
• Sequential execution 

• Pipelining & Instruction Level Parallelism

• Multiple Issue / Superscalar processors

Central Processing Unit



MIPS  (Microprocessor without Interlocked Pipe Stages)

processing of the most common types of instructions:

lw $t0, offset($t2)

add $t0, $t1, $t2

beq $t0, $t1,label

unconditional 

jump

conditional branch

if equal
(jump if equal)

load data (word) to register

add values in registers t1 & t2

store the result in reg. t0

coding schemes



Instruction cycle – MIPS

• IF – instruction fetch (from program memory), increment the Program Counter (PC)

• ID – instruction decode and register readout

• EX – execution (or address calculation)

• MEM – data memory access

• WB – write back – write the result back to the register(s)

PC – Program Counter – (Intel x86: IP/EIP/RIP – Instruction Pointer)

holds the address of the next instruction to fetch!



MIPS – load a 32bit word from address = (offset + t2) to register t0

lw $t0, offset($t2)

1. Instruction fetch

2. PC=PC+4

3. Read the value 

    from register t2 

4. Compute the

    address:

    t2+offset

5.  Memory access

6. Store the contents

    in register t0

lw           t2             t0          offset



MIPS – simple register operation

add $t0, $t1, $t2 

t0=t1+t2

t1           t2             t0          -----

1. Instruction fetch

2. PC=PC+4

3. Read the values from 

    registers  t1 and t2

3. Perform the arithmetic

    operation

4. Store the result

    in t0



MIPS – conditional branch (conditional jump) – optimized!

1. Instruction fetch

2. PC=PC+4

3. Read the values from 

    registers  t1 and t2

4. ALU: compare: 

    t0 - t2

    set the ZERO flag

Simultaneously:

5. Second ALU computes

    destination address

    of the jump

    PC+(const*4)

6. If ZERO_flag=1

reprogram the PC

with destination address

beq $t0, $t1,label

compare registers:

t0 with t1

and jump to label

if equal x4



MIPS – unconditional „far” jump

1. Instruction fetch

2. PC=PC+4

3. Destination

address of the jump:

- lower 28bits:

26bits taken from

the argument,

then shifted

2 bits left

- higher 4bits directly

copied from the PC

3. PC is set to the

new value



Sequential execution 

• assumes that each instruction completes before the next one begins

• subsequent phases of instruction cycle are performed by different processor blocks

• single-cycle design is possible but inefficient:

• clock cycle must have the same length for every instruction 

• the longest possible path in the processor determines the clock cycle. 

  (clock cycle is equal to the worst-case delay for all instructions)



Pipelined execution

• data path is divided into multiple pipeline stages (here: 5)

• each instruction executes over multiple cycles (here: 5)

• consecutive instructions are overlapped in execution

• the last step of executing some instruction is finished in each clock cycle, 

   so the throughput is 1 instruction per clock (IPC)  cycle. 



(Ideal) Instruction Set Architecture for pipelining:

Just a set of fast, short and simple instructions…

• instructions have (nearly) equal execution times

• instructions have the same length and a few simple encoding schemes

• memory operands only appear in load and store instructions

  (the rest uses registers as arguments)

• separated memory blocks and buses for instructions and data (Harvard arch.)

Pipelined execution



the pipeline cycle (frequency) has to be adjusted to longest phase/operation 

Pipelined execution



3 instructions, sequential:

3*800ps=2400ps

3 instructions, pipelined:

 1400ps

speed-up: 2400ps/1400ps = 1.7

1000000 instr. sequential:

 800ms

1000000 instr. pipelined:

approx. 200ms

approx. speed-up 4x

• under ideal conditions and with a large number of instructions, 

the speed-up from pipelining is approximately equal to the number of pipe stages

e.g. a five-stage pipeline is nearly five times faster

Pipelined execution



lw $4,400($0)                                 |   IF    |  REG |  ALU  |  DA   | REG |

Concurrent memory access:

- load data to register

- instruction fetch

Solution: two memories and two buses for data and instructions…

Level 1 Cache - Harvard architecture!

Pipelined execution – problems…

structural hazards - instruction cannot execute in the proper clock cycle 

because the CPU does not support the combination of instructions that are set  

to execute



forwarding (bypassing)

Pipelined execution – problems…

data hazards / data dependencies

instruction cannot execute in the proper clock cycle because 

data that is needed to execute the instruction is not yet available

Read after Write – a true dependency:
argument of the 2nd instruction (sub) depends on the result of the previous one (add)



data hazards / data dependencies





lw $s0,2(t1)

nop – no operation stall

Pipelined execution – problems…

data hazards







Pipelined execution – problems…

control hazards / branch hazards - CPU needs to make a decision based on the 

results of one instruction while others instructions are executing…

E.g. where to fetch the next instruction from?

jump

not

taken

jump

taken

PC(44) + displ(28) = 72

unoptimized path,

without additional

ALU/AGU



Pipelined execution – problems…

control hazards / branch hazards

Stalling the pipeline until the branch is complete is too slow…

beq  $1,$2,40 – jump to location (PC+40) if (contents of) register $1 == register $2

Optimization:

destination address of the jump is calculated simultaneously during comparison,

both tasks are performed by the dedicated ALUs. (or AGU – Address Generation Unit).

See slide #6 for details.



Pipelined execution – problems…

Speculative Execution

Simple (static) Branch Prediction 

- assume that branch is not taken

- just continue execution down the sequential instruction stream

- if jump is taken - the instructions that are being fetched and decoded must be

  discarded  (pipeline flush/refill) – we pay the penalty - extra time! 

- execution continues at the target address of the branch…



Pipelined execution – problems…

Dynamic Branch Prediction

- try to predict branch result on the basis of recent behaviour (e.g. loops…)

- branch history table contains information (1-2 bits) whether the branch was 

recently taken, or not.

- fetching begins in the predicted direction

- pipeline needs to be flushed in the case of misprediction

Eager Execution

 

- the both sides of the branch are fetched and processed

- after evaluation of condition, one side is discarded



Pipelined execution – problems…

2 bit dynamic branch prediction scheme
for (x=0;x<1000000;x++)

for (y=0;y<1000000;y++)

A[x][y]=…



Out Of Order (OOO) processing/execution

Just an idea*:

…

1 MOV %ecx,%ebx #an „independent” instruction

2 CMP $10,%eax #(result of the comparison does not depend on

3 JE label  #on the result of MOV operation)

4 SHL $2,%eax

…

…

1 CMP $10,%eax 

2 MOV %ecx,%ebx

3 JE label

4 SHL $2,%eax

…

*modern processors sometimes perform so-called macro-op fusion:

certain pairs of instructions (e.g. cmp & cond_jmp) are fused and handled

as one operation.

Pipelined execution – problems…

control hazards / branch hazards



Pipelined execution – problems…

control hazards / branch hazards

if (eax > 5) then eax=ebx else eax=ecx end_if

1  CMP    $5,%eax

2  JBE    else

3  MOV    %ebx,%eax

4  JMP          end_if

5 else:  MOV    %ecx,%eax

6 end_if: …

conditional execution:

1  CMP    $5,%eax #set the flags

2  MOV    %ebx,%eax #mov does not modify the flags

3.          CMOVBE  %ecx,%eax #conditional move (eax:=ecx) if below or equal

+ reduces the number of conditional jumps in a program

- all instructions have to be fetched

In the case of longer blocks – much more instructions to fetch

(one part just passes through the pipeline – results are ignored)



Conditional Execution

One unusual feature of ARM core is that every instruction has the option of

executing conditionally - depending on the condition codes (flags)

Greatest Common Divisor:

while (a != b) {

        if (a > b) a = a – b;

        else b = b – a;        }

ARM

gcd:  

 CMP r0, r1

 SUBCS r0, r0, r1  ;subtract only when Carry flag is Set

 SUBCC r1, r1, r0  ;subtract only when Carry flag is Cleared

 BNE gcd

THUMB2 (ARM-Cortex)

gcd:    

 CMP r0,r1

 ITE CS  ;IF THEN ELSE

 SUBCS r0,r0,r1  ;one instruction in THEN section

 SUBCC r1,r1,r0  ;one in ELSE

 BNE gcd



„Standard” pipelined execution:

Performance: 

• ideal/theoretical: 1 CPI (clocks per instruction)

• practical 1.2 CPI (or 0.83 IPC instructions per clock)

max. clocking frequency is limited by the longest stage (phase, operation) in the pipeline 

Superpipelined processor - pipeline is divided into large number of short, simple stages

• execution of the single instruction requires more clock cycles 

• still 1 CPI (in practice 1.5 CPI)

• shorter stages – higher maximal clock frequency

• theoretically better performance (e.g. instructions per second)

• longer pipeline = higher penalties e.g. due to branch misprediction…



Superscalar processors – Dynamic Multiple Issue

try to execute more than one instruction at one clock cycle…

• complex pipeline with multiple, concurrent execution units 

• sometimes several, independent pipelines

• fetch and decode a packet of instructions

• check the dependencies between them, sort, change order and dispatch to exec. units

• ensure that results are written to memory in the original order

commit/

retire



Pentium 1 - microarchitecture

x86-compatible superscalar:

 two „pipes”: U – all instructions, V – only certain, simple instructions



multiple issue

superscalar

superpipelined

superscalar

most modern 

general-purpose

CPUs

superpipelined

sequential pipelined

images from: www.lighterra.com/papers/modernmicroprocessors



Multiple-Issue processors

Static Multiple Issue

• compiler assists with matching and packaging instructions 

   into the groups (issue packets) to be executed in parallel

• compiler handles the hazards (e.g. data dependencies)

• compiler can change the order of instructions (can even change the original code!)

• simpler logic design:

CPU does not contain complex out of order execution 

and dependency-checking logic circuits

Static Multiple Issue approach is not popular today…

VLIW processors (Very Long Instruction Word)

EPIC (Explicitly Parallel Instruction Computing)  - HP & Intel

Intel Itanium

some Digital Signal Processors (DSP), GPU shaders…



Static Multiple Issue - example

issue width = 2, two pipelines



Static Multiple Issue – example

Add a constant value (32 bit, stored in reg. $s2) to each element of the table.

Pointer (address) of the last element is in reg. $s1.

for_loop: 

1 lw $t0, 0($s1) ;load element

2 addu $t0,$t0,$s2 ;modify: $t0 += $s2

3 sw $t0,0($s1) ;write-back

4 addi $s1,$s1,-4 ;decrement pointer

5 bne $s1,$zero,for_loop ;repeat until we process the first element (0)

   

• Read after Write (RaW) data dependencies (blue, red…)

• data dependency can be loop-carried…



Original code:

for_loop: 

1 lw $t0, 0($s1) ;load element

2 addu $t0,$t0,$s2 ;modify: $t0 += $s2

3 sw $t0,0($s1) ;write-back

4 addi $s1,$s1,-4 ;decrement pointer

5 bne $s1,$zero,for_loop ;repeat until we process the first element (0)

CPU can perform two independent operations in parallel: data transfer & ALU operation

 ALU    LOAD/STORE

forloop: 

1 nop    lw $t0, 0($s1) nop - no operation

2 addi $s1,$s1,-4  nop

3 addu $t0,$t0,$s2  nop

4 bne $s1,$zero,forloop  sw $t0,4($s1)

Very poor result: only one pair of instructions was executed in parallel way…

CPI (clocks per instruction) = 4/5 = 0.8 (the best theoretical result = 0.5)

IPC (instructions per clock) = 5/4 = 1.25 (the best theoretical result = 2.0)



for_loop: 

1 lw $t0, 0($s1) ;load element

2 addu $t0,$t0,$s2 ;modify: $t0 += $s2

3 sw $t0,0($s1) ;write-back

4 addi $s1,$s1,-4 ;decrement pointer

5 bne $s1,$zero,for_loop ;repeat until we process the first element (0)

Loop Unrolling! (mod 4)

forloop: 

1 addi $s1,$s1,-16 

2     lw $t0,0($s1) 

3     lw $t1,4($s1)

4 addu $t0,$t0,$s2  lw $t2,8($s1)

5 addu $t1,$t1,$s2  lw $t3,12($s1)

6 addu $t2,$t2,$s2  sw $t0,0($s1)

7 addu $t3,$t3,$s2  sw $t1,4($s1)

8     sw $t2,8($s1)

9 bne $s1,$zero,forloop  sw $t3,12($s1)

10 instructions from 14 were processed in parallel (9 clocks)

CPI = 9/14 = 0.64 ; IPC = 14/9 = 1.56

additionally: 4x less number of iterations (conditional branches)



Dynamic Multiple Issue – Superscalar processors

• CPU chooses which (and how many) instructions to execute in parallel,

   in a given clock cycle

• CPU can dynamically reorder instructions to reduce the stalls

• CPU have to analyze dependencies in a group of instructions to avoid hazards!

• A good compiler can optimize the code: 

        e.g. try to schedule instructions to move the dependencies apart

 additionally – compiler has access to whole code… and a lot of time…

 but can not predict everything: exceptions, i/o handling, cache misses

Finally: all the results must be written back to memory in the order

  of the original program!



Dynamic Multiple Issue – Superscalar processors

• Out Of Order execution (OOO)

• VERY complex logic design, sometimes high power consumption…

•Register renaming 

• remove the Write after Read and Write after Write dependencies…

• Branch prediction

• Conditional execution

^^^ Just to achieve a better instruction level parallelism and to avoid stalls

 in the pipelines…

Again: all the results must be written back to memory in the order

  of the original program!



Register renaming: Lx – logical registers  Fx – large set of physical registers

e.g. L1=F1, L2=F2, L3=F3,   F4…F32 – unused registers

mul L1,L2,L3  ;L1=L2*L3 L1=>F4  mul F4,F2,F3

sub L3,L2,L1  ;L3=L2-L1 L3=>F5  sub F5,F2,F4

div L1,L2,L3  ;L1=L2/L3 L1=>F6  div F6,F2,F5

add L2,L1,L3  ;L2=L1+L3 L2=>F7  add F7,F6,F5

Data dependencies (only some are shown)

RaW Read after write – true/flow dependency

WaR Write after Read – anti dependency

WaW Write after Write – output dependency removed by register renaming



Microarchitecture

AMD Opteron X4 72 physical

registers

Modern x86 compatible CPUs

translate legacy CISC 

instructions into the sequences 

of the simple RISC-like 

microoperations





Microarchitecture: ARM A8 core (portable devices)



Microarchitecture
Intel i7 920

six pors /functional units

issue width=4



Microarchitecture Intel Haswell

micro fusion:

mov %eax,table(,%edi,4)

add mem,%eax 

macro fusion:

dec %ecx

jnz _label



Microarchitecture Intel Haswell

in

order

out

of

order



instruction lists of the x86-compatible (and some newer) CPUs:

http://www.agner.org/optimize/instruction_tables.pdf

http://www.agner.org/optimize/instruction_tables.pdf

