
von Neumann Architecture (machine)

1945 John von Neumann, (John Mauchly, Presper Eckert)

Model of the computer with the following main subsystems:

• Arithmetic Logic Unit (ALU)

• Control Unit (CU)

• one common memory (and bus) for both:

program instructions and data

• Input/Output (I/O) system

Processor (CPU - Central Processing Unit)

• many modern computers and CPUs are more or less

based on the Von Neumann Architecture:

IBM PC, Motorola MC6800…

• program instructions and data are stored in one common memory

as numbers (in binary form)

• instructions and data are transferred between memory and CPU

through common shared bus

• memory is divided into storage units of fixed size: memory cells.

• each memory cell has an unique address

• memory cell is minimum accessible unit of memory

• CPU executes program instructions sequentially

von Neumann Architecture

...

0

1

2

2N-1

1 bit

W (8 bit)

0000 0000 0000 0010

N (16 bit)

2N

• memory width (W) (databus width)

- number of bits in each memory cell

here: 8 bits (1 byte)

• address width (N) (address bus width)

- number of bits used to represent

memory address

Address space = max. memory size (2N)

(addressable from 0 to 2N-1)

E.g. 8bit 6800, 6502, Z80 CPUs have:

8bit data bus

16bit address bus -> 64 KB address space

Intel 8088

8bit external (16bit internal) data bus

20bit addresses -> 1 MB address space

The Simplest Memory Organization

1 kV =1000 V

1 MΩ =1000 kΩ = 1000000 Ω

1 nF = 1/1000 μF

…

1 KiB = 1024 Bytes

1 MiB = 1024 KiB = 1048576 Bytes

Binary prefixes – IEC 1998 (International Electrotechnical Commission)

similarly: kilobits and kibibits…

Instruction Processing

• CPU is a kind of sequential circuit:

• a finite state machine:

i.e. executes instructions

sequentially and repeatedly,

clocked by the pulses of a clock signal

Fetch instruction from memory

Decode instruction

Compute next address

Fetch arguments from memory

Execute instruction

Store result

Instruction cycle

• not all phases are needed

by every instruction

• each phase of instruction cycle is called

machine cycle.

• machine cycles may take variable

number of clock ticks

(sometimes 1 clock pulse per 1 machine cycle)

von Neumann bottleneck:

• only one bus, used for both data transfers and instruction fetches:

• data transfers and instruction fetches must be scheduled

(they can not be performed at the same time)

• throughput (data transfer rate) between the CPU and memory is limited

program code stored in Random Access Memory can be modified during runtime!

- selfmodification

- accidental modification, due to errors

- malicious modification

Memory protection is needed…

von Neumann Architecture

Harvard Architecture

• (at least…) two separated memory systems for instructions and data

• connected to the CPU through separated buses

• instructions and data can be fetched and transferred simultaneously on both busses

- greater throughput (data transfer rate)

• address spaces, data widths, implementation technologies of these memories can

differ

• separate memory blocks of different type with one shared bus

simple 8bit microcontrollers (single-chip microcomputers like 8051, AVRs)

Program: Read-Only-Memory (Non-volatile, Flash, EPROM)

Data: Random-Access-Memory (Read-Write)

• program memory can store constant data (fonts, sounds, text strings)

• special instructions allow to load them directly to the CPU core

Modified Harvard Architecture (1)

Modified Harvard Architecture (2)

Memory hierarchy in modern personal computer

• main operational memory – von Neumann architecture

• level 1 cache – Harvard architecture

- concurrent access to the instructions and data may reduce

stalls and structural hazards in pipelined processors

Computer Architecture

Intuitive definition:

Hardware organization. Configuration of the basic blocks (CPU, memory, I/O…)

and connections between them…

and more formal:

Functional operation of the individual hardware units within a computer

system, and the flow of information and control among them.

(from Richard C. Dorf Computers, Software Engineering, and Digital Devices)

But… is this really all?

Any digital computer (with CPU, memory and I/O) can (given enough time)

complete any algorithm*

like Infinite Monkey Theorem…

*taken from:

Using the Intel MCS-51 Boolean processing capabilities, Intel Corporation, 1980

Computer Architecture

ISA – Instruction Set Architecture – programmer’s model

i.e. how computer system looks to programmer:

• number and type of registers

• instruction formats, operation code set

• specifies data types and data structures and storage elements

• addressing modes and accessing data items

• I/O handling

Computer Architecture

I/O systemProcessor

Compiler Operating

System

Applications

Digital Design

Circuit Design

Instruction Set
Architecture

Data pathways & Control

Transistors

MemoryHardware

Software
Assembler

Computer Architecture = ISA + Hardware Organization

Instruction Set Architecture

two major concepts:

CISC – Complex Instruction Set Computer

RISC – Reduced Instruction Set Computer

CISC – Complex Instruction Set Computer

An older approach:

• implements a large instruction set (100…>>1000), from simple ones to very complex

• usually microcoded

• instructions of varying length (form one byte to dozens of bytes)

• complex coding schemes

• small number of general purpose registers (e.g. 4…16)

• arguments can be directly fetched from main memory

• execution times differ, depending on instruction type,

from several clock cycles to several dozen clock cycles

„Classic” CPUs designed in 70s: Intel 8080, 8085, 8086 (x86) Z80,

Motorola 6800, microcontrollers: 8048, 8051, 6805 etc

CISC – Complex Instruction Set Computer

Pros:

• various complex instructions and addressing modes make the assembly programs

shorter and easier to write by human

• high density, compact code – important in embedded systems

(e.g. microcontrollers with very small program memory 1-4KB)

Cons:

• complicated digital design, hard to validate and debug, high power consumption (x86)

• many of the implemented features were used rarely or not used at all…

• instructions of different sizes, execution times and complexity create problems with:

• pipelined processing

• instruction level parallelism

• automatic code optimization (by compiler)

complex instruction examples (x86):

• copy the block of data

MOV $source_address , %esi

MOV $destination_address, %edi

MOV $number_of_bytes, %ecx

CLD ;clear direction flag

REPNZ MOVSB ;move string of bytes until ecx

;reaches zero

• for loop

MOV $10 , %ecx ;number of iterations

for_label:

;some code

LOOP for_label ;decrement ecx, then jump to label if ecx!=0

• such instructions are „hard-wired” with certain registers, (e.g. LOOP with ecx)

• were designed over 40 years ago, now - are not optimized for pipeline execution

CISC – Complex Instruction Set Computer

x86 architecture - instruction encoding: a real mess! (only 32bit version is shown)

• instruction-dependent, various encoding schemes

• instructions and their arguments are encoded

as a sequence of bits of different length

• certain instructions have „strange” lengths:

not a common powers of two but odd: 5-7 bytes

RISC – Reduced Instruction Set Computer

• instruction set is small and as simple as possible,

with as few as 30–50 necessary instructions

• (almost…) all instructions are executed in a single cycle

• all instructions have the same size and a fixed format (encoding scheme)

thus, are very simple to decode

• large number of general purpose registers

Load Store concept:

• The processor access data from external memory with explicit

Instructions: Load and Store.

• All other operations, such as adds, sub-

tracts, and logical operations, use only fast registers built-in CPU

Rapid development in the 80s: MIPS, ARM, Sun SPARC, IBM PowerPC…

RISC – Reduced Instruction Set Computer

PROS and CONS

• RISC usually requires more (simple) instructions to solve a problem

• but this is compensated for by the fact that each instruction is executed much faster

so the overall running time is less.

• large number of the short and simple instructions allow effective compiler optimization

• hardware complexity is reduced, thus RISC machines are easier to validate,

• properly written code has statistically smaller number of memory accesses

(only load/store instructions)

• compact, uniform instructions - facilitate pipelining

• more instructions in program: larger memory consumption, bigger executable files

Instructions are typically 4 (or 2) bytes long

thus, have enough space to encode 3 operands:

ADD R0,R1,R2; R0= R1+R2

The world has become too complex to talk only about RISC vs. CISC!

• in the modern x86 (>= Pentium, Pentium Pro) classic CISC instructions

are internally „translated” to the sequences of RISC-like microoperations…

• ARM (RISC) processors can conditionally execute each instruction:

ADDEQ R3,R2,R1,LSL #2

if equal (zero_flag==1) then R3=R2+4*R1

and are equipped with sets of:

- floating point

- vector

- digital signal processing

instructions.

16bit constant (immediate) only:

32bit constant is loaded

in two steps:

1. Load Upper Immediate)

lui $s1, 35

2. Insert the lower half:

ori $s1, $s1, 46

MIPS (Microprocessor without Interlocked Pipe Stages)
ARM (Advanced RISC Machine) - most common in portable devices

a well designed, simple instruction encoding schemes:

all instructions are

32/16 bit long

(powers of two -

easy to align and access

in the memory space)

