Central Processing Unit

* Sequential execution

e Pipelining & Instruction Level Parallelism

o Multiple Issue / Superscalar processors



MIPS (Microprocessor without Interlocked Pipe Stages)

processing of the most common types of instructions:

add values in registers t1 & t2

store the result in reg. tO Register-register

add $tO, $t1, $t2

load data (word) to registeta ransfer

lw $t0, offset($t2)

Branch

conditional branch

if equal
Gump if equal) beq $t0, $tl,label

unconditional Jump/Call
jump

MIPS

MIPS

MIPS

MIPS

coding schemes

31 26 25 21 20 16 15 11 10 65
op° Rs1° Rs2° Rd® Const® Opx®
31 26 25 21 20 16 15
op° Rs1® Rd® Const™®
31 26 25 21 20 16 15
op° Rs1® Opx°/Rs2° Const™®
31 26 25
op° Const®®

O Opcode [ Register [0 Constant




Instruction cycle — MIPS

* IF — instruction fetch (from program memory), increment the Program Counter (PC)
* ID — instruction decode and register readout

« EX — execution (or address calculation)

« MEM — data memory access

* WB — write back — write the result back to the register(s)

PC — Program Counter — (Intel x86: IP/EIP/RIP — Instruction Pointer)
holds the address of the next instruction to fetch!



MIPS — load a 32bit word from address = (offset + t2) to register t0

lw $t0, offset($t2)

L

Shift

Read

{ Address data
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MIPS — simple register operation

add $tO, $t1, $t2 \'
t0=t1+t2 > Add —
4 — /‘ pAad r‘L ;ldll
/shift) |
/\. RegDst T llert2)”|
, \ Branch '
f | MemRead
Instruction [31-26]| | MemtoReg
+ Control ALUO
'| ["Memwrlte
\ / ALUSTC
\ RegWrite
. Instruction [25-21
1. Instruction fetch [ |p¢ L, [Read ¢ Liil B T4
address Read N
2. PC=PC+4 Instruction [20-16] | geaq  data i
Instruction | |] 5 | register 2
e ML | write Read -0 ;v\v141!,4\\'"1“‘1"f' 1
3. Read the ValueS frOm Instruction Instruction [15_11] : reg]stef data 2 'lf late 'd
registers t1 and t2 memer 11T U | write x| L X
™| data Reaqlst -\ e 0
gisters write Data
. A % memory
3. Perform the arithmetic : /\ - |
operation il i [ sign- ALU
extend =
control
4, _Store the result reiudiin .0
In tO
31 2625 t1 2120 t2 1615 10
MIPS Rs1® Rg® Rg"




MIPS — conditional branch (conditional jump) — optimized!

beq $t0, $t1,label

compare registers:
t0 with t1

and jump to label
if equal

1. Instruction fetch

2. PC=PC+4

3. Read the values from
registers tl and t2

4. ALU: compare:
t0 - t2
set the ZERO flag

PC

—

Simultaneously:

5. Second ALU computes
destination address
of the jJump
PC+(const*4)

6. If ZERO flag=1
reprogram the PC
with destination address

b \
M
>Add u
X
ALU
4_"/ >Add result L
x4
/7 \ | RegDst
\ Branch
f \ MemRead
Instruction [31-26]|  [MemioReg
' | MemWrite
. | ALUSrc
'\\ / ReagWrite
Instruction [256—21]
4| Read 1 rReeg?s[.jteH
address _ Read .
Instruction [20-16] Read data 1 -~
Instruction __I ) register 2 C
[31-0] IR Read ALU Add Read
] Write o0 result Address’ ;-
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\-[f* Write e X L
dala Registers N Data
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. /7N
Instruction [15-0] 153 @ 32 [ ALU ‘-.II
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Instruction [5-0] |
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MIPS — unconditional ,,far” jump

1. Instruction fetch
2. PC=PC+4

3. Destination
address of the jump:

- lower 28bits:

26bits taken from
the argument,
then shifted

2 bits left

- higher 4bits directly
copied from the PC

3. PC s set to the
new value

JumpfCall

MIPS

Y
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!
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Shift\
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Sequential execution

« assumes that each instruction completes before the next one begins
 subsequent phases of instruction cycle are performed by different processor blocks
* single-cycle design is possible but inefficient:

» clock cycle must have the same length for every instruction

* the longest possible path in the processor determines the clock cycle.
(clock cycle is equal to the worst-case delay for all instructions)

Program

execution ..
Time
order

(in instructions)

Iw $1, 100($0)

200 400 600 800 1000 1200 1400 1600 1800
I I I I I I ] I I

Data
Bccess

Instruction

fetch AL

Reg Reg

Iw $2, 200($0)

lw $3, 300(30)

|

800 ps

* {Instruction

fetch

Reg

ALU

Data
access

Reg

800 ps

Instruction
fetch

e

800 ps

s



Pipelined execution

Program
execution
order

(in instructions)

Y

Time (in clock cycles)

w $10, 20($1)

sub $11, $2, $3
add $12, $3, $4
w $13, 24($1)

add $14, $5, $6

CC1 CcC2 CC3 CC4 CC5 CCo CC7 CC8 CC9
Instruction | Instruction | . . o0 Data Write-back
fetch decode access
Instruction | Instruction | - . oo Data Write-back
fetch decode access
Instruction | Instruction | =, . oo Data |4 iite-back
fetch decode access
Instruction | Instruction . Data .
fetch decode Execution access Write-back
Instruction | Instruction . Data .
fetch decode Execution access Write-back

« data path is divided into multiple pipeline stages (here: 5)

 each instruction executes over multiple cycles (here: 5)

 consecutive instructions are overlapped in execution

* the last step of executing some instruction is finished in each clock cycle,
so the throughput is 1 instruction per clock (IPC) cycle.




Pipelined execution

Instruction | Register ALU Data | Register | Total
Instruction class fetch read operation | access write time

Load word (1w) 200 ps 100 ps 200 ps 200 ps 100 ps 800 ps
Store word (sw) 200 ps 100 ps 200 ps 200 ps 700 ps
R-format (add, sub, AND, 200 ps 100 ps 200 ps 100 ps | 600 ps
OR, s1t)

Branch (beq) 200 ps 100 ps 200 ps 500 ps

(Ideal) Instruction Set Architecture for pipelining:

Just a set of fast, short and simple instructions...

« instructions have (nearly) equal execution times

« instructions have the same length and a few simple encoding schemes

* memory operands only appear in load and store instructions
(the rest uses registers as arguments)

* separated memory blocks and buses for instructions and data (Harvard arch.)



Pipelined execution

Program
execution . 200 400 600 800 1000 1200 1400 1600 1800
order Time T T T T | 1 T T T
(in instructions)
Iw $1, 100($0)| " |Reg| ALU | D22 | Reg
lw $2, 200(30) - 800 ps [neeion Reg | ALL | D | Reg
" |Instruction
Iw $3, 300($0) 800 ps fetch
800 ps
Program
execution 200 400 600 800 1000 1200 1400
Time f 1 1 t f 1 f .
order
(in instructions)
w $1, 100(30) |"™Stwer”|  |Reg| ALU | D3 |Reg
w $2, 200($0) 200 ps '"sf‘;t”;"m Reg| ALU alg:et:s Reg
w $3, 300($0) 200 ps | "o , Reg| ALU | D2 Reg

200 ps 200 ps 200 ps 200 ps 200 ps

the pipeline cycle (frequency) has to be adjusted to longest phase/operation



Pipelined execution

3 instructions, sequential:
3*800ps=2400ps

3 instructions, pipelined:
1400ps

speed-up: 2400ps/1400ps = 1.7
1000000 instr. sequential:
800ms

1000000 instr. pipelined:

approx. 200ms
approx. speed-up 4x

Program

execution .
Time
order

(in instructions)
Iw $1, 100($0)
Iw $2, 200($0)

Iw $3, 300($0)

Program
execution o
order

(in instructions)

lw $1, 100($0)
Iw $2, 200($0)

w $3, 300($0)

200

400
I

600 800 1000 1200 1400 1600 1800
| | | | I T I

Instruction
fetch

Reg| ALU

Data

Reg
access

200

800

400

Instruction
fetch

Data

R
€0 access

pPs Reg

Instruction
fetch

—

800 ps

800 ps

e —

600 800 1000 1200 1400

Instruction
fetch

Reg

Data

AU access

Reg

200 ps

Instruction
fetch

Data

ALY access

Reg Reg

200 ps

Data
access

Instruction

fetch ALU

Reg Reg

200 ps 200 ps' 200 ps 200 ps 200 ps

» under ideal conditions and with a large number of instructions,
the speed-up from pipelining is approximately equal to the number of pipe stages
e.g. a five-stage pipeline is nearly five times faster



Pipelined execution — problems...

structural hazards - instruction cannot execute in the proper clock cycle
because the CPU does not support the combination of instructions that are set

to execute

Program
execution 200 400 600 800 1000 1200 1400
Time . | 1 f J . l -

order
(in instructions) /\

w $1, 100(30) ||  |Rea| AL o8l |Rreg

w $2,200(50) 200 ps || |Reg| |ALU| | o= |Reg

lw $3, 300(30) 200 ps | "ren| | |Rep| A | D2 Reg

Iw $4,400($0) | |IF || REG| ALU | DA |REG |

Concurrent memory access:
- load data to register
- instruction fetch

Solution: two memories and two buses for data and instructions...
Level 1 Cache - Harvard architecture!



Pipelined execution — problems...
data hazards / data dependencies

Instruction cannot execute in the proper clock cycle because
data that is needed to execute the instruction is not yet available

Program

execution _ 200 400 600 800 1000
order Time T T T T

(in instructions) L
add $s0, $t0, $t1 IF L 1D

\

sub $t2, $s0, $t3 IF |
Pt

/ forwarding (bypassing)

Read after Write — a true dependency:
argument of the 2nd instruction (sub) depends on the result of the previous one (add)

MEM WB |

MEM WB |




data hazards / data dependencies

Time (in clock cycles) -
Value of CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CcC9
register $2: 10 10 10 10 10/-20 —20 -20 =20 -20
Program
execution

order
(in instructions)

sub $2, $1, $3

and $12, $2, $5

or $13, $6, 52

add $14, 52,52

|

Regl

—

sw $15, 100($2)




Time (in clock cycles)

A

CC1 CC?2 CC3 CC4 CC5 CC6 CC7 CcC38 CC9

Value of register $2: 10 10 10 10 10/-20 20 -20 -20 -20
Value of EX/IMEM: X X X =20 X X X X X
Value of MEM/WB: X X X X —20 X X X X
Program
execution
order

(in instructions)

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14,52, 52

sw $15, 100(52) _ -




Pipelined execution — problems...

data hazards

Program
execution . 200 400 600 800 1000
order Time . . T T I
(in instructions) o .
lw $s0,2(t1) IF C 1D >EX MEM WB
sub $t2, $s0, $t3 IF +—= 1D EE}j MEM WB |
Program
execution , 200 400 600 800 1000 1200 1400
order Time : T T T T T
(in instructions) )
w$s0,208t1) | IE —= D] > MEM|—— WB |
l\ N
] 7//\‘\, /Y \ /7/\ /‘\”—\\\ /‘Y \\
Nnop — No operation bubblef bubbler C bubbler \ ( bubbler ( bubble)« stall
\_ﬂk .t 20 LY )

sub $t2, $s0, $t3

IF

-
.

MEM— WB |




Y

Time (in clock cycles)
CC1 CcC2 CC3 CC4 CC5 CCé6 CC7 CcC8 CcC9

Program
execution
order

(in instructions)

w $2, 20($1)

and $4, $2, $5

or $8, $2, $6

add $9, $4, $2

| slt$1, $6, $7




Time (in clock cycles) -
CC1 CC2 CC3 CC4 CC5 CC6 CC7 CcC8 cC9 CC10

Program
execution
order

(in instructions)

Iw $2, 20($1)

and becomes nop

and $4, $2, $5

or $8, $2, $6

. add $9, $4, $2

Lg |




Pipelined execution — problems...

control hazards / branch hazards - CPU needs to make a decision based on the
results of one instruction while others instructions are executing...

E.g. where to fetch the next instruction from?

Time (in clock cycles)

CC1 ccz2 CC3 CC4 CC5 CC6 CC7 cCs8 CC9

Program
execution
order

(in instructions)

jump 40 beq $1, $3, 28 R
not |

taken

unoptimized path,
without additional
ALU/AGU

44 and $12, $2, $5

48 or $13, $6, $2

52 add $14, $2, 2

—

721w s4,5087)  PC(44) + displ(28) = 72




Pipelined execution — problems...

control hazards / branch hazards

Program
execution - 200 400 600 800 1000 1200 1400 -
order © J ' l l l 1 T -
(in instructions)
add $4, $5, 86 ["SUOM Reg| ALU | 00 |Reg
Instruction \ Data
beq $1, $2, 40 0 ps fetch Reg \/ALU access |°9
{"“f’ﬁ“}ﬁ\l..-' (Y AT N (Y
q b Ie bubble]/(bubb r”bubmerf
(O kﬂs—x o/
or $7, $8, $9 Instructmn Data
Y fetch Reg| ALU acfess Reg

Stalling the pipeline uptil the branch is complete is too slow...

beq $1,$2,40 — jumpg’to location (PC+40) if (contents of) register $1 == register $2
Optimization:

destination address of the jump is calculated simultaneously during comparison,

both tasks are performed by the dedicated ALUs. (or AGU — Address Generation Unit).
See slide #6 for details.



Pipelined execution — problems...

Speculative Execution
Simple (static) Branch Prediction

- assume that branch is not taken
- just continue execution down the sequential instruction stream

- if jJump is taken - the instructions that are being fetched and decoded must be
discarded (pipeline flush/refill) — we pay the penalty - extra time!

- execution continues at the target address of the branch...



Pipelined execution — problems...

control hazards / branch hazards

Dynamic Branch Prediction

- try to predict branch result on the basis of recent behaviour (e.g. loops...)

- branch history table contains information (1-2 bits) whether the branch was
recently taken, or not.

- fetching begins in the predicted direction

- pipeline needs to be flushed in the case of misprediction

eager execution
- the both sides of the branch are fetched and processed
- after evaluation of condition one is discarded



Pipelined execution — problems...

. . . for (x=0;x<1000000;x++
2 bit dynamic branch prediction scheme orf((;: (y=X0'y<1OOOOOXO'er+)

AlX][y]=...

Not taken
Predict taken
Taken
Not taken
Not taken

Predict not taken

Taken




Pipelined execution — problems...

control hazards / branch hazards

Out Of Order (OOO) processing/execution

Just an idea*;

1 MOV %ecx,%ebx #an ,independent” instruction
2 CMP $10,%eax #(result of the comparison does not depend on
3JE label #on the result of MOV operation)

4 SHL $2,%eax

1 CMP $10,%eax

2 MOV %ecx,%ebx #now, CPU has ,extra time” to resolve the comparison
3 JE label

4 SHL $2,%eax

*modern processors sometimes perform so-called macro-op fusion:
certain pairs of instructions (e.g. cmp & cond_jmp) are fused and handled
as one operation.



Pipelined execution — problems...

control hazards / branch hazards

if (eax > 5) then eax=ebx else eax=ecx end _if

WP

4
5 else:

CMP
JBE
MOV
JMP
MOV

6 end_if: ...

$5,%eax
else
%ebx,%eax
end _if
%ecXx,%eax

conditional execution:

1
2
3.

CMP
MOV

$5,%eax
%ebx,%eax

CMOVBE %ecx,%eax

#set the flags
#mov does not modify the flags
#conditional move (eax:=ecx) if below or equal

+ reduces the number of conditional jumps in a program

- all instructions have to be fetched

In the case of longer blocks — much more instructions to fetch
(one part just passes through the pipeline — results are ignored)



Conditional Execution

One unusual feature of ARM core is that every instruction has the option of
executing conditionally - depending on the condition codes (flags)

Greatest Common Divisor:

while (a !=b) {
if (@a>b)a=a-Db;
elseb=b-a; }
ARM
gcd:
CMP ro, rl

SUBCS 10, rO, r1
SUBCC r1,r1, rO
BNE gcd

THUMB2 (ARM-Cortex)

gcd:

CMP ro,rl
ITE CS
SUBCS r0,r0,r1
SUBCC r1,r1,r0
BNE gcd

;subtract only when Carry flag is Set
;subtract only when Carry flag is Cleared

‘IF THEN ELSE
‘one instruction in THEN section
‘one in ELSE



,Standard” pipelined execution:

Performance:

« ideal/theoretical: 1 CPI (clocks per instruction)

« practical 1.2 CPI (or 0.83 IPC instructions per clock)

max. clocking frequency is limited by the longest stage (phase, operation) in the pipeline

Superpipelined processor - pipeline is divided into large number of short, simple stages

Feich Decode Execute Writehack

I N N I

Instruchons

¥

Clock Cycles

 execution of the single instruction requires more clock cycles

e still 1 CPI (in practice 1.5 CPI)

* shorter stages — higher maximal clock frequency

* theoretically better performance (e.g. instructions per second)

* longer pipeline = higher penalties e.g. due to branch misprediction...



Superscalar processors — Dynamic Multiple Issue

try to execute more than one instruction at one clock cycle...
« complex pipeline with multiple, concurrent execution units
» sometimes several, independent pipelines

—
> int > wntnba-:ﬂ-ch
- | _
> float-1 > float-2 » fhoat-3 > wrltehad-;} Commlt/
- = .
[ decode & || | i retire
dispatch
fech - : >
- = 3
> task > branch
-
=
_t address » mem-1 » mem-2 > writcnacﬂ:}
—

» fetch and decode a packet of instructions
 check the dependencies between them, sort, change order and dispatch to exec. units
* ensure that results are written to memory in the original order



Pentium 1 - microarchitecture

x86-compatible superscalar:
two ,pipes”: U — all instructions, V — only certain, simple instructions

I 4

Branch [™ TLB'

Target Instruction Cache

Buffer 8K, 2-way

¥258
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3 ; § 2 | Prefetch Buffers

a5 .
Data }é g Instruction Decode Micr &
Bus 5|8 ROM
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Address | Address
Control Generate | Generate
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;' Control |
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|| FP Register File |
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vata L |33 | Integer Register File

i (B b ALU ALU
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L ooy |

Page w1
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sequential

Instructions

Fetch Decode Execute Writeback

Clock Cycles

Fetch Decode Execute Writeback

Instructions

Clock Cycles

superpipelined

Instructions

Fetch Decode Ewecute Writeback

k

Chock Cycles

Feich Decode Execute Writeback

pipelined
|
Instructions L
|
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¥
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iImages from: www.lighterra.com/papers/modernmicroprocessors
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Clock Cycles
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most modern
general-purpose
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Multiple-Issue processors

Static Multiple Issue

« compiler assists with matching and packaging instructions
into the groups (issue packets) to be executed in parallel

« compiler handles the hazards (e.g. data dependencies)
« compiler can change the order of instructions (can even change the original code!)

« simpler logic design:
CPU does not contain complex out of order execution
and dependency-checking logic circuits

Static Multiple Issue approach is not popular today...

VLIW processors (Very Long Instruction Word)

EPIC (Explicitly Parallel Instruction Computing) - HP & Intel
Intel Itanium

some Digital Signal Processors (DSP), GPU shaders...



Static Multiple Issue - example

Issue width = 2, two pipelines

Instruction type Pipe stages

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

ALU or branch instruction IF ID EX MEM WB
Load or store instruction IF ID EX MEM WB




Static Multiple Issue — example

Add a constant value (32 bit, stored in reg. $s2) to each element of the table.
Pointer (address) of the last element is in reg. $s1.

for_loop:

1 lw $t0, 0($s1) ;load element

2 addu  $t0,$t0,$s2 ;modify: $t0 += $s2

3 Sw $t0,0($s1) ;write-back

4 addi $s1,$s1,-4 :decrement pointer

5 bne $s1,%zero,for_loop ;repeat until we process the first element (0)

* Read after Write (RaW) data dependencies (blue, red...)

» data dependency can be loop-carried...



Original code:

for_loop:

1 Iw  $t0, 0($s1) ;load element

2 addu $t0,$t0,$s2 ;modify: $t0 += $s2

3 sw $t0,0($s1) ;write-back

4 addi $s1,$s1,-4 ;decrement pointer

5 bne $s1,$zero,for loop ;repeat until we process the first element (0)

CPU can perform two independent operations in parallel: data transfer & ALU operation

ALU LOAD/STORE
forloop:
1 nop lw $t0, 0($sl) nop - no operation
2 addi $s1,%$s1,-4 nop
3 addu $t0,$t0,$s2 nop

Very poor result: only one pair of instructions was executed in parallel way...
CPI (clocks per instruction) = 4/5 = 0.8 (the best theoretical result = 0.5)

IPC (instructions per clock) = 5/4 = 1.25 (the best theoretical result = 2.0)



for_loop:

1 lw  $t0, 0($s1) ;load element

2 addu $t0,$t0,$s2 ;modify: $t0 += $s2

3 sw $t0,0($s1) ;write-back

4 addi $s1,$s1,-4 ;:decrement pointer

5 bne $sl1,%zero,for _loop ;repeat until we process the first element (0)

Loop Unrolling! (mod 4)

forloop:

1 addi $s1,%$s1,-16

2 lw $10,0($s1)
3 lw $t1,4($s1)
4 addu $(0,$10,$s2 lw $t2,8($s1)
5 addu $t1,$t1,$s2 lw $t3,12($s1)
6 addu $t2,$t2,$s2 SwW $10,0($s1)
7 addu $t3,$t3,$s2 SwW $t1,4($s1)
8 S\ $t2,8($s1)
9 bne $sl1,%zero,forloop sw $t3,12($s1)

10 instructions from 14 were processed in parallel (9 clocks)
CPI=9/14=0.64 ; IPC = 14/9 = 1.56
additionally: 4x less number of iterations (conditional branches)



Dynamic Multiple Issue — Superscalar processors

* CPU chooses which (and how many) instructions to execute in parallel,
In a given clock cycle

 CPU can dynamically reorder instructions to reduce the stalls
« CPU have to analyze dependencies in a group of instructions to avoid hazards!
« A good compiler can optimize the code:
e.g. try to schedule instructions to move the dependencies apart
additionally — compiler has access to whole code... and a lot of time...

but can not predict everything: exceptions, i/o handling, cache misses

Finally: all the results must be written back to memory in the order
of the original program!



Dynamic Multiple Issue — Superscalar processors
* OQut Of Order execution (O00)
* VERY complex logic design, sometimes high power consumption...

*Register renaming

* remove the Write after Read and Write after Write dependencies...
* Branch prediction
« Conditional execution

AMA Just to achieve a better instruction level parallelism and to avoid stalls
in the pipelines...

Again: all the results must be written back to memory in the order
of the original program!



Register renaming: Lx — logical registers Fx — large set of physical registers

e.g. L1=F1, L2=F2, L3=F3, F4...F32 — unused registers

mul L1,L2,L3 ;L1=L2*L3 L1=>F4 mul F4,F2,F3
sub L3,L2,L1 ;L3=L2-L1 L3=>F5 sub F5,F2,F4
div L1023 ;L1=L2/L3 L1=>F6 div F6,FX,F5
add L2,L1,L3 ;L2=L1+L3 L2=>F7 add F7,F6,F5

Data dependencies (only some are shown)
RaW Read after write — true/flow dependency

WaR Write after Read — anti dependency _ _
removed by register renaming



Instruction cache
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f
| | | |

Integer and floating-point operation queue

Floating
Integer Integer point
ALU ALU Adder/
SSE

Integer Floating

ALU.
Multiplier

Modern x86 compatible CPUs

translate legacy CISC
instructions into the sequences | loadstore queue
of the simple RISC-like
microoperations Data
Commit
unit
RISC-operation Reorder
1 queue Reorder buffer M i
. Decode uffer Scheduli
InsFt;_chﬁon tra?lrs'?ate allro:?Eitc;r:+ - - +dli-ls;]F:ta13:nr? »| Execution Daéaorcn?:i?e /
renaming

Numberof — —
clock cycles

2 1 2



Pipeline Out-of-Order/ Cores/
Microprocessor Clock Rate Stages Wldth Speculation Chip Power

Intel 486 1989 25 MHz 1 1 w
Intel Pentium 1993 66 MHz 5 2 No 1 10 w
Intel Pentium Pro 1997 200 MHz 10 3 Yes 1 29 w
Intel Pentium 4 Willamette 2001 2000 MHz 22 3 Yes 1 75 W
Intel Pentium 4 Prescott 2004 3600 MHz 31 3 Yes 1 103 W
Intel Core 2006 2930 MHz 14 4 Yes 2 75 w
Intel Core i5 Nehalem 2010 3300 MHz 14 4 Yes 1 87 w
Intel Core i5 lvy Bridge 2012 3400 MHz 14 4 Yes 8 77 w

Market Personal Mobile Device Server, Cloud

Thermal design power 2 Watts 130 Watts

Clock rate 1 GHz 2.66 GHz

Cores/Chip 1 4

Floating point? No Yes

Multiple Issue? Dynamic Dynamic

Peak instructions/clock cycle 2 4

Pipeline Stages 14 14

Pipeline schedule

Static In-order

Dynamic Out-of-order with Speculation

Branch prediction 2-level 2-level

1st level caches / core 32KiBI,32KIED 32KiBI, 32KiBD
2nd level cache / core 128 - 1024 KiB 256 KiB

3rd level cache (shared) - 2-8 MiB




Table II: Platform Summary.

32/64b x86 ISA ARMvT ISA MIPS

Sandybridge Bobcat Atom Cortex-Al5 Cortex-A9 Cortex-AR Loongson
Processor C2700 Zacate E-240 N450 MPCore OMAP4430 OMAP3530 STLS2F0I1
Cores 4 2 1 2 2 I 1
Frequency3.4 GHz 1.5 GHz 1.66 GHz 1.66 GHz I GHz 0.6 GHz 0.8 GHz
Width d-way 2-way 2-way J-way 2-way 2-way d-way
Issue Oo0) O In Order OO OoO In Order Dol
LI1D 32 KB 32KB 24 KB 32 KB 32 KB 16 KB 64 KB
L1I 32 KB 32KB 32 KB 32 KB 32 KB 16 KB 64 KB
L2 256 KB/core 512 KB/core 512 KB 1 MB I MB/chip 256 KB 512 KB
L3 8 MB/chip —_— —_ —_— —_ —_— —_
Memory 16 GB 4GB 1 GB 2GB 1 GB 256 MB 1 GB
SIMD AVX SSE SSE NEON NEON NEON —_
Area 216 mm” —_— 66 mm? —_— 70 mm? 60 mm- _—
Node 32 nm 40 nm 45 nm 32 nm 45 nm 65 nm 90 nm
Platform Desktop Dev Board Dev Board  Dev Board Pandaboard Beagleboard Netbook
Products Desktop Netbook Netbook Galaxy S-4  Galaxy S-IIl  1Phone 4, 3G5  Lemote Yeelong

Lava Xolo Galaxy S-I1  Motorola Droid




Microarchitecture: ARM A8 core (portable devices)

FO F1 F2 DO D1 D2 D3 D4 EO E1 E2 E3 E4 ES5
Branch mispredict
penalty=13 cycles Instruction execute and load/store
I
Instructi > [ : BP
"'Sf;’gh'ﬂn % | ALU/MUL pipe 0 update
AGU W_I:1:Et°$" N : g :
[ j:; e || | Instruction decode % o ALU pipe 1 | plil;m
GHB i : EP
RS & LS pipeOor1 update




Microarchitecture
Intel 17 920

six functional units
issue width=4

inst. TLB |4

128-Entry | 32KB Inst. cache (?r-wq associative) |«

(four-way) 16-Byte pre-decode +macro-op
? v fusion, fetch buffer
4
s " {a-Entry instruction queue |
hardware |

"

Micro V macro-op

decoder  decoder
-code — e

macro-op

v

v

28-Emynloro-oploo?mmtodm

) AN SS— AN S—

macro-op

\
| | Register alias table and allocator |
Retirement v
register file ¥ - 128-Entry reorder buffer
\ 4
> ~ 36-Entry reservation station
v v ¥ v ¥ v
ALU ALU Load Store Store ALU
shift shit = address address @ data shift
Se (s Lot [
shuffie shuffle oudae Inifiar shuffie
ALU ALU Mancry ALU
i28bit | | 128b 128l
FMUL FMUL Store FMUL
FDIV FONV & load FDIV
YVY VY \ 4
512-Entry unified < [ 64-Entry data TLB | [ 32-KB dual data | 266 KB unified 2
L2TLB (4-way)  »|(4-way associative) | | cache (8-way associative) cache (eight-way)
i

v 4

8 MB all core shared and inclusive L3 » Uncore arbiter (handles scheduling and

cache (16-way associative)

<« clock/power state differences)




32K L1
I-Cache

Microarchitecture Intel Haswell

256K L2 Unified
Cache

Branch Prediction
Unit

Load Buffers
Store Buffers
Reorder Buffers

Instruction Fetch

and
Pre-Decode

Decoded

Instruction Cache |«

(Micro-0ps)

Instruction
Queue

A 4

Instruction
Decoders (4)

Micro-0p <
Instruction

Queue -

Allocate/Rename
(Dataflow Reorder)

Loop Stream
Detector

Retire Unit
(Program Reorder)

Execution Engine

—

In;UrEr __________________________ .
Out-of-Order
v A 4
Scheduler
Port 0 Port 1 Port 2 Port 3 Port 4 Port5 Port 6 Port 7

micro fusion:

mov %eax,table(,%edi,4)
add mem,%eax

macro fusion:

dec %ecx
jnz _label



Microarchitecture Intel Haswell

~= 32 KL1Instruction Cache [—® Pre-Decode [—® Instruction Queue MSROM ‘|
T Decoder N
™ bq order
BPU ——— ™ LUop Cache (DSB) [—
Load Buffers, Store Buffers, I Allocate /Rename /Retire/Move |
Reorder Buffers Elimination/ Zeroldiom
Scheduler
PortO Port 1 Port 5 Porte Portd Port 2 Port3 Port 7
) ' ' v ) ) ) y out
ALU ALU, Sht STD LD/STA LD/STA STA Of
! AL,
HI
SHIFT, Fast LEA, ALU, order
VEC LOG,
EP mul ! VEC LOG, VEC ALU, Branch
EMA, ' FP mul, VEC LOG,
DIV FMA, VEC
’ FP add, SHUF, Memory Control
. Slow Int
Branch 2 +
: Y
256K L2 Cache (Unified) > Line Fill Buffers U*_\_’ 32 KL1 Data Cache ‘



instruction lists of the x86-compatible (and some newer) CPUs:

http://www.agner.org/optimizel/instruction tables.pdf



http://www.agner.org/optimize/instruction_tables.pdf

