fig. 7(h)], the two other electrons der of the phase diagram of Fig. 2, beyond which tunnel
are more firmly localized in the right dot than in the odd coupling is negligible. This specific value of the magnetic
parity stateg[Fig. 7(f)]. In the broken-parity state, a displace- field has been chosen because it corresponds to a crossing of
ment of the fixed position electron to the position of one ofSPIN polarized even and odd energy levels. Although the tun-
the two charge maxima occupied in the configuration withn€lling of the electrons from the right to the left dot is not
two electrons in the left dot induces a rotation of the elec-Visible in the charge density plFig. 8(a)]the pair correla-
trons in the right dofcf. Fig. 7(g)]. Note that due to this tion plot [Fig. 8(c)] shows that it is not totally absent. Fig.
rotation the electron charge localized in the lower part of theP(P) shows the lowest triplet state for the reference two-
right dot tunnels through the barrier to the left of the0 electron calculation with potenti&b). The separation of the

: _ _ . _ charges of the two electrons occupying the right quantum dot
axis. Ford—26.736 _ancB—8.75_T the tur_mel coupling be in the reference calculation is stronger than in the three-
tween the dots is still not negligiblesee Fig. 2).

electron plot of Fig. 8(a).

Figure 9 shows the results fa=60 nm andB=8.5T
deep inside the region of vanishing tunnel coupling on the
phase diagram presented in Fig. 2. The ellipsoidal deforma-
tion of the charge confined in the left dot is visibly smaller
than in the preceding plotksee Figs. 7(cand 8(a)]. The
charge density confined in the right quantum peig. 9(a)]
is more similar to the reference two-electron calculations
[Fig. 9(b)] than for d=40 nm. No tunnel coupling is ob-
served either in the charge density or in the pair correlation

e plots. After the disappearance of the tunnel effect, the Cou-
1.0 N T lomb coupling of the charge in both dots is still accompanied

2 4 & by quantum interdot correlations in the electron positions
[compare Figs. 9(cand 9(d)].

FIG. 6. Charge accumulated in the right quantum dot for the For d=80 nm andB=8.5T, the charge density in the
broken-parity Hamiltonian eigenstates as function of the phase ofight quantum dofFig. 10(a)]becomes identical to the two-
the superpositioffEq. (7)] for S=1/2 (dashed line)and S=3/2  electron quantum dot perturbed by an external Coulomb po-
(solid line) at d=26.736 nm and for the spin-polarized statedat tential[Fig. 10(b)]. The same shape is also reproduced by the
=80 nm(dotted line). pair correlation function for an electron placed in the left dot

charge at x>0 [g]
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circular quantum dots has angular momentum# -&nd

which in laterally coupled dots turns out to be overcorre-
lated, i.e., correlated more strongly than the ground state.
After the disappearance of tunnel coupling the spectrum ex-
hibits spin oscillations that can be described using a model of

60 32y 2e triplet
40
20

y [nm]
? )

20F -
-40

B @) (b) ) a two-electron quantum dot perturbed by the Coulomb po-
04050 0 264080 B0ACD0 6 204080 e0dIe0 0 20 43P0 tential of a spectat.or electron localized in the other dot. We
x [nm] x [nm] X [nm] have shown that interdot electron correlations are present

after the extinction of the tunnel coupling. For larger interdot

FIG. 10. Charge densitya) and pair correlation function&)  distances quantum interdot correlation disappears although
plots for the spin-polarized broken-parity state t+80 nm atB  electrostatic interdot coupling is still significant. The effect
=8.5T. Charge density of the two-electron spin polarized state in &f the Coulomb interdot coupling for the singly occupied dot
single dot with a point repulsive center at 80 nm from the center ofis trivial, leading to a shift of the single-electron charge off
the dot plotted in(b). In (c) an electron is fixed at-44,  the dot's center. On the other hand the Coulomb coupling
0 nm—marked by a dot. induces pinning of the magnetic-field induced two-electron
el The phase ciagrafor he spatal and sin pares o971 TOIECIES, e, el extacton fom e e o
the ground state as function of the interdot distance and Xt rof y y
ternal magnetic field was determined. Near degeneracy of thg reference.
ground state with respect to parity was used as a criterion for
the disappearance of the tunnel coupling between the dots
occurring for large interdot distances and/or at high magnetic
fields. The three-electron system in laterally coupled dots This paper was partly supported by the Flemish Science
reproduces the ground-state spin and parity symmetries ¢foundation(FWO-VI), the Belgian Science Policy, the Uni-
circular quantum dots. The exception to this rule is the abversity of Antwerpen(VIS and GOA). BS is supported by
sence of the spin-polarized even parity ground state which ithe EC Marie Curie IEF Project No. MEIF-CT-2004-500157.
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