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Correlation effects in vertical gated quantum dots
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The influence of the electron-electron correlation on the electronic properties of vertical gated quantum dots
with three-dimensional confinement has been studied by the configuration interaction method. We have found
that the correlation is essential in the weakly confined electron systems and becomes negligibly small for the
strongly confined electrons. We have determined the role of the correlation in the single-electron transport-
spectroscopy experiments in the gated quantum dots. The correlation slightly changes the stability diagram, but
considerably affects the magnetic-field dependence of the confined-electron energy spectra.
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The single-electron transport in the vertical gated quantion, allows for a construction of{(" V*2)) Slater determi-
tum dot? (QD) has been describ&8 with the use of the nants with definite. andS. For eachN-electron state we use
Hartree-Fock(HF) method. Although this method does not the basis composed of all Slater determinants with the re-
take into account the electron-electron correlation, goodjuired spin-orbital symmetry. The Gaussians in Hg.lead
agreement has been obtaifddvith the stability diagram to the analytical expressions for the Coulomb matrix ele-
measuretiwithout a magnetic field. However, the computa- ments. In the present paper, we consider the systems of two,
tional results exhibit systematic deviations from the experi- three, and four electrons with=0, . . . ,6.
mental data obtained in the magnetic fitldshich can be The conditions of the single-electron tunneftrage deter-
ascribed to the electron-electron correlation. The configuramined by the chemical potentials, defined ag=Ey
tion interaction(Cl) method was appli€d®to the correlation —Ey-_1, Where Ey is the ground-state energy of the
in QD-confined electron systems in the framework of theN-electron QD. In the vertical QBthe confinement of elec-
two-dimensional parabolic confinement potential model. Therons in the growth(z) direction is much stronger than the
parabolic potential was also used in calculatidfSywhich  lateral confinement in thex-y plane. Therefore, in the
account for the electron-electron correlation in the spin locaN-electron QD, all the confined electrons occupy the ground
density approximation. Matagne and Lebuffomsed the state of the quantized motion in tkelirection, which allows
spin local density approach with the confinement potentialis to describe this state by a singlelependent Gaussigf.
derived from the Poisson equation. The results obtaire®  Eq. (1)]. This leads to a slight overestimation of the ground-
rather far from the experimental ddtaBased on the exist- state energy, which is the same for all the occupied states; so
ing calculation€~ one can hardly estimate the role of the it has no influence on the relative values of the chemical
correlation in the transport-spectroscopy experiméhtsy  potentials of the electrons in the QD.
the present paper, a systematic study of the correlation ef- Before considering the real QB we study the correla-
fects is performed for the vertical QD’s by the CI method.tion effects in the idealized QD described by the model con-
We apply the model parabolic potential as well as the realisfinement potential, which is assumed to be a rectangular po-
tic confinement potential obtained from the self-consistentential well in thez direction and a lateral potentidl .,y
solutiorf of the Poisson-Schdinger problem and discuss the =mgw?(x2+y?)/2, wherem, is the electron effective band
role of the correlation in the single-electron transport via themass andi w is the confinement energy. We take the param-
vertical gated QD’s. eters of the nanostructure, which correspond to the cylindri-

We consider the three-dimensional systenNoélectrons  cal QD of Tarucheet all; e.g., the quantum well has width
confined in the QD of the cylindrical symmetry. First, we 12 nm in thez direction and depth 220 meV. The values of
solve the one-electron eigenproblem using trial wave funcall the other parameters are the same as in Ref. 4. In the
tions of the form gated QD.? the lateral confinement energyw is not

constarft but decreases from-6.7 to ~5.4 meV whenN
increases from 1 to 4. Therefore, in the present calculations
()= E: ckxkyxkxykyex[:[— a(x*+y?)=p2%], (1) ith the model confinement potential, we take dmo
o . . ~ =6 meV. Moreover, we neglect the spin Zeeman effect.
where« and § are the nonlinear and  the linear varia- In order to check the convergence of the present Cl re-
tional parameters. Next, we use one-electron wave functionsults, we have performed test calculations whose results are
(1) to build the Slater determinants, which form the basis setisted in Table | forN=3. In the further calculations, we
for the diagonalization of th&l-electron Hamiltonian by the adopt basi¢1) with k=5. Based on the results of Table |, we
Cl method. TheN-electron eigenstates possess defizite estimate the precision for the energy levels considered to be
components of the total angular momentum and the totahbout 0.1 meV. Therefore, throughout the present paper, we
spin; so they are labeled by the corresponding quantum nunwill call these ClI results “exact.” Table | also shows that the
bers (,S). Basis(1), complemented by the spin wave func- accuracy of the HF methdtlis different for the different

ky+ky<k
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TABLE I. Results of test calculations for the three-electron sys-
tem confined in the lateral parabolic potential with=6 meV and -525
vertical double-barrier potential &=0. k determines the number
of elements in one-electron bagik). In the subsequent columns,
we quote the energiin meV) of the three lowest-energy states with

(1,1/2)

quantum numbersl(,S), given in the first row, calculated by the ClI -530

method with the numbers of Slater determinants given in parenthe- =

ses. The results obtained by the HF method are listed in the last row. g

One-electron ground-state enerfy= —188.04 meV. The top of i 1 i

the potential barrier is taken as the reference enefgy ). -535 N gl 2

k (1,1/2) @,1/2) 3,3/2)

2 —536.82(15) —533.33(11) —529.56(2) . \ i ¢

3 ~538.20(56)  —534.91(49)  —530.66(10) S 5 4 P g

4 —538.34(161) —535.19(145) —531.63(38) B[T]

5 —538.40(377) —535.27(354) —531.66(96) ) )

6 —538.42(785) —535.29(744) —531.71(218) FIG. 1. Energ)E of the three-electron system in the vertical QD
= _536.84 53289 _531.42 with the parabolic lateral confinement =6 meV) as a function

of magnetic fieldB. Solid lines correspond to staté,1/2), dashed
lines to statg2,1/2), and dotted lines to staf®,3/2). For each pair

. _ of the curves the lowefupper)one shows the CIHF) results. The
states. The difference between the exact and HF energy, i.gound-state energy determined by the(8F) method is marked
the correlation energy, is considerably smaller for the spinby circles(crosses).

polarized statg3,3/2) than for the spin-unpolarized states

(1,1/2) and(2,1/2)_. At zero magnetic field, the ground statesgactron system in a wide range of the magnetic field, is
of the systems wittN=2, 3, and 4 electrons are labeled by ¢ 5nequsiy predicted to be the excited state in the HF
(0,0_), (1,1/_2), and(0,1), respectively. For these states, usingathod. QD’s with the weak confinement were fabricated by
basis(1) with k=5, we have constructed 70, 377, and 2174 qhq0ri et all® However, the experimental spectra for these
Slater determinants, respectively, and obtained the followingyqts are affected by random local fluctuations of the confine-
total  ground-state  energies: —367.94 (~-366.84),  ment potential. Therefore, the parabolic model potential
—538.42 (-536.84), and—704.06 (-702.31) [in meV],  geems to be oversimplified for these QD's.

where the HF estimate is given in the parentheses. These rigyre 2(b)shows the results for the intermediate confine-
results show that the absolute errors of the HF total energyyant. With one exception, the increasing magnetic field

energy estimates increase with. However, these errors |eaqs to the increase of the total spin in the ground-state

partly cancel out when calculating the chemical potentialsyansiormations. Since the HF method works better for the
The related differences of the chemical potentials calculatedyin_nojarized states, the critical values of the magnetic field
by the HF and CI methods are the followingiu, {5 these transformations are underestimated. In the four-

=1.10 meV,Au3=0.48 meV, andp,=0.17 meV. electron system, the transition (0;2)2,0) atB=0.5T is
The magnetic-field evolution of the three-electron ENer9%ne only one in which the total spin decreases and the corre-

levels IS displayed in Fig. 1, which shows that the Corre.latlo.nsponding critical magnetic field is overestimated by the HF
energy is nearly constant for each state considered, i.e., in-

dependent of the magnetic field. We note that the HF methoH‘ethOd’ WhiCh pn_afers the spin polarization. We note that the
can fail in predicting the ground state of the system. For thénterrlrled|atg confinement corresponds t.o the QD.Of Tarucha
t al” In this case, the HF results are in qualitative agree-

three-electron system the ground state changes with the ma§] : ol )
netic field as follows: this is statd,1/2)for B<4.6 T, state ment with the exact results. The only exception is the omit-

(2,1/2) for 4.6 T<B<5.7 T, and state(3,3/2) for B tance of thg2,1/2) ground state in the three-electron system
>5.7 T. However, according to the HF approach, statdFig- 2(b)]. However, the cusp corresponding to the (1,1/2)
(1,1/2)would possess the lowest energy Bx 3.8 T, while —(2,1/2) transition is rather smooth. Therefore, this transi-
for the higher magnetic field stat8,3/2) would become the ~tion is hardly visible in the experimental délta.
ground state. As a result, the HF method underestimates the The results for the strong confinement are displayed in
magnetic field, which induces the spin polarization, and doe&ig. 2(c), which shows that the agreement between the HF
not predict stat€2,1/2)to be the ground state. and CI results is better than in the case of the intermediate
The chemical potentials calculated by the CI and HFconfinement. In the strongly confined electron systems, the
methods are displayed in Figs. 2¢&ic) for different con- multiconfiguration basis reduces to one dominating configu-
finement strengths. In the case of weak confinenfEig.  ration; i.e., the correlation is small. The results of Fi¢c)2
2(a)], the HF results become unreliable both quantitativelyndicate that the HF method can be used as a computational
and qualitatively. In particular, the HF method predicts thetool of sufficiently high precision for the QD’s with the
incorrect symmetry of the ground state. For example, thestrong confinement potential, e.g., for the self-assembled
low-spin state(2,0), which is the ground state of the four- quantum dots, in whick w>10 meV*
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FIG. 3. Stability diagram with Coulomb diamonds. The experi-
mental data(Ref. 2) are depicted by the shaded areas. Solid
(dashed)curves show the boundaries of the Coulomb diamonds
calculated by the C{HF) method.
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the confinement. In the high-magnetic field regime, states
(1,1),(3,3/2), and(6,2) of the two-, three-, and four-electron
systems, respectively, correspond to a maximum density
droplet (MDD).'® We note that—for these states—the HF
method yields very accurate results. At the higher magnetic
fields than those considered in the present paper, the MDD
becomes unstable against a formation of a Wigner
molecule!®~°Based on the high accuracy of the HF method
for the high-field spin-polarized states, we expect that the
unrestricted HF method with a properly chosen Basisll
yield reliable results for the Wigner molecules. For the
MDD, the unrestricted and restricted HF methods yield the
same results. In this state, the electron charge density ob-
tained by both the HF methods reproduces the symmetry of
the confinement potential. However, only the unrestricted HF
method accounts for the breakdown of the MDD and the
formation of the Wigner molecufe=*°In this way, the un-
restricted HF method can provide at least some collective
effects in the confined electron system. Therefore, the results
of the restricted HF approach are more suitable as the refer-
l I (<) ence data in the discussion of the correlation effétts.
0 5 10 15 Now, we consider the effect of correlation on the single-
electron transport in the real Q. For this purpose, we
FIG. 2. Chemical potentiala,, of N=2, 3, 4 electrons confined have introduced the_ Cl methoo_l into tge self-consistent pro-
in the vertical QD with the confinement ener@) aiw=2 meV, (b) cedure,_ elaborat(_aq in our previous work Order. to solve
hw=6 meV, and(c) Aw=10 meV, as functions of magnetic field the 1|:2’0|sson-Schcbnger problem for_the Vert|cql gated
B. The results obtained by the @HF) method are displayed by QD'_' We are still using .the HF methajd.to determine the
solid (dashed)lines. Quantum numbersL(S) correspond to the confined charge density in the self-consistency fcfop the
ground state. The magnetic-field-induced ground-state transform&/€ctrostatics of the nanodevice, since the charges outside the
tions calculated by the GHF) method are shown by the arrows up QD perceive the averaged confined electron charge only. The
(down). Cl method is applied to the evaluation of the energy of the
N-electron system confined in the QD, which allows us to
The exact chemical potentials exhibit the same qualitativéncrease the accuracy of the energy calculations. The results
magnetic-field dependence for the confinement potentialare displayed in Fig. 3, which shows the stability diagram
studied[cf. Figs. 2(a)-2(c)]. In all the cases studied in this with the Coulomb diamonds measured by Kouwenhoven
paper, the magnetic-field induces the ground-state transfoet al? and their borders calculated by the Cl and HF meth-
mations in the same order independently of the strength ofds. We note that the both the methods lead to similar results.
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N-electron QD. We see that the CI results are considerably
closer to the experimental data than the HF results and the
HF method underestimates the critical magnetic fields for the
ground-state transformations. This means that the electron-
electron correlation plays an important role in the single-
electron transport in the external magnetic field. Nor 1
there is no correlation; therefore, the discrepancy between
the measured and calculated plét$. Fig. 4, N=1) illus-
trates the precision of the present modeling of the vertical
QD. The difference in the slopes of these plots, which is
visible in Fig. 4, indicates that the confinement potential in
the real nanostructure is slightly stronger than that used in
our modeling.

The conditions of the single-electron transport via the
gated QD(Refs. 1 and 2are determined by the QD chemical
potential? which is calculated as the ground-state energy dif-
ference. If the ground-state energies are determined with a
comparable accuracy, the errors cancel out and the chemical
potential can be evaluated with a sufficient precision. This
explains why the HF approatheads to a good agreement
with experimert for the Coulomb diamondg&f. Fig. 3). The

20 A critical magnetic fields for the ground-state transformations
o 4 a are directly determined by the ground-state energy. The HF
magnetic field [T] method works with the different accuracy for the different
states(cf. Fig. 1). Therefore, the magnetic field, which in-

FIG. 4. Gate voltage corresponding to the current peaks as duces the ground-state transformations, i.e., changes the or-
function of the magnetic field. Dotted, solid, and dashed lines corder of the energy levels associated with the states of the
respond to the experimentéRef. 2), Cl, and HF results, respec- different spin-orbital symmetry, can be inaccurately esti-
tively. mated by the HF method.

In summary, we have shown that the correlation consid-
erably changes the energy of the weakly confined electron
ystems. In the single-electron transport through the vertical
ated QD’s, the correlation slightly modifies the boundaries
of the Coulomb diamonds in the stability diagram, but con-
siderably affects the QD energy spectra in the external mag-
netic field.

gate voltage [V]

The significant differences that occur for the upper bound
aries of the first diamond and the lower boundaries of theé’
second diamond are due to the fact that the largest differen
between the HF and Cl chemical potentials appeard\for
=2. It is just chemical potentiak, that determines these
boundarie$.
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Magnetic-field-induced transformations of Wigner molecule symmetry in quantum dots

B. Szafran, S. Bednarek, and J. Adamowski
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A theoretical study has been performed for the ground-state spatial configuration of Wigner molecules with
N=2,...,20electrons in quantum dots subjected to an external magnetic field. We have shown that—for
N=6—the Wigner molecule formed in the magnetic field above the maximum-density-droplet instability has
a different shape than in the high-field limit. We have found several magnetic-field-induced transitions between
molecular phases with different spatial symmetry.

DOI: 10.1103/PhysRevB.67.045311 PACS numbe(s): 73.21.—b, 73.22.Gk

A quantum dot(QD), a semiconductor nanostructure thatabove the MDD regime. For this purpose, we apply a theo-
confines electrons in three dimensions, can be used asratical approach designed for a description of Wigner mol-
unique physical laboratory for studying properties of electrorecules in QD’s at high magnetic fields. Let us first consider a
systems. In particular, the QD-confined electron systéans single electron in a magnetic field, which is so high that the
tificial atoms)are much more sensitive to the external mag-confinement potential can be neglected in the first approxi-
netic field than the natural atomé. mation. We assume the magnetic field to be perpendicular to

The charge distribution in the artificial atom is a result ofthe QD region -y plane), i.e.,B=(0,0,B), and apply the
an interplay between the electron-electron Coulomb interackandau(nonsymmetricgauge for the vector potential, i.e.,
tion and the one-electron effects. If the Coulomb energy iA= (—BY,0,0). The one-electron Hamiltonian has the form
small compared to the one-electron energy-level separation,
the occupied spin orbitals are only slightly perturbed by the _ w2 a9 2 4 2 2 1
interaction and the electron distribution reproduces the sym- 2m QJF (9_y2+ 'Yoax Y| @)
metry of the external potential. If, however, the one-electron
energy levels are nearly degenerate, the occupied states avgerem is the electron effective masa,=eB/fi =mao./#,
superpositions of a large number of noninteracting electro@nd w.=€B/m is the cyclotron frequency. The ground-state
spin orbitals. In this case, the electrons exhibit a pronounce@nergy of Eq.(1) is equal toEq=% /2, i.e., the energy of
tendency to be localized at different space sites. Thereforthe lowest Landau level, which is infinitely-fold degenerate.
the electron distribution can lose the symmetry of the conDue to this degeneracy the ground-state eigenfunction of Eq.
fining potential and take a form of a set of separate islandd1) can be chosen in many forms. We choose the following
This distribution resembles that of a classical charge-carriepne€:
systeni and is called a Wigner crysfalin the systems with o ) )
translational symmetryor a Wigner molecuf® (in the Wr(x,y) = (al2m)Pexp = (ald)[(x=X)*+(y=Y)?]

QD’s). The Wigner molecules can be formed in large —(ial2)(x=X)(y+Y)} )
structures;® for which the quantum size effects disappear. '

They can also be created in nanostructures by a strong extexhich—for arbitrary R=(X,Y)—fulfills the eigenequation
nal magnetic field®*° of Eq. (1) for eigenvalueE,. We note that the charge distri-

The application of the external magnetic field leads tobution generated by wave functid8) is the Gaussian cen-
relative shifts of the energy levels corresponding to differentered at pointR, which can be treated as the center of the
spin-orbital configuration$® In consequence, the ground- Landau orbit. The wave functions of for(R) are convenient
state configuration changes when the magnetic field infor a construction of a multicenter variational basis, which is
creases. At a certain, sufficiently high, magnetic field all theappropriate for a description of the Wigner molecules. A
electrons have parallel spins and occupy orbitals with sucsimilar approach, but in the symmetric gauge, has been ap-
cessive magnetic quantum numbgtén this state, called a plied to the Wigner crystals.
maximum density droplét (MDD), the electron charge dis- Now, we consider the system of electrons confined in
tribution still possesses the symmetry of the confinement pothe two-dimensional harmonic-oscillator potential and sub-
tential. If, however, the magnetic field increases further, allected to the external magnetic field. This system is described
the occupied energy levels approach the lowest Landau levély the Hamiltonian
and become degenerate. Then, the Coulomb interaction leads N N
to a rapid change of the electron distribution. As a result, the 1, ke’
confinement-potential symmetry of the electron density is H:; hi+ Em“’ori +2 o
broken and the Wigner molecule is formed. The breakdown
of the MDD (Refs. 18 and 19has recently been obsen?&d where h; is Hamiltonian (1) for the ith electron, r;
in the vertical gated QD. =(X,Yi), rij=Iri—rjl, k=1/4ms,, ¢ is the dielectric con-

In the present paper, we consider the shape of the Wignestant,g* is the effective Lande factor, andg is the Bohr
molecule ground state as a function of the magnetic fieldnagneton. The last term in Hamiltonid8) is the Zeeman

1
- ENQ*MBB, (3

i<i erjj
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TABLE I. Ground-state energy dfl-electron Wigner molecule 6.2
for B=20 T. In the secondthird) line the results of Ref. 10 MDD .~
(present paperare listed. Energy is expressed in meV. :

N 1 2 3 4 6 10 20 120 =

Ref. 10 17.25 40.09 66.44 96.46 166.35 339.93 937.97
Present 17.25 40.15 66.45 96.42 166.27 339.69 936.56 0.2 [ MDD

AE [meV]

energy ofN spin-polarized electrons. We apply the material
parameters of GaAs, for which we take on the same values as
in Ref. 10, i.e.m=0.067m,, £¢=12.9,g* =0.54, andh wg
=3 meV.

The N-electron problem has been solved by the unre-
stricted Hartree-Fock method with the one-electron wave
functions expanded in multicenter bag®,

E [meV]

106

N

D(x,y)=2, ¢PR(XY), (4) 4 5 g
i=1 B[T]

}ﬁ?}i;ﬁ)ﬁsﬁe Ezey;mzfrzrt;eklgﬁt?:?r! ?;I;]a{;)e\}ﬁtrs sgrda:r:]:tebraSIS FIG. .1. Ground-state energi_l of_ the six-electron Wig.ner mol-

Ri\ ™ ecule with shell-structure 1-6olid line) and 0-6(dashed line), and
« replaced by a nonlinear variational parametér. In the  the MDD phasedotted line)as a function of magnetic fiel. Inset
wave function(4), the position®; = (X;,Y;) of N centers are  shows the energ¢E of the 0-6 Wigner molecule and MDD deter-
found from the equilibrium position®R{ of the classical mined with respect to the energy of the 1¥igh-field) phase.
counterpart of the considerdd-electron system as follows:
R;=0oR{, where the scaling factar is treated as the second The dotted line shows the results of our additional calcula-
nonlinear variational parameter. It appears &t «, since  tions for the cylindrically symmetric MDD state obtained in
the QD confinement potential enhances the localization ofhe symmetric gauge by the Hartree-Fock method with finite
electrons. If the exchange interaction does not vanish, thdifference approach, free of a possible variational overesti-
interelectron repulsion is weakened and the average electromation of the MDD energy. The inset of Fig. 1 shows that
electron distances are diminished, ie< 1. the energy calculated with respect to that of the 1-5 configu-

In the parabolic confinement, the classical, equallyration exhibits characteristic cusps ne@=5.3 T. For B

charged, particles take on the shell-like equilibrium<5.3 T the MDD state possesses the lowest energy. In the
configurations. This feature is qualitatively reproduced in MDD-stability regime, the energy obtained with the multi-
the Wigner molecules. Therefore we label the spatial coneenter basis for both the 0-6 and 1-5 configurations follow
figurations of the Wigner molecules by the numbers of electhe MDD energy quite well. Figure 2 displays the charge-
trons in the subsequent shells, e.y,-N,-N5 denote the density distribution for the three configurations of the six-
state, in whichN;, N,, andNj electrons occupy the inner, electron system. It is remarkable that the charge density ob-

middle, and outer shell, respectively. tained with the 1-5 multicenter basfsf. Fig. 2(a)] well
The present calculations have been performed Nor approximates the MDD charge-density distribution. The
=1,...,20electrons. The results of test calculations with slight deviations from the circular symmetry are responsible

basis(4) are listed in Table | and compared with those offor the overestimation of the MDD ground-state energy. If
Miller and Koonin® who applied the symmetric gauge and the magnetic field increases above 5.3 T, the electron system
the unrestricted Hartree-Fock method with the basis funcbecomes the Wigner molecule with the 0-6 shell structure
tions of the definite angular momentum. Table | shows thatcf. Fig. 2(b)]. If the magnetic field exceeds 7 T, the Wigner
the present variational estimates are very close to those of
Ref. 10 forN=1,...,3 andbecome better foN=4. We

note that the present approach, in which only one basis func-

s O @ © i
A
tion is associated with each electron, requires a considerably l’

® @ a®
D L
J @

smaller numerical effort than that of Ref. 10, in which a '5'@ W
superposition of a very large number of angular momentum 4T BT = 8T

eigenstates is needed to describe the islandlike charge distri- 20

bution. FIG. 2. Electron density distribution for six electrons(&) ap-

Figure 1 shows the ground-state energy of the six-electrogroximation of the MDD phase foB=4 T calculated with the
system calculated with multicenter ba¢#y generated from  six-center wave function in 1-5 configuration and the Wigner mol-
the scaled classical configurations 0-6 in which the electrongcules with shell structure) 0-6 for B=6 T and(c) 1-5 for B
form a hexagon, and 1-5 with one of the electrons localized=8 T. The darker the shade of grey the larger electron density. The
at the origin and five others forming a pentagon around itbar shows the length scale.
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- (a) (b)

AE [meV]

gTT & 1T

FIG. 4. Electron density distribution for the 16-electron Wigner
i molecule with shell structuréa) 4-12 forB=6 T, (b) 5-11 forB

-0.2 : =6.5T, (c) 6-10 forB=8 T, and(d) 1-5-10 forB=10 T.

5 B [T] 1C

FIG. 3. Energy separatioAE from the ground-state energy of TONS prefer to occupy the outer shells of the Wigner mol-
the 1-5-10 Wigner molecule to those of the 680lid line), 5-11 ecule_. If.the magnetic fleld.mcreases, the electron charge-
(dash-dotted), and 4-1@lashedphases. The corresponding results density islands shrinkcf. Figs. 2 and 4)and the more
for the 16-electron MDD are plotted by the dotted line. Inset dis-Strongly localized electrons can fit into the inner shells of the

plays the ground-state energy of the 1-5-10 Wigner molecule anénolecule.
MDD. In the limit of the infinite magnetic field, the charge dis-

) ) ] ) tribution associated with Landau orbital8) tends towards
molecule changes its shape into the 1-5 configuraidn  that of the point charges. The exchange interaction vanishes
Fig. 2(c)], which is the lowest-energy configuration of the 310ng with the overlap between the different orbitals. There-
system of six classical charge carriers. The present resul}gre, in this limit, the shape of the Wigner molecule becomes
show that the six-electron Wigner molecule created after thgyentical with the shape of its classical counterpat.lower
breakdown of the MDD possesses a different shape and symjyagnetic field the orbitals are spread out and the overlaps
metry than in the high-field limit. This conclusion is consis- petween them do not vanish. In this magnetic-field regime,
tent with the result of a recent study of the six-electron systhe shape of the ground-state electron distribution changes
tem by Maninenet al'* Kainz et al*" considered Wigner qye to the finite extension of Landau orbitd® and the

clusters in parabolic QD’s using a multicenter basis in thesychange interaction between the electrons.
symmetric gauge. Their vatiational wave funcfibdoes not

allow for formation of the MDD phase, but should be quite

equivalent to Eq(4) in the high-field limit. However, the 1643 | §7.12 20
author$® do not discuss the transformations of the Wigner- 1'5'13I° 1_5!12 I :g:: -
molecule symmetry. 5124 6-11 F6-10
For the 16-electron system the results depicted in Fig. 3 4124 b1 10 i5-1ok[16
show that the magnetic field induces several phase transi- _ [ 41 | 510
tions. The Wigner molecule created after the breakdown of 2 ll 3';_111} | :j;{’
the MDD possesses the 4-12 shell structure. With the in- 2 210 | 19 12
creasing magnetic field the spatial configuration changes first =104 29 | 3-8
into 5-11 and next into 6-10 structure. Finally, in the high- £ i8] 2:8 N
field regime, the 1-5-10 shell structure is created. Figure 4 pi '!)J_gl'g :? g
L g -
shows the charge-density distribution for the four phases of E lo7] 1
the 16-electron Wigner molecule. 5 06 | 15
Figure 5 shows the phase diagram calculated for the s 0-5
Wigner molecules withN=2, .. .,20 electrons. We have | | g:;f 4
found that forN=6 the Wigner molecules undergo several [ 00
phase transitions until they reach the semiclassical3infit ; B ET] 0

the point-charge structure. This property is related to the fact
that—forN=6—the classical counterpart of the system con-  FIG. 5. Phase diagram fd-electron Wigner molecules. The
sidered possesses several configurations with nearly the sama@est-energy shell structures are shown as a function of magnetic
energy, but different symmetry. It is remarkable that the tran4ield B. The boundary of the MDD-stability region is depicted on
sitions between different phases of the Wigner moleculahe left part of the plot. ) For N=19 the 1-6-12 phase appears at
show a distinct regularity. At lower magnetic fields, the elec-B=15.8 T.
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The instability of the MDD phase under influence of the In summary, we have presented a systematic study of
high magnetic field has been observed experimerifally  phase transitions in Wigner molecules induced by an external
cylindrical QD’s as cusps on the borders of transportmagnetic field. We have shown that fdiE=6 the symmetry
windows2® which occur when the confined-charge distribu- of the Wigner-molecule phase, that emerges from the MDD
tion undergoes a reorganization from the MDD into thephase, is different than that obtained in the semiclassical,
Wigner molecule. In the present calculations, we have ashigh-field limit. We predict the existence of several phases of
sumed a rotational symmetry of the confinement potentialthe Wigner molecule with different symmetries, that should
for which the ground state of the Wigner molecule is degenbe observed in the magnetic-field regime above the MDD-
erate, since the rotation of the system by an arbitrary anglereakdown transition. In spite of a qualitative nature of the
results in energetically equivalent charge distributionspresent results, we suggest the interpretation of the additional
Therefore we can construct the ground state with the rotacusps on the single-electron-transport plots, obséPee-
tionally invariant charge-density distribution by taking a su-yond the MDD stability regime, in terms of the transforma-
perposition of the rotated Wigner-molecule states. The spations of the Wigner molecules. It is interesting that—contrary
tial configurations depicted in Figs. 2 and 4, without theto the two-dimensional Wigner crystal, which always posses
rotation symmetry, should be understood in terms of the relaa fixed (triangular)symmetry—the Wigner molecule can ap-
tive electron-electron distances. However, these lowerpear in several phases with a different symmetry.
symmetry phases can be realized if the rotational symmetry
is perturbed, for instance, by a small anisotropy of the con- ACKNOWLEDGMENTS
finement potential. In the vertical QD the anisotropy is
inevitable because of the presence of ionized impurities in This paper has been supported by the Polish State Com-
the neighborhood of the QD. This anisotropy should stabilizenittee for Scientific ResearcliKBN) under Grant No.
the Wigner-molecule configuration with a fixed space orien-5P03B 4920. One of u.S.) gratefully acknowledges the
tation. financial support of Foundation for Polish Scier€&P).
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Abstract
A theoretical analysis of formation and symmetry transformations is presented
for Wigner molecules with N = 2, ..., 20 electrons confined in quantum dots

at high magnetic fields. Using the unrestricted Hartree—Fock method with the
multicentre Gaussian basis, we have found that Wigner molecules with N > 6
abruptly change their shape and symmetry with an associated jump in the first
derivative of the ground-state energy, i.e. they undergo phase transitions. In
particular, the phases of the Wigner molecules obtained just after emerging
from the maximum-density droplet (MDD) phase possess a different symmetry
from that formed at a high magnetic field. We show that the properties of the
electron—electron interaction energy demonstrate very well both the breakdown
of the MDD and the quasi-classical character of the Wigner molecule in the high
magnetic field. Possible mechanisms of the MDD decay are discussed.

1. Introduction

A Wigner phase is a strongly correlated state of the electron system, in which the electrons
occupy separate sites forming either a lattice (Wigner crystal) or an island-like structure
(Wigner molecule). This quantum electron system with spatially separated electrons exhibits
quasi-classical properties. In three-dimensional space, for a low electron density, the phase
transition between the electron liquid and crystalline phases was theoretically predicted by
Wigner [1]. The formation of a Wigner crystal was observed [2] in the two-dimensional (2D)
electron system on the surface of liquid helium. A magnetic-field-induced liquid-to-solid
phase transition was reported for a 2D electron plasma at a GaAs/GaAlAs heterojunction [3].
The existence of a pinned Wigner solid was also claimed [4] in Si at zero magnetic field,
below a critical electron density. In the ground state, the 2D Wigner crystal forms a triangular
(hexagonal) lattice.

Electrons confined in quantum dots (QDs) can form Wigner molecules (also called
electronic molecules) [5—-8]. Similar to a Wigner crystal in the absence of a magnetic field,

0953-8984/03/244189+17$30.00  © 2003 IOP Publishing Ltd  Printed in the UK 4189

praca 3A 43


http://stacks.iop.org/JPhysCM/15/4189

4190 B Szafran et al

a Wigner molecule is created at low electron density. Application of an external magnetic
field yields more favourable circumstances for the creation of a Wigner molecule [6-9]. If the
magnetic field increases, the ground state of the electron system confined in the QD undergoes
several transformations [10] connected with changes of the spin—orbital configurations and
the shape of the electron distribution. For a sufficiently high magnetic field the electrons
confined in the QD exhibit complete spin polarization [10]. In this state, called a maximum-
density droplet (MDD) [8, 11, 12], the electron density distribution possesses the symmetry of
the confinement potential. For a cylindrically symmetric confinement potential the electrons
occupy the one-particle states with consecutive magnetic quantum numbers [11, 13]. At
higher magnetic fields, the MDD phase decays. The decay of the MDD can be obtained in
the framework of the mean-field approaches, i.e. the Hartree—Fock (HF) and local spin density
approximation (LSDA) [8]. In the mean-field approaches, the phase that emerges from the
MDD does not possess cylindrical symmetry, i.e. it corresponds to the broken-symmetry state.
At very high magnetic fields the electrons occupy clearly separated islands forming a Wigner
molecule [8, 11, 14]. The Wigner molecule created in the limit of an extremely high magnetic
field possesses the same shape as that of a system of classical point charges [16—18]. The
breakdown of the MDD has been observed in cylindrical gated QDs [19].

In the literature, different mechanisms of MDD breakdown have been reported. Reimann
et al [11] interpreted their local-current spin-density results in terms of MDD decay beginning
at the edge of the droplet. In this process, a ring of electrons separates out from a flat density
maximum [11]. On the other hand, Yang and MacDonald [13] argued that the MDD phase
becomes unstable when a hole appears in the electron density in the centre of the QD. In the
present paper, we propose a solution to this controversy.

In a recent paper [14], we studied the possibility that Wigner molecules are formed in
different space configurations (different phases) [14] and predicted the existence of several
new phases of Wigner molecule. In the present paper, we provide the complete results of the
calculations performed for the different Wigner molecule phases and an extensive discussion of
the underlying physics. The results and discussion presented in this paper considerably extend
those given in the brief announcement [14]. Moreover, we discuss the MDD breakdown
mechanisms and the applicability of conditions for MDD instability. In the calculations,
we have applied the unrestricted HF method with a multicentre basis, which is especially
designed for the description of Wigner molecules at high magnetic fields. The proposed basis
enables us to describe both the breakdown of the MDD and the quasi-classical localization
of the electrons. Using this basis we have studied the behaviour of Wigner molecules with
N = 2,...,20 electrons in the magnetic-field regime between the MDD instability and the
extremely high-field classical limit.

The paper is organized as follows: section 2 contains the theoretical model and section 3
the results of the calculations of the ground-state energy and electron density distribution. In
section 4, we provide a discussion and in section 5 conclusions and a summary.

2. Theory

We consider the N-electron system confined in a 2D QD and subject to an external magnetic
field. We assume that the electrons are spin polarized. The magnetic field B is applied in the z
direction and the electrons are confined in the x—y plane. In the effective-mass approximation,
the Hamiltonian of the system has the form

N N, N .
H = Z h; +anf(ri)+2—< - 58 upB, (1)
il

=i i
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where h; is the Hamiltonian of a single electron in the magnetic field, r; = (x;, y;),
rij = |ri — 7|, k = €*/dmepe and ¢ is the static dielectric constant. The last term in
equation (1) is the Zeeman energy of N spin-polarized electrons, where g* is the effective g
factor and 1 p is the Bohr magneton. The QD confinement potential is assumed to be parabolic,
ie.

Vconf (r) = %mwérzs (2)

where m is the electron band mass and wy is the confining frequency. In the non-symmetric
(Landau) gauge, the one-particle Hamiltonian for an electron in a magnetic field has the form

A L L a1 L,
h = _%(ﬁ+ﬁ_ﬂ)+]hw"ya+§mw"y , 3)
where w, = eB/m is the cyclotron frequency,

The ground-state energy of Hamiltonian (3), i.e. the lowest Landau level, is equal to
Ey = hw/2. Since this energy level is infinitely degenerate, we can choose the ground-state
wavefunction in many forms. We have chosen [ 14] the one-electron ground-state wavefunction
in a form of a displaced Gaussian

1/2
o .

Vr(r) = (E) expl—(a/4)(r — R)* + (ia/2)(x — X)(y + V)], 4)

where R = (X,Y) is an arbitrary vector and « = eB/h. One can easily prove that

wavefunction (4) fulfils the eigenequation for Hamiltonian (3) with eigenvalue E. The electron
density distribution associated with wavefunction (4) has the shape of the Gaussian centred at
point R, which can be treated as the centre of the Landau orbit of the single electron.

In the present paper, wavefunctions (4), centred at different R = R;, are used to form
the multicentre variational basis, which is suitable for a description of Wigner molecules. A
similar approach, but with the one-electron wavefunctions written in the symmetric gauge, was
applied to Wigner crystals [20, 21] and Wigner molecules [22, 23]. We solve the N-electron
eigenproblem by the unrestricted HF method with the one-electron wavefunctions

N
W,(r) =) el m, (1), (5)
i=1

where v numbers the occupied one-electron states (v = 1, ..., N), ¢/ are the linear variational
parameters and ‘}Ri (r) are taken in the form of (4) with the parameter o replaced by the
nonlinear variational parameter «*. In order to determine the positions of N centres R; in
wavefunction (5), we consider the classical counterpart of the Wigner molecule, i.e. the system
of N classical equally charged particles confined in potential (2). The total potential energy
of this classical system is given by

: N : N K
Ui = Z(Vconf(R;)"‘Zm), (6)
i=1 j>i i J
where R are the position vectors of N classical point charges in the configuration, for which
potential energy (6) possesses a local minimum. In the quantum-mechanical calculations,
we apply the following scaling of the centres of Gaussians: R; = o R;, where the scaling
factor o is the second nonlinear variational parameter. For the sake of feasibility of the
present calculations we have applied uniform scaling of the classical configurations instead of
introducing separate variational parameters in the wavefunctions (5). This choice enables us to
reproduce the classical configurations in the limit of the infinite magnetic field, for which the
charge distribution associated with wavefunction (5) tends to that of the classical point charges.
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Table 1. Ground-state energy of the 2D two-electron system in parabolic confinement for different
magnetic fields B. We quote the results E,.,, of the exact calculations, the HF estimates Exr,
and their difference A E. Energy is expressed in meV.

B (T) Eexacr EHF AE

3 13.02 1334 0.32
5 15.77 1590 0.23
10 23.35 2697 043
20 39.88 40.10 0.22
30 56.71 56.84 0.13

In the present paper, basis (5) contains, besides two nonlinear variational parameters «* and
o, N complex linear parameters ¢} for each electron, i.e. N 2 parameters for the N-electron
system. However, taking into account that the linear parameters are not entirely independent,
since in the HF method wavefunctions W, are forced to be mutually orthogonal, we have at
our disposal N(N + 1)/2 independent linear variational parameters.

3. Results

Throughout the present paper, we apply the notation of different space configurations of Wigner
molecules, which stems from the classical charge system [16—18]. Accordingly, we denote by
N1—N,—Nj the configuration of the N-electron Wigner molecule in which the inner, middle and
outer shells are occupied by N, N> and Nj electrons, respectively, whereby N = N+ N, + Ns.
In the case of only two occupied shells, we label the corresponding configuration by N,—N,
and omit zero for the unoccupied outermost shell. This notation corresponds to the shell-like
equilibrium configuration of equally charged classical particles [16—18].

In the calculations, we have used the material parameters of GaAs, i.e. m = 0.067 m,,
e =129, ¢g* =0.54 and hw = 3 meV. Itis known that the HF method works with a relatively
high precision for spin-polarized electron systems [12, 15], which are considered in the present
paper. In a recent paper [14] we performed test calculations in order to check the quality of
basis (5) in the high-magnetic-field regime, i.e. for B = 20 T. We have shown [14] that the
Slater determinant constructed from wavefunctions (5) leads to the results close to the those of
Miiller and Koonin [6], which were obtained in a symmetric gauge with the definite angular
momentum basis. For N > 4 the present upper bounds are better than those of [6]. We note
that in our approach only one element of basis (5) is needed for each electron. Therefore, the
present method requires much less computational effort than the method used in [6], in which
a superposition of a large number of angular momentum eigenstates is necessary in order
to reproduce the localized island-like distribution of electrons. We have also compared our
results with those obtained using the Monte Carlo method [24] and found a good agreement.
Moreover, we have estimated the precision of the present approach by applying it to the two-
electron system with 2D parabolic confinement. In this case, the eigenproblem is separable
into centre-of-mass and relative-coordinate problems, which can be solved exactly [25]. A
comparison of the present HF estimates with the exact results [25] is given in table 1. The
results quoted in table 1 show that the HF inaccuracy does not exceed 0.5 meV, reaches a
maximum for B = 10 T, and then decreases with the magnetic field.

These test calculations verify the reliability of the present computational method in the
magnetic-field regime considered. The high precision of the present calculations in the high-
magnetic-field limit results from the fact that, in this regime, basis (5) allows us to reproduce the
properties of classical Wigner molecules. However, some improvement of the present results
is possible for lower magnetic fields. In order to enable the reader to verify the accuracy of the
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Table 2. Energy (in meV) of the different phases of the Wigner molecules with N = 4,6, 9, and
16 electrons for several values of the external magnetic field. The notation of Wigner-molecule
phases is defined in the text.

B(T) 04 0-6 1-5 1-8 2-7 5-11 1-6-11

6 52.01 99.88  100.06  193.16  193.33  496.28  496.39
10 64.00 11845 117.98 220.62 220.40 545.67 545.60
16 83.23  147.20 146.58 263.36 263.04 620.64 620.36
30 129.88  216.88 21634 367.55 367.29 804.71  804.48

present approach, we list in table 2 the total energies of the 4-, 6-, 9- and 16-electron Wigner
molecules in different phases.

The results for the six-electron system are displayed in figure 1, which shows the
dependence of the ground-state energy on the magnetic field calculated with wavefunction (5)
for the MDD and Wigner molecules in configurations 0-6 and 1-5. For the spin-polarized
MDD phase the results of the restricted HF method cannot be amended by the unrestricted
version of the HF method. For the MDD it is more convenient to use the symmetric gauge, since
the optimal one-electron wavefunctions are the eigenstates of the single-electron operator of
the z component of the angular momentum. In order to perform an additional test of the present
method, we have solved the restricted HF equations by the numerical finite-difference method
for the cylindrically symmetric MDD phase. This numerical approach takes into account the
full cylindrical symmetry of the MDD phase and yields results that are exact within the HF
approach. In figure 1, we compare these accurate results (dotted curve) with those obtained
with the multicentre basis (5) (solid and dashed curves). In the MDD stability regime, the
results of the calculations with the two different multicentre bases (5) slightly overestimate
the exact MDD energy, but run parallel and close to the accurate curve. Moreover, both the
bases, which correspond to the configurations 0-6 and 1-5, work with the same precision in
the MDD regime. In the insets of figure 1, the ground-state electron density distributions are
depicted. All the electron distributions, including that for the MDD phase, have been obtained
with basis (5). We see that the multicentre wavefunction (5) describes the localized island-like
distribution of electrons in the molecular phases and moreover reproduces surprisingly well
the cylindrically symmetric electron distribution in the MDD phase.

For B >~ 5T the curves obtained with the multicentre basis (5) rapidly change their slope.
Then, the charge distribution obtained with basis (5) ceases to mimic the MDD and goes over
into the molecular type of localization. At this field, the energies of the 0—6 and 1-5 Wigner
molecules become lower than the MDD energy. Just after the breakdown of the MDD the 0-6
phase possesses the lowest energy. However, at higher magnetic fields the 1-5 configuration
becomes the lowest-energy phase. The appearance of this phase can be predicted based on the
properties of the classical Wigner molecule, since the 1-5 configuration is the lowest-energy
configuration of the six-electron classical Wigner molecule and the classical limit is reached at
infinite magnetic field. These results indicate that the phase of the six-electron system changes
first from the MDD into the 0—6 molecular phase, and next from the 0-6 into the 1-5 phase.

The determination of the critical magnetic field for MDD breakdown is rather ambiguous.
In our previous paper [14] we used one possible approach, i.e. we found the magnetic field
for which the energy estimate obtained with the multicentre basis becomes lower than the
exact MDD energy. However, this approach overestimates the critical magnetic field, since
the MDD energy is exact (within the HF method), while the upper bounds obtained with the
multicentre basis (5) can be improved in the finite-magnetic-field regime. In the present paper,
we also search for the critical magnetic field using another approach, which exploits only the
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Figure 1. Ground-state energy E of the six-electron MDD (dotted curve) and the Wigner molecule
in phases 06 (solid curve) and 1-5 (broken curve) as functions of magnetic field B. Insets show the
corresponding electron density distributions on the x—y plane (length is measured in nanometres).

results obtained with basis (5). When comparing the energy estimates calculated by the same
method, the possible errors cancel out, which justifies this approach. Moreover, the charge
density distribution obtained with basis (5) mimics that of the MDD phase in the magnetic-
field regime below the critical field for the MDD/Wigner molecule transition and yields the
molecular charge distribution above the critical field.

In the present paper, instead of comparing the ground-state energies, which differ by
a small amount (cf figure 1), we use the characteristic properties of the electron—electron
interaction energy to extract the critical magnetic field. Figure 2 displays the expectation value
of the total electron—electron interaction energy, which is defined as follows:

N N
K
Ein = (9P| —I[P), (N
where @ is the Slater determinant constructed from the orthogonal one-electron eigenfunctions
of the HF operator obtained with basis (5). In figure 2, the magnetic-field regime to the left
of the peak position corresponds to the MDD phase. The increase of the magnetic field
in the MMD regime forces the electron charge distribution to shrink. As a result, in this
magnetic-field regime, the electron—electron interaction increases with increasing magnetic
field. At a certain magnetic field, the electron—electron repulsion becomes so strong that the
MDD breaks down and the charge distribution undergoes reorganization into an island-like
molecular configuration. In the molecular phase, the electron—electron interaction energy
rapidly decreases. Therefore, the critical magnetic field for the breakdown of the MDD phase
can be precisely determined from the position of the sharp peak on the interaction energy versus
magnetic field plot (cf figure 2). The critical magnetic fields determined in such a way are equal

praca 3A 48



Phase transitions in Wigner molecules 4195

48

lassical
g Classical
int

40 ' '
10 20 30

BIT]

Figure 2. Expectation value Ej,; of the total electron—electron interaction energy (equation (7))
for the six-electron system confined in the QD as a function of magnetic field B. Solid (broken)
curve shows the results obtained with wavefunction (5) corresponding to configuration 1-5 (0-6).
The electron—electron interaction energy E¢/47 is shown by the horizontal lines for classical
molecules 1-5 (solid curve) and 0-6 (broken curve). Inset: energy difference AE between the
ground-state energies of the 0—6 and 1-5 Wigner molecule phases. The horizontal broken line
shows this energy difference for the classical Wigner molecule.

to 4.9 and 5.1 T, for the decay of the MDD into the 0—6 and 1-5 molecular phases respectively,
which means that the 0—6 phase of the Wigner molecule is formed just after the breakdown of
the MDD. The 0-6 phase has the lowest energy up to 6.95 T (cf figure 1). Above the MDD
breakdown, the electron—electron interaction energies for both molecular phases decrease with
increasing magnetic field, pass through flat minima and approach the corresponding high-field
limit values from below. The horizontal lines in figure 2 mark the values of the electron—
electron interaction energy for classical Wigner molecules (cf the second term in equation (6)).
In the high-field limit, the quantum-mechanical expectation values asymptotically reach the
corresponding classical values, which is another signature of the classical behaviour of the
system at extremely high magnetic fields. The electron—electron interaction energy turns out
to be a useful quantity for demonstrating both the MDD breakdown and the quasi-classical
properties of the electrons in the high-magnetic-field limit. We have found that the plots of
the interaction energy versus magnetic field B are qualitatively the same for all N.

The inset of figure 2 shows the difference A E of the energies of the 1-5 and 0—6 phases
as a function of the magnetic field. The difference between the energies of the corresponding
classical Wigner molecules is equal to 0.44 meV. We see that AE is maximal for B >~ 15 T.
At higher magnetic fields, AE decreases and approaches its classical limit value. The
convergence to the classical value is slow and the limit is reached at infinite magnetic field.

Figure 3 shows the results for the ground-state configurations of the Wigner molecules with
N =2,...,20 electrons. We mark the different phases of the Wigner molecules by symbols
o;, B; and y;, where «; stands for the O—i phase withi = N, §; denotes the i—(N — i) phase
and y; denotes the phase 1-i—(N —i — 1). The critical magnetic fields for the transformations
between the different phases of the N-electron system confined in the QD can be found from
the positions of the horizontal lines in figure 3. The uppermost horizontal solid lines show
the critical magnetic fields for the formation of the Wigner molecule determined from the
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Figure 3. Phase diagram for Wigner molecules. The MDD decay and formation of different
Wigner molecule phases is shown as a function of external magnetic field B and the number N of
electrons. The uppermost horizontal solid lines correspond to the critical magnetic fields for the
MDD decay, determined according to condition (I), described in the text. The horizontal dotted
lines correspond the critical magnetic fields, determined by condition (II). The different phases of
the Wigner molecules are marked by symbols «;, B; and y;, where «; denotes the 0—i configuration
withi = N, ; the i—(N —i) configuration, and y; the 1-i—(N —i — 1) configuration. The asterisks
denote the phases for which the configuration of the Gaussian centres in basis (5) have been taken as
the scaled classical configuration corresponding to the local minima of the potential energy. Other
phases (without asterisks) have been obtained with the use of the additional Gaussian repulsive
core (equation (8)). (x) For N = 19 the 1-6-12 configuration becomes the ground state of the
electron system at B = 15.8 T.

peak positions of the electron—electron interaction energy (cf figure 2), i.e. according to the
condition which in the following will be referred to as condition (I). The dotted horizontal lines
correspond to the values of the magnetic field for which the ground-state energy calculated with
the multicentre basis becomes lower than the exact HF result for the MDD phase (cf figure 1),
i.e. according to the condition which will be referred to as condition (II). In our previous
paper [14] we used only condition (II) to determine the MDD breakdown. In figure 3 the
following new phases, a9, @11, &12, B1, B2 and B3, appear for N = 10, ..., 16 in the range of
magnetic fields for which condition (I) is fulfilled and condition (II) is not yet fulfilled. These
new phases were absent in the phase diagram of [14].

The difference between the values of the critical magnetic fields determined according
to conditions (I) and (II) decreases with increasing number of electrons. For example, this
difference is equal to 0.7 T for N = 2 and 0.2 T for N = 20. The critical magnetic fields,
determined according to condition (I) seem to be more reliable, since when applying condition
(I) we are using the same method in order to estimate both the MDD and Wigner molecule
energies, i.e. the errors cancel out. The critical fields derived according to condition (II) result
from a comparison of the energy estimates obtained by the two different methods with different
accuracies.

According to figure 3, the Wigner molecule with N > 6 electrons possesses at least two
different ground-state configurations (phases). Each of these phases has the lowest energy
in different magnetic-field regimes. For N = 11,..., 16 electrons the Wigner molecule
phase emerging from the MDD and determined by condition (I) is replaced by another phase
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before condition (II) is fulfilled. The Wigner molecule phases marked by asterisks in figure 3
have been obtained using the positions of the centres of Gaussians (4) taken from the scaled
classical configurations obtained with the parabolic confinement potential. Nevertheless, not
all the configurations corresponding to the quantum ground state can be obtained with purely
parabolic confinement. In particular, the phases which appear just after the MDD breakdown,
and which correspond to the electrons gathering at the outer ring of the molecule, have to be
found by another method. In order to obtain the classical configurations for these phases of
the Wigner molecules, i.e. those not marked by the asterisks in figure 3, we have introduced
into the confining potential a weak Gaussian repulsive core

K
Urep = Vo ) expl—(R /Ro)’], ®)
i=1
which acts on a limited number K of electrons. The repulsive core (8) induces the formation
of those molecules with a larger number of electrons on the outer ring. In the calculations we
have used Ry = 30 nm, V € [2,5] meV and K = N for phases «;, K = N — i for phases i,
and K = N —i — 1 for phases y;.

Figure 4 displays the results for the 10-electron MDD and for the 0-10, 1-9 and 2—8 phases
of the Wigner molecules. The energy is calculated with respect to the energy of the 2—8 phase,
which corresponds to the ground state in the high-magnetic-field limit. Crossing points (a),
(b) and (c) show the values of the critical fields corresponding to the phase transitions. Point
(a) corresponds to the breakdown of the MDD, obtained from condition (I). At this magnetic
field, the charge densities obtained with the multicentre bases go over into the molecular-type
charge densities. Above point (a), the ground-state energies, calculated with wavefunction (5)
for the 0-10, 1-9 and 2-8 configurations, become different. The 0—10 configuration possesses
the lowest energy up to point (b). At point (b), the ground-state energy obtained with the 0—10
and 1-9 multicentre bases crosses with the MDD energy, i.e. at this point condition (II) of the
MDD breakdown is fulfilled. Moreover, the ground-state Wigner molecule changes its shape
and above point (b) becomes the 1-9 configuration. Point (c) corresponds to the transition
between the 1-9 and 2-8 Wigner molecule phases. The evolution of the 10-electron density
distribution depicted in the insets of figure 4 indicates that the MDD decays from the centre
with the formation of a hole in the electron density (cf phase 0—10). This result is compatible
with the MDD breakdown mechanism proposed by Yang and MacDonald [13].

For the Wigner molecules with N < 20, considered in the present paper, we have found
that the largest number of different phases appears for N = 16. According to figure 3, the 16-
electron Wigner molecule can occur in five (four according to condition (II)) different phases,
which are stable in different magnetic-field regimes. The energy of these phases calculated
with respect to the energy of the high-field 1-5-10 phase is displayed in figure 5. The Wigner
molecule occurs in phases 3—13, 4-12 and 5-11 at B = 5.6,5.8 and 6.25 T respectively.
We note that the transition of the 16-electron Wigner molecule into its ultimate phase 1-5—
10, which corresponds to the classical equilibrium configuration, appears at particularly high
magnetic field B = 9.8 T. This is apparently due to the fact that the classical 16-electron
molecule is the one in which the third ring is formed.

Figures 6 and 7 display the electron density distributions for N = 16 and 20 respectively.
We note that in the 1-6—13 configuration of the 20-electron Wigner molecule created just after
the breakdown of the MDD (cf figure 7 for B = 6 T) the maxima of the electron density
located on the outermost shell are much more pronounced (sharper) than those located on the
inner shells. In figures 6 and 7, the contour lines introduced for B = 6 T correspond to the
values of the charge density close to the maxima. We note that the maxima near the centre
of the charge distribution are flatter and possess a larger spatial extension than those at the
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Figure 4. Energy difference A E between the ground-state energies of the different phases for the
10-electron system confined in the QD and the ground-state energy of the high-field 2-8 phase
(broken horizontal line) as a function of magnetic field B. The dotted curve shows the results for
the MDD and the solid curves show the results for the Wigner molecules in phases 0—10 and 1-9.
Insets show the corresponding electron density distributions on the x—y plane (length is measured
in nanometres). Points (a), (b) and (c) are described in the text.

edge. This is a trace of the MDD breakdown mechanism via edge reconstruction [11]. We
will discuss this mechanism in section 4. At higher magnetic fields, all the electron density
maxima are equally sharp (cf figure 7 for B = 8 and 12 T).

4. Discussion

The results of the present calculations show that in the external magnetic field the Wigner
molecules undergo several ground-state transformations. Each of these transformations is
associated with a discontinuity of the first derivative of the ground-state energy (cf figures 1, 4
and 5) and a rapid change of the spatial symmetry of the electron density distribution.
Therefore, we can treat these transformations as phase transitions in a few-electron system.
We have found that a Wigner molecule with six or more electrons can appear in more than
one phase. The transitions between these phases, induced by the magnetic field, exhibit a certain
regularity. In the Wigner molecule phase formed from the MDD, the electrons prefer to occupy
the outer shells. For N =6, ..., 12(N =6, ..., 10 according to condition (I)) the molecular
phases that emerge from the MDD consist of a single ring of electrons, while the quasi-classical,
high-field phases are composed of two rings. However, for N = 13, ..., 17 (N =11, ..., 17
according to condition (II)) the molecules formed from the MDD are composed of two rings,
while the high-field phases consist of three rings. At higher magnetic fields, the larger number
of electrons starts to occupy the inner and middle shells. In the infinite magnetic field limit,
the space configuration of the electron distribution islands in the Wigner molecule exactly
corresponds to the equilibrium configuration of the classical charge carriers. For finite magnetic
fields, the average interelectron distances in the quantum and classical systems are different.
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Figure 5. Energy difference AE between the ground-state energy of the 16-electron system
confined in the QD and the ground-state energy of the high-field 1-5-10 phase (thin horizontal
line) as a function of magnetic field B. The dotted curve shows the results for the MDD, the solid
curves show the results for the Wigner molecule in 3—13 and 6-10 phases, and broken curves—for
4-12 and 5-11 phases.
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Figure 6. Electron density distribution on the x—y plane for N = 16 electrons for several magnetic
fields. Contour lines drawn for B = 6 T correspond to the electron density close to the maximum.
Length is measured in nanometres.

Only in the limit B — oo do the average interelectron distances in the quantum Wigner
molecule become the same as those in the classical charge carrier system. Therefore, the
application of a high magnetic field to the electron system confined in a QD allows us to
observe a continuous transition from quantum mechanical to classical behaviour.
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Figure 7. Electron density distribution on the x—y plane for N = 20 electrons for several magnetic
fields. Contour lines drawn for B = 6 T correspond to the electron density close to the maximum.
Length is measured in nanometres.

In order to get a deeper insight into the physics of Wigner molecules we have considered
the different contributions to the ground-state energy. Figure 8 shows the expectation value of
the Coulomb interaction energy,

(Ve = / d?ry d*r, %WR] ()R, ()2, )

calculated with ground-state wavefunctions (4) centred at R; = (0,0) and R, = (0, R)
for fixed «* = o« = eB/h with B = 6 T. This energy is equal to the Hartree energy
of the interaction between the two electrons with Gaussian wavefunctions (4). We notice
that, contrary to the Coulomb interaction potential /R, the interaction energy (V) is non-
singular at R = 0, i.e. the interaction energy of the two spread charges is finite, in contrast
to the interaction energy of the two point charges. If the distance between the centres of
two Gaussians (4) exceeds ~15 nm, the Hartree energy becomes larger than x/R. At large
distances, (V) goes over into «/R. In figure 8, we have also depicted the exchange integral

(Ex) = f &y &ry 2, ()R, (P Wi (r2) U (7). (10)

For R = 0 the exchange and Hartree energies take on the same values. The exchange energy
rapidly decreases with R and becomes equal to zero, when the overlap between functions ¥ g,
and Vg, vanishes. For R 2 50 nm, the two Gaussian charge distributions interact as the
classical point charges. At higher magnetic fields, this effective interaction becomes classical
for smaller separations between the centres of the Gaussians.

Figure 9 displays the magnetic-field dependence of the nonlinear variational parameters
a* and o in wavefunction (5) with configurations of the centres corresponding to the classical
molecule (phase 1-5). Figure 9(a) shows the variational parameters in the magnetic-field
regime that corresponds to the molecular phase (B > 5.1 T). We note that above the MDD
breakdown both o and o* /o are larger than 1. In the Wigner molecules the distances between
the centres of the electron localization are of the order of 30 nm. For these distances the mutual
electrostatic repulsion between the Gaussian charge distributions is stronger than the repulsion
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Figure 8. Expectation values of the Hartree energy (V) (equation (9)) and exchange energy (Ex)
(equation (10)) as functions of interelectron distance R. The Coulomb interaction potential energy
is shown by the dashed curve.

between point charges. Since o > 1, the quantum Wigner molecule possesses a slightly larger
size than its classical counterpart. Moreover, in the Wigner molecule o* > «, which means
that the Gaussian charge distributions shrink as a result of the interelectron repulsion. In the
magnetic-field regime, in which the transitions between different Wigner molecule phases
appear, the nonlinear variational parameters deviate considerably from their high-field values
(cf figure 9(a) for small B). On the other hand, in the classical high-field limit «* — «,
i.e. the Gaussian electron distribution goes over into a delta-like electron localization, and
o —> 1, i.e. the electron configuration goes over into that of the classical charge system.

Figure 9(b) shows the changes in the variational parameters in the region of the
MDD/Wigner molecule phase transition. The scaling parameter o takes on a much lower
value (~0.6) for the MDD phase and rapidly jumps when the MDD decays and the molecular
phase is formed. The parameter «* exhibits a small jump at the MDD/Wigner molecule phase
transition.

Wavefunction (5) with the two variational parameters «* and o is sufficiently flexible to
reproduce the properties of both the MDD and molecular phases. In the present HF method,
the Slater determinant is constructed from the orthogonalized wavefunctions constructed in
basis (5). Kainz et al [22] applied the symmetric-gauge form of wavefunction (4) with only
one variational parameter o. In [22], the Slater determinant was constructed from the non-
orthogonal one-electron wavefunctions. Because of this non-orthogonality, the approach of
Kainz et al [22] is not equivalent to the HF method at finite magnetic fields. In particular, this
approach [22] fails to reproduce the MDD phase, which is probably caused by the fact that
every element of the Slater determinant is only one function of type (4), but not a superposition
of many such functions as in the present approach. Moreover, the authors [22] found only
minima of the total energy corresponding to the scaling parameter o > 1, while in the present
calculations the MDD phase is obtained if o is much smaller than 1. In the high-field limit,
orbitals (4) become orthogonal due to the lack of the overlap. Then, both the present method
and the approach of Kainz et al [22] work with the same precision.
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Figure 9. Nonlinear variational parameters «* and o versus external magnetic field B for N = 6
obtained with the 1-5 multicentre basis. (a) The results for the Wigner molecule magnetic-field
regime. (b) The results for the magnetic-field regime near the MDD breakdown.

The instability of the MDD and the formation of a broken-symmetry phase of the
Wigner molecule in QDs was considered in [9, 11, 26-28]. The crossover from the Fermi
liquid to the Wigner molecule behaviour was studied both in the absence [26-28] and in the
presence [9, 11, 13, 29] of a magnetic field. In [9, 26-28], only a single phase of the Wigner
molecule was found. Manninen et al [29], using an exact diagonalization scheme, found the
ground state in the 0—6 configuration in the intermediate magnetic-field regime. In the present
paper we have found a similar effect.

Yang and MacDonald [13] obtained a redistribution of the electrons over the orbitals with
different angular momenta. They interpreted their results in terms of the holes, which arise
in the occupation number distribution. The occupation number distribution [13] cannot be
unambiguously translated into the spatial distribution of electrons, considered in the present
paper. According to the results of [13], the decay of the MDD for N = 2,...,14 is
accompanied by one electron missing in the zero angular momentum state, which—in terms
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of the spatial electron distribution—means that the MDD decays from its centre with the
electrons gathering at the outer surface. This interpretation agrees with the results of the
present calculations. The results of the exact diagonalization performed by Manninen et al
[29] for the six-electron system also confirm this mechanism of the MDD breakdown.

However, Reimann et al [11], based on the results of the density functional approach,
suggest another mechanism for MDD breakdown via edge reconstruction [30]. According to
this mechanism, the MDD undergoes a transition into the Wigner molecule gradually, when
the cylindrically symmetric electron distribution of the MDD starts to break down from the
edge. Then, a ring of separately localized electrons emerges from the central flat maximum of
the electron distribution. The present results contradict this mechanism for N < 12. However,
in our opinion, edge reconstruction can indeed occur for a larger number of electrons. In
particular, the plots of the charge distribution presented in figures 6 and 7 indicate that during
the MDD breakdown the maxima corresponding to the electrons localized at the edge of the
electron distribution are sharper than the maxima corresponding to the electrons localized near
the centre of the QD. Therefore, based on the present results, we suggest that the MDD starts
to decay from the central part for N < 12 and from the edge for N > 12. Moreover, it is not
excluded that the MDD with fewer electrons decays via simultaneous central hole formation
and edge reconstruction.

Experimental evidence for the instability of the MDD phase was reported by Ooesterkamp
et al [19]. They measured the single-electron transport through a cylindrical gated QD in
a magnetic field and observed cusps on the plots, which determine the boundaries of the
transport windows [10]. The conditions of the single-electron tunnelling are determined by
the energy balance between the QD chemical potential (i) and electrochemical potentials of
the leads [10]. Since uy = Ey+1 — En, where Ey is the ground-state energy of the N-electron
system confined in the QD, the cusps of the function py(B) are connected with the cusps of
Ex(B),i.e. they result from the magnetic-field-induced phase transitions. The additional cusps
were observed [19] at magnetic fields higher than those corresponding to the MDD breakdown.
Based on the present results, we suggest that these additional transitions [19] can be interpreted
as the phase transitions between the different phases of the Wigner molecules. A direct
experimental observation of the different electron spatial localizations in the different Wigner
molecule phases requires another type of measurement, e.g. wavefunction mapping [31].

5. Conclusions and summary

The present calculations have been performed under the assumption of rotational symmetry
of the QD confinement potential. The mean-field approaches lead inevitably to the broken-
symmetry solutions for the Wigner phase [8]. Cylindrical symmetry can be conserved by
the charge distribution calculated with the exact diagonalization schemes for the Wigner
phase [13, 29]. The present broken-symmetry distributions should be understood in terms
of the relative electron—electron positions. The rotation of the broken-symmetry electron
distribution by an arbitrary angle does not change the energy of the system. Therefore, the
ground state of the Wigner molecule is infinitely degenerate with respect to the orientation.
Taking this degeneracy into account, one can construct the proper ground state of the Wigner
molecule as the superposition of the rotated states associated with the particular space
configuration. Recently, Yannoulenas and Landman [23] have reconstructed the cylindrically
symmetric solutions using a post-treatment of the broken-symmetry HF solutions obtained
with a multicentre basis similar to our basis (5). If, however, the rotational symmetry of the
confining potential is slightly perturbed, the orientational degeneracy of the Wigner molecule
is lifted and the Wigner molecule should be pinned under a fixed angle. The pinning of
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the molecule under a fixed orientation is a necessary condition for direct observation of the
Wigner molecule by wavefunction mapping [31]. In real QDs, the rotational symmetry of the
confinement potential can be perturbed, e.g. because of the presence of impurities near the QD
region or imperfections of the nanostructure.

In summary, we have performed a systematic study of phase transitions in Wigner
molecules induced by an external magnetic field. We have proposed a multicentre Gaussian
basis for the N-electron system and shown that this basis is sufficiently flexible to reproduce the
properties of both the MDD and the molecular phases of the electron system. The results for
the MDD do not depend upon the choice of the configuration of the Gaussian centres. We have
determined the critical magnetic fields for the decay of the MDD into the molecular phase. The
values of these fields are different for the different phases of the Wigner molecule created. We
have found that the breakdown of the MDD is accompanied by a rapid jump of the electron—
electron interaction energy as a function of the magnetic field. In the magnetic-field regime
above the MDD breakdown, several molecular phases possess similar energies, but the phase
with the lowest energy cannot in general be identified with the lowest-energy configuration
of the classical point-charge system. We have shown that with increasing magnetic field the
Wigner molecule, which consists of six or more electrons, undergoes several phase transitions.
In particular, we have found new phases of the Wigner molecule which differ in their spatial
distribution of electrons. For comparison, the Wigner crystal, which is created in the many-
electron 2D system, possesses only one equilibrium phase with fixed (triangular) symmetry.
On the contrary, based on the present results we predict that the few-electron Wigner molecules
created in the QDs subjected to an external magnetic field are formed in several phases with
a different symmetry. We have found that a search for the cusps in the expectation value of
the electron—electron interaction energy as a function of the magnetic field can be proposed
as a new condition, which is suitable when determining the Wigner molecule formation from
the MDD phase. We have also suggested a solution to the controversy related to the possible
mechanism of the MDD/Wigner molecule transition. Based on the results of the present
paper, we suggest that for N < 12 the MDD decays from the centre, while for N > 12 edge
reconstruction appears.
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Abstract. Few-electron systems confined in two-dimensional parabolic quantum dots at high magnetic
fields are studied by the Hartree-Fock (HF) and exact diagonalization methods. A generalized multicenter
Gaussian basis is proposed in the HF method. A comparison of the HF and exact results allows us to discuss
the relevance of the symmetry of the charge density distribution for the accuracy of the HF method. It is
shown that the energy estimates obtained with the broken-symmetry HF wave functions become exact in
the infinite magnetic-field limit. In this limit the charge density of the broken-symmetry solution can be

identified with the classical charge distribution.

PACS. 73.20.Qt Electron solids — 73.21.-b Electron states and collective excitations in multilayers,

quantum wells, mesoscopic, and nanoscale systems

1 Introduction

Properties of electron systems confined in quantum dots
at high magnetic fields have recently become a subject
of intensive theoretical studies [1-22]. These studies were
inspired on the one hand by the experimental investiga-
tion of the addition spectra of vertical quantum dots [23]
at high magnetic fields, which revealed a rich structure
of magnetic-field induced ground-state transformations in
the confined electron system [1-27], and on the other
hand by the search for a new symmetry in few-electron
systems. One of the most interesting problems in this
research is the possibility of the formation of Wigner
molecules [2-10,25-27] in which the confined electrons are
distinctly spatially separated. Previous theoretical studies
are based on the Hartree-Fock (HF) method [2-6,8], den-
sity functional theory (DFT) [9], and the exact diagonal-
ization (ED) scheme [11-21]. The model confinement po-
tential used most commonly [1-19] is the two-dimensional
(2D) cylindrically symmetric harmonic oscillator poten-
tial, which is a reasonable approximation of the confine-
ment potential [28] in vertical quantum dots [23].

The external magnetic field induces ground-state
transformations in the quantum-dot confined N-electron
system, which are associated with changes of the total an-
gular momentum and the total spin. At a certain magnetic
field the electrons become spin polarized and occupy the
lowest-energy Fock-Darwin states with the z component of
the angular momentum changing from 0 to (1 — N)A [10].
This state is called a maximum density droplet (MDD) [1].

# e-mail: bszafran@agh.edu.pl
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In the MDD the z components of the total spin and to-
tal angular momentum take on the absolute values Ni/2
and N(N — 1)i/2, respectively. The MDD ground state
is predicted by the ED method [16-20] as well as by the
HF [2] and DFT [9] methods. Higher magnetic fields lead
to a decay of the MDD, which has been observed experi-
mentally [23]. This decay, considered in the framework of
the ED method [16,17], is related to the increase of the
absolute value of the total angular momentum above the
value corresponding to the MDD phase. The unrestricted
HF [2-5] and DFT [9] methods predict that the ground
state of the electron phase created after the decay of the
MDD possesses a charge density which does not reproduce
the symmetry of the external confinement potential. These
states will be called “broken-symmetry states” through-
out the present paper. In the broken-symmetry solutions
obtained by the HF and DFT methods, the electrons be-
come localized at separate space sites forming a Wigner
molecule [2,5-7,9,10,25-27]. In the ED method the sepa-
ration of the electrons, i.e., the formation of the Wigner
molecules, appears in the relative coordinates of the elec-
tron system and is not necessarily related to the broken
symmetry of the charge density [10]. The HF broken-
symmetry solutions are not eigenfunctions of the angu-
lar momentum operator, but are degenerate with respect
to rotations, i.e., can be oriented at an arbitrary angle.
The rotational symmetry of the HF broken-symmetry so-
lutions for the few-electron system can be restored with a
post-HF treatment [4].

A multicenter basis with the one-electron wave func-
tions was used in the theoretical studies of the 2D Wigner
crystals [29,30]. Recently, a similar multicenter basis was
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used [4-7] to study the quantum-dot confined electron sys-
tems. The papers [4-7] were based on the unrestricted HF
method [4-6] and the variational method [7] with the trial
wave function in the form of a single Slater determinant
with non-orthogonal one-electron wave functions. These
one-electron wave functions [4-7] at high magnetic field
yield point-like charge density distributions. Therefore, in
the limit of infinite magnetic field, the ground-state charge
density, obtained with the multicenter basis, is identical
with the lowest-energy classical configuration of the point
charges [31-33]. The multicenter basis is a very efficient
tool for the investigation of the Wigner molecules, since
it requires only a single basis function per electron, while
the convergence of the HF energy estimates in the one-
center Fock-Darwin basis [2] is very slow in the regime
of the island-like Wigner localization. Using the unre-
stricted HF method with the multicenter basis (MCHF),
Szafran et al. [5] have shown that the external magnetic
field leads to transformations of the ground-state symme-
try of the Wigner molecules. Only in the high magnetic
field limit the ground-state phase (isomer of the Wigner
molecule) [5] corresponds to the configuration of electrons,
which is identical with that of a classical system of point
charges [31-33].

In the present paper, we perform a detailed study of
the physics behind the formation of the Wigner molecules.
In particular, we discuss the accuracy of the broken sym-
metry solutions obtained with the multicenter basis in
comparison with the ED results for two, three, and four
electrons. The physical interest of this study relies on the
investigation of the quantum systems in a classical local-
ization limit.

The paper is organized as follows: in Section 2 we
briefly describe the theoretical methods, in Section 3 we
present our numerical results, in Section 4 — the discus-
sion, and in Section 5 — the conclusions and the sum-
mary. In Appendix, we derive the wave function used in
the present calculations.

2 Theory

We consider the N-electron system confined in the 2D
harmonic oscillator potential with frequency wg, subject
to the external magnetic field B oriented perpendicularly
to the quantum dot plane [5,6]. We apply the MCHF and
ED methods. In the MCHF method we assume that all
the electrons are spin polarized by the magnetic field and
apply the Landau gauge, i.e., A = (= By, 0, 0). We expand
one-electron wave function ¥,,(r) of the uth occupied state
(1 =1,.., N)

N
7, (r) = Y chum, (1), (1)

in the basis

Yr(r) = (a/2m)"? exp{~(a/4) (r ~ R)*

+@8/2)(x = X)(y+Y)} (2)
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where R = (X,Y), r = (z,y), and « and 3 are treated
as nonlinear variational parameters. Function (2) with
a = = m*w,./his the wave function of the lowest Landau
level (w. = eB/m* is the cyclotron frequency and m* is
the electron effective mass). Moreover, function (2) with
a = (2m*/h)\/wi +w2/4 and B = m*w./h = eB/h is
the eigenfunction of the Fock-Darwin ground state for
the lateral parabolic confinement potential centered at
point R with the energy equal to hy/w? + w?/4 (see Ap-
pendix). The probability density associated with wave
function (2) is the Gaussian centered around point R.
The centers of basis functions (2) are taken from scaled
configurations {R/%*%} of classical Wigner molecules, i.e.,
{R} =R, = oR¢%*% where i = 1,..., N [5,6]. The scaling
parameter o is the third nonlinear variational parameter
used in the present approach. In references [5,6] only two
nonlinear variational parameters were used, namely, the
scaling parameter o and a single variational parameter
a = (. In the following, we will show that the introduc-
tion of the two independent variational parameters in the
real and imaginary part of the exponent in equation (2)
leads to a significant improvement of the variational en-
ergy estimates at finite magnetic field. Throughout the
present paper, the basis with the restriction o = 8 will be
referred to as “restricted” and without it as “generalized”.

In the present paper we also apply the ED method. The
ED results, that in principle are the exact solutions of the
few-electron Schrédinger equation, are used as reference
data for the estimation of the accuracy of the MCHF re-
sults. In the ED calculations we use the symmetric gauge
(A = (—By/2,Bz/2,0)), that allows us to exploit the an-
gular symmetry of the one-electron wave functions. The
Schrodinger equation for the N-electron system can be
separated into the center-of-mass and relative-coordinate
equations [15,19,22]. The center-of-mass eigenproblem
possesses an analytical solution. For N = 2 the relative-
motion eigenproblem can be easily solved numerically with
an arbitrary precision using a one-dimensional finite dif-
ference method. This approach [15,19], used in the present
paper for the two-electron system, is not applicable to the
systems with a larger number of electrons. Thus, for N = 3
and N = 4 the ED procedure is constructed according to
the configuration interaction method. First, we solve the
Schrodinger equation for a single noninteracting electron
with a definite angular momentum using a finite-difference
approach on the one-dimensional mesh with 200 points.
Next, we use the single-electron wave functions to con-
struct Slater determinants with the required total angular
momentum and spin. The N-electron Schrodinger equa-
tion is diagonalized in the orthonormal basis of Slater
determinants with proper spin-orbital symmetry and the
Coulomb matrix elements are integrated numerically. The
basis, i.e., the choice of the single-electron wave functions
forming the Slater determinants, is optimized separately
for each state. The calculations have been performed with
a precision better than 0.01 meV. For N = 4 this pre-
cision requires the application of the basis containing up
to 2000 Slater determinants. The ED calculations of the
ground state for N = 3 and 4 are carried out up to 20 T
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Fig. 1. Correction to the energy estimates obtained with the
generalized MCHF method and calculated with respect to the
results of the restricted HF method (o = (3) for the six-electron
system with the configuration 1-5 (solid line) and 0-6 (dashed
line) as a function of magnetic field B. The dotted line shows
the overestimation of the energy obtained for 1-5 configuration
with the value of 3 fixed at eB/h. Inset: the classical 0-6 and
1-5 Wigner molecules.

with the maximal absolute values of the angular momen-
tum equal to 18h and 34h, respectively.

3 Results

Let us first discuss the corrections to the MCHF energy es-
timates obtained with the generalized wave function (2).
We use as an example the system of six confined elec-
trons. Figure 1 shows the difference between the energy
estimates obtained with and without the restriction a = 3
in wave function (2). In the calculations we use the ma-
terial parameters of GaAs, i.e. m* = 0.067m,, dielectric
constant € = 12.9, the effective Lande factor g* = —0.44,
and assume the confinement energy fuwy = 3 meV [2,5].
The centers of basis (1) are taken from scaled classical
configurations 1-5 and 0-6 (the phases (isomers) of the
Wigner molecule are labelled by the numbers of electrons
localized in the subsequent rings starting from the inner-
most one). Phase 0-6 is the one, in which the Wigner
molecule is created [5,10,14] after the MDD breakdown,
and possesses an intermediate character. The 1-5 config-
uration is the lowest-energy configuration of the classi-
cal Wigner molecule [32]. This is also the ground-state
configuration of the six-electron quantum system at high
magnetic field [5]. In the magnetic field below 4.9 T the
mutlicenter bases with both the 0-6 and 1-5 configurations
mimic the cylindrically symmetric MDD charge distribu-
tion [5]. The correction obtained with the generalized ba-
sis possesses a minimum in the magnetic field inducing
the MDD breakdown, for which, the application of the
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Fig. 2. Optimal values of the variational parameters for the 1-5
configuration obtained with the generalized (« # 3, solid lines)
and restricted (o = 3, dashed lines) basis. Parameters « and
[ are expressed in units eB/h, parameter o is dimensionless.

generalized basis does not improve the results. However,
the generalized basis leads to considerable corrections to
the energy both in the MDD stability regime and after
the MDD breakdown. This correction falls down to zero
in the high-magnetic field, in which both the generalized
and restricted bases work with nearly the same precision.
The dotted line in Figure 1 shows the overestimation of
the energy obtained for 1-5 configuration with fixed value
of parameter 3 = eB/h. The value of § has an influence
on the MCHF charge density due to the interference of
the single-electron wave functions (Egs. (1, 2)) centered
at different sites. Figure 1 shows that the variation of 3
has a large influence on the estimates of the energy in the
MDD phase. On the other hand, in the Wigner molecule
phase, the value of 8 can be safely put equal to eB/A.
Figure 2 shows the magnetic-field dependence of the
optimal variational parameters obtained for the 1-5 con-
figuration in expansion (1). The dependence of the scal-
ing parameter o is qualitatively the same for both wave
functions. This parameter grows rapidly when the MDD
breaks down into the molecular phase. Generalized wave
function (2) with o # § leads to the MDD decay at lower
values of the magnetic field, which is visible in the depen-
dence of o on the magnetic field. Parameter o tends to
1 at high magnetic fields for which the quantum Wigner
molecule takes the shape and size of its classical analog,
ie., {R} — {Re*}. Parameters a and 8 decrease with
the increasing magnetic field in the MDD regime (cf. solid
lines for B < 5 T in Fig. 2). Just before the MDD break-
down « and 3 take on very close values, which leads to
the minimal overestimation of the energy obtained with
restriction « = ( at the MDD breakdown (cf. Fig. 1).
We have found that the increase of § above eB/h in the
MDD regime makes the local maxima of the charge den-
sity ‘sink’ in the global flat maximum characteristic [6]
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Fig. 3. Total angular momentum (left scale) of the exact
ground state of the two-electron system (dotted line) and
MCHF expectation values calculated with the generalized (« #
3, solid line) and the restricted (o = (3, dashed line) basis.
The two curves marked by FE;,: show the expectation value of
the electron-electron interaction energy (right scale) calculated
with the MCHF methods.

for the MDD phase. After the MDD breakdown parame-
ter 8 quickly reaches eB/h, i.e. takes on the value which
corresponds to both the lowest Landau and Fock-Darwin
levels (cf. the discussion of wave function (2) in Sect. 2).
At high magnetic fields the wave functions (2) centered
around different sites stop to overlap; in consequence, (3
stops to influence the MCHF charge density and takes the
value e B/h, which ensures the equivalence of the centers of
Landau orbitals. The present finding that the parameter 3
becomes equal to eB/f just after the MDD breakdown, in
spite of the non-vanishing overlap is not evident a priori.
We can give the following physical interpretation to this
finding: the electrons in the Wigner molecule behave as if
they occupied the independent one-particle Fock-Darwin
ground-state orbitals, each of them centered around its
own local minimum of the potential energy. The optimal
value of « rapidly grows after the MDD breakdown (cf.
Fig. 2), which leads to the lowering of the energy obtained
in the Wigner molecule regime (B > 5 T). The increase
of a above eB/h enhances the electron localization and
lowers the electron-electron interaction energy.

Figure 3 illustrates the MDD decay picture obtained
with the ED and MCHF methods for the two-electron
system. The dotted line shows the exact values of the
z-component of the total angular momentum as a func-
tion of the magnetic field. The decay of the MDD is re-
lated with a stepwise decrease of the angular momentum
from —h to —2h, which appears for B = 5.45 T. The
solid (dashed) line shows the expectation value of the to-
tal angular momentum obtained with the MCHF method
using the generalized (restricted) basis. Figure 3 shows
that within the MDD stability regime both the present

praca 4A

The European Physical Journal D

angular momentum [ 7 ]
MCHF inaccurracy [meV]

0.0
0 10 20 30 40

B [T]

Fig. 4. Total angular momentum (left scale) of the exact
ground state of the two-electron system (dotted line) and the
MCHEF expectation value calculated with the generalized basis
(solid line) as functions of magnetic field B. The states with
unpolarized spins are marked by “0”. The dashed line shows
the difference of the ground-state energy obtained with the
MCHF and the exact energy calculated with the ED scheme
(right scale).

MCHF methods reproduce the exact value of the angular
momentum. When the MDD breaks down, the MCHF ex-
pectation value of the angular momentum decreases mono-
tonically with the increasing B, in contrast to the exact
stepwise behavior. The MDD breakdown obtained by the
HF method is also related to a cusp of the interaction
energy [6] (cf. two upper curves in Fig. 3). In the MDD
regime the charge density distribution shrinks with in-
creasing magnetic field, which results in an increase of
the interaction energy. The transformation of the charge
density from the droplet into the molecular phase occurs
when the interaction energy exceeds some threshold value.
The MCHF method with the generalized (restricted) basis
leads to a MDD breakdown for B = 5.55 T (5.85 T).

Figure 4 displays the exact ground-state angular mo-
mentum for the two-electron system (dotted line) and
the expectation value obtained within the HF method
with the generalized multicenter basis (solid line) as well
as the difference between the MCHF and the exact en-
ergy (dashed line). The z-component of the total spin
is equal to h with the exception of the low-magnetic
field ground state and the state which appears just af-
ter the MDD breakdown. These two states possess zero
spin and are labelled by “0” in Figure 4. Notice that the
expectation value of the total angular momentum follows
quite well the exact value. Moreover, the overestimation
of the ground state energy within the MCHF method de-
creases with increasing magnetic field. This decrease is
non-monotonous, and the MCHF inaccuracy exhibit local
minima for magnetic fields for which the exact angular
momentum changes.
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Fig. 5. Energy AFE of the two-electron system calculated with
respect to the lowest Landau level as a function of magnetic
field B. Solid (dashed) curve show the exact (MCHF) results.

The origin of this oscillatory behavior is explained in
Figure 5, which shows the MCHF energy estimate and
the exact ground-state energy of the two-electron system
calculated with respect to the lowest Landau level, i.e.,
AE = FE —2(hw./2+ hg*upB/2). The MCHF estimate is
a smooth function of the magnetic field, while the exact
energy possesses cusps at the magnetic fields at which the
ground-state angular momentum changes abruptly. For
these magnetic fields the MCHF estimate is visibly closer
to the exact energy value, which explains the local minima
in Figure 4.

A similar comparative study between the exact and
the MCHF results has been made for the N = 3 and
N = 4 systems. For the system of three electrons the re-
sults are shown in Figure 6, in which the ground states
with the total spin equal to i/2 are labelled by “1/2”.
The other states are fully spin polarized. Similarly as in
the case of the two-electron system the ground state which
appears after the MDD breakdown is not spin polarized.
The overestimation of the total energy obtained with the
MCHF method exhibits a similar qualitative dependence
on the magnetic field as for two electrons. In contrast to
the two-electron case, the MCHF method with the gener-
alized basis predicts a breakdown of the MDD for a slightly
smaller magnetic field value (B = 4.6 T) than the exact
result (B = 4.8 T). The MCHF with the restricted basis
yields the magnetic field inducing the MDD breakdown
B=5T.

A similar result for the four-electron quantum dot is
shown in Figure 7. The non-fully-polarized ground states
are marked by the quantum numbers of the total-spin z-
component “0” and “1”. Contrary to the two and three
electron systems, the four-electron MDD decays into a
spin-polarized state, but a low-spin state still appears at
the higher magnetic field. The transitional appearance of
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Fig. 6. Same as Figure 4 but now for the three-electron system.
The states with unpolarized spins are marked with “1/2”.
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Fig. 7. Same as Figure 4 but now for the four-electron system.

The states with unpolarized spins are marked with the value
of the z-component of the total spin in A units.

low-spin ground states at magnetic fields above the MDD
breakdown have been reported first in reference [11] for
N = 2 and N = 4. The exact magnetic field inducing
the MDD decay is equal to 4.75 T, while the MCHF with
the generalized basis predicts a value of 4.38 T and the
MCHF with the restricted basis gives 4.8 T. In this case
the MCHF with the restricted basis gives accidentally a
better estimate for the MDD breakdown field. For five
electrons the difference between both the MCHF estimates
of the magnetic field inducing the MDD decay is 0.4 T.
For six and more electrons the differences are not larger
than 0.2 T.

Figures 4, 6, and 7 show that the MCHF inaccuracy
decreases with the increasing magnetic field. In order to
find the high-field asymptotic behavior of the MCHF en-
ergy estimate we have plotted in Figure 8 the MCHF error
as a function of 1/B for N = 2, 3, and 4. The plot for two
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Fig. 8. The MCHF inaccuracy for the ground state for the
two-electron system as a function of 1/B for N = 2 (solid line),
3 (dashed line) and 4 (dash-dotted line). The dotted line shows
the high-magnetic field asymptote for N = 2, parametrized as
4.026/B (meV/T).

electrons covers the magnetic fields up to 160 T, while the
plots for three and four electrons are drawn up to 20 T
only. The results for V = 2 show that at high magnetic
fields the MCHF inaccuracy is proportional to 1/B. At
high magnetic fields the asymptotic behavior of the MCHF
inaccuracy for N = 2 can be very well approximated by
the function f(B) = 4.026/B (meV/T), and consequently
the MCHF approach becomes exact for B — oo. The
plots for N = 3 and 4 in the studied (narrower) range
of the magnetic field exhibit a similar tendency as that
for N = 2, however, they do not become linear functions
of 1/B for B < 20 T. The comparison of the MCHF in-
accuracies for N = 2,3, and 4 indicates that the overesti-
mation of the MCHF ground-state energy in the magnetic
field range above the MDD instability does not substan-
tially increase with N. For B = 20 T the overestimation
of the ground-state energy for N = 2,3, and 4 is equal to
0.21, 0.24, and 0.18 meV, respectively.

4 Discussion

Figures 4, 6 and 7 show that at high magnetic field the
exact ground-state angular momentum take the so-called
magic values [25,34-36] and change by N#. Ounly for these
magic values of the angular momenta the classical sym-
metry can be reproduced in the inner coordinates of the
quantum systems [25]. On the other hand the classical
symmetry is ensured in the MCHF by the present choice
of centers of orbitals (2) and the linear change of the ex-
pectation value of the total angular momentum is related
with the growing localization of wave functions (2).
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The results presented in Figures 4, 6, 7, and 8 show
that the broken-symmetry solutions obtained with the
MCHF method provide exact energy results in the high
magnetic field limit. This fact might be rather surpris-
ing, since one could expect that the exact solutions of
the few-electron Schrédinger equation should also be the
eigenfunctions of the angular momentum operator. The
exact eigenfunctions yield the charge density distribution,
which reproduces the symmetry of the confinement po-
tential. This apparent contradiction can be solved if we
consider the Schrédinger equation for the electron system
confined in the parabolic potential. This equation can be
separated in the center-of-mass and relative coordinates.
In the framework of the ED approach, the separation of
the electrons, i.e., the Wigner localization, appears in the
relative (inner) coordinates of the electron system, while
the charge density in the laboratory frame is affected by
the center-of-mass motion. The center-of-mass eigenprob-
lem of the few-electron system has the same form as the
Fock-Darwin equation for the single electron. In the high
magnetic field limit, this equation possesses a degenerate
ground state (the lowest Landau state), for which the an-
gular momentum is arbitrary. In the case of this degener-
acy a superposition of ground states with different angu-
lar momenta is still the ground state of the Fock-Darwin
equation, even though it leads to solutions with the bro-
ken symmetry of the charge density distribution in the
laboratory frame. In the HF method, the formation of the
Wigner molecule, i.e., the separation of the electrons, is
only possible in the broken-symmetry solutions. The re-
sults of the present paper show that exact energy is ob-
tained with these broken-symmetry solutions in the infi-
nite magnetic field limit.

In the recent paper of Bednarek et al. [37] a study
of the accuracy of the HF method has been presented for
the quasi-one-dimensional (1D) structure. In the quasi-1D
structures the unrestricted HF method becomes exact [37]
in the large quantum dots, in which the Wigner molecules
are formed [37]. In the 1D structures, the HF method con-
serves the two-particle parity symmetry of the exact so-
lution; so, there is no problem with the broken symmetry
of the HF solutions like in the 2D circularly symmetric
quantum dots.

The present results show that the overestimation of the
exact energy obtained in the broken-symmetry MCHF so-
lutions is relatively small at the magnetic fields, for which
the ground state is degenerate. The ground state of the
few-electron system is twofold degenerate at these mag-
netic fields, which induce a stepwise change of the ground-
state angular momentum (cf. Figs. 4, 6, and 7). In this
case, the exact ground state can be a superposition of two
states with different angular momenta and therefore the
charge density can have the symmetry different from that
of the external potential. For these fields the broken sym-
metry of the HF solutions leads to the decrease of the
energy separation between the MCHF and ED results (cf.
Fig. 6), which in turn causes the characteristic oscillations
of the MCHF error as a function of the magnetic field as
shown in Figures 4-7.
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The application of the generalized variational basis re-
sults in a modification of the phase diagram [5], for the
Wigner molecules. This modification is due to the differ-
ent precision of the restricted wave function for different
phases (cf. Fig. 1). The critical magnetic fields for the
MDD breakdown, obtained with the generalized basis, are
shifted toward lower values (cf. Fig. 3) and the range of
the stability of different phases is modified. The improved
results conserve the characteristic features of the original
phase diagram [5] i.e., the intermediate phases correspond
to the configurations, for which a larger number of elec-
trons is gathered on the outer ring of the molecule in com-
parison with the classical, high-magnetic-field, ground-
state configuration.

The present calculations performed for small num-
ber of electrons indicate that in the high magnetic field
the inner charge distribution of electrons can be derived
from classical calculations for particles interacting via a
Coulomb (1/r) interaction. On the other hand in the
Laughlin wave function [38], which seems to be an exact
description of the many-body state at high magnetic field,
the distribution of electrons in the inner coordinates cor-
responds to classical configuration of particles interacting
with a logarithmic potential. It is therefore not excluded
that for larger number of electrons the localization may
be different than for electrostatically interacting classical
particles.

5 Conclusions and summary

We have investigated the quantum-dot confined N-
electron system at high magnetic fields using the HF
method with the generalized multicenter basis and the
exact diagonalization method. We have indicated that the
magnetic-field dependence of the variational parameters
of the generalized basis can be used as one of the signa-
tures of the liquid-solid phase transition, i.e., the break-
down of the MDD into the molecular phase. The occur-
rence of the cusp of the interaction energy as a function
of the magnetic field and the decrease of the MCHF
angular-momentum expectation value below that corre-
sponding to the MDD are the other signatures of the
MDD decay. We have discussed the accuracy of the en-
ergy estimates obtained with the broken-symmetry HF
solutions, which — in contrast to the exact solutions of
the Schrodigner equation — are not eigenfunctions of the
total angular-momentum operator. It turns out that the
angular-momentum eigenvalues in the MDD phase are re-
produced with the high accuracy by the MCHF expecta-
tion values, which at higher magnetic fields linearly de-
crease with increasing B in contrast to the exact stepwise
decrease. The results of the present paper show that the
MCHF inaccuracy decreases with the increasing magnetic
field and that the MCHF method basis yields the exact
ground-state energy in the infinite magnetic-field limit.
We have found the characteristic oscillations of the HF in-
accuracy, which exhibits local minima at those magnetic
fields, for which the exact ground state is degenerate with
respect to the angular momentum. The relation of these
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oscillations with the existence of the exact ground states
with the broken symmetry has been pointed out. The re-
sults of the present paper show that the envelope of the
MCHF inaccuracy oscillations at high magnetic field de-
creases linearly to 0 as a function of 1/B and that in the
strictly infinite magnetic field limit the exact energy is
obtained for the broken-symmetry HF solution with the
classical point-charge distribution.
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Appendix

In order to derive wave function (Eq. (2)) let us first con-
sider the single electron in a homogeneous magnetic field.
In the Landau gauge, i.e., for A(r) = (—By,0,0), the
Hamiltonian has the form

h? 0? 0? d  mrw?
Hy=— — + = ihwey— + ——<9%, (3
0 2m* <89L‘2+8y2)+Z wyaer 2 Y ®)
where w, = eB/m*. The lowest Landau energy level

Ey = hw./2 is infinitely-fold degenerate. The correspond-
ing degenerate eigenstates have the form

Xq(lﬁ y) = Cl €xp [iqx - (B/2>(y - Q/ﬁ)g] ’ (4)

where 8 = m*w./h = eB/h, C; is the normalization con-
stant, and ¢ € (—o0,+00). Due to this degeneracy, an
arbitrary linear combination of wave functions (4) is an
eigenfunction of Hamiltonian (3) to eigenvalue Ey. The
most general form of this linear combination can be writ-
ten as

v = [ I@e

—00

()

Taking
f(q) = exp [g(yo — izo) — ¢°/26] (6)

and performing the integration in equation (5), we obtain

to(x,y) = Coexp{—(B/4) [(z — 20)* + (y — v0)*]
+(i8/2)(x — z0)(y +yo)}.  (7)

where Cy is the normalization constant. Wave function (7)
corresponds to the electron probability density, which is
localized around center ro = (xg,%o). For arbitrary rg
wave function (7) is the eigenfunction of the Hamilto-
nian (3) associated with eigenvalue Ey. Due to the arbi-
trary choice of ro, wave functions (7), localized at different
centers, correspond to the same lowest Landau level.

If, in addition to the magnetic field, the electron is
subject to the external parabolic potential centered at site
R=(X,Y),ie.,

m*w?

=X+ -V,

V‘conf(xa y) = (8)
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we deal with the Fock-Darwin eigenproblem. Then, the
ground-state wave function is centered around R and is
written down in the normalized form as

Vix vy (e, y) = exp{—(a/4) [(z — X)* + (y = Y)?]

+(iB/2)(x — X)(y + Y)}/(a/2m)!/2, (9)

where o = (2m* /h)\/w3 + w2 /4. Therefore, we obtain the
wave function of form (2).
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